New Magnetostratigraphy from the Punta Grohmann Section

Total Page:16

File Type:pdf, Size:1020Kb

New Magnetostratigraphy from the Punta Grohmann Section General Assembly New magnetostratigraphy from the Punta Grohmann section Online, 4-8 May 2020 (Dolomites, NE Italy): an improvement of the Geomagnetic Polarity Università degli Studi di Milano Time Scale around the Ladinian/Carnian boundary University of Milan PG 21 PG 38 40 Matteo70 Maron1*, Giovanni Muttoni1, Marica Ghezzi1, Manuel Rigo2 and Piero Gianolla3 Università degli Studi di Padova 35 60 30 University of Padua 1)50 Department of Earth Sciences “A. Desio”, University of Milan, via Mangiagalli 34, 20133 – Milan, Italy 25 2)40 Department of Geosciences, University of Padova, via Gradenigo 6, 35131 – Padova, Italy 20 30 Università degli Studi di Ferrara 15 3) Department of Physics and Earth Sciences, University of Ferrara, via Saragat 1, 44122 – Ferrara, Italy Magnetization (A/m) Magnetization (A/m) 20 10 (*) Referring author ([email protected]) © Authors. All rights reserved University of Ferrara 10 5 0 0 0 100 200 300 400 500 600 700 0 100 200 300 400 500 600 700 Temperature (°C) THE LADINIAN/CARNIANTemperature (°C) BOUNDARY PG 49 PG 57 16 The40 Ladinian/Carnian boundary (LCB) is officially defined at Prati di Stuores (GSSP of the Carnian Stage; Mietto et al., 2012) with the first appearance datum of ammonoidDaxatina canadensis in bed 14 SW435 (Broglio Loriga et al., 1999; Mietto et al., 2012). The age of the LCB has been recently estimated at ca. 236.8 Ma (Maron et al., 2019). In the attempt to refine the chronology of the Carnian Stage, 12 0.12 T we 30investigated the Ladinian-Carnian marine section of Punta Grohmann, which is time-calibrated by two U-Pb datings from the same ash-bed (237.58±0.04 Ma, 237.68±0.05 Ma; Storck et al., 2019). 0.4 T 10 25 2.5 T 8 20 11°30’E 11°45’E 12°00’E Punta Grohmann Sass de Putia 46°40’N 6 15 THE PUNTA GROHMANN SECTION Dolomites Magnetization (A/m) Magnetization (A/m) Lithostratigraphy Ammonoids Biostratigraphy J NRM (×10-3 A/m) Susceptibility (×10-6 SI) VGP Latitude (°N) 4 10 Chiusa 46°40’N The Punta Grohmann section (e.g. Gianolla et al., 1998, 2010; Mietto N Odle Group Badia 2 5 ITALY GR4r Puez Group Fanes N Ortisei et al., 2012) is located in the Dolomites (Southern Alps, NE Italy), close GR4n 0 0 Group - GRH 3 Selva di Val Gardena 0 100 200 300 400 500 600 700 0 100 200 300 400 500 600 700 0 250 Km CARNIAN Corvara to the Sassopiatto massif. It is a basinal sequence of ~270 m of mainly 500 GR3r Temperature (°C) TemperatureRio Frommer (°C) - GRH 80 Sella - GRH 8 Rio Nigra Sassopiatto Group volcaniclastic sediments (Wengen Fm.) followed by ~300 m of mainly - GRH 7 Prati di GR3n BOLZANO Sciliar Stuores 46°30’N Punta Grohmann GR2r carbonatic deposits belonging to the San Cassiano Fm. The Punta Celtites sp. PG 61 PG 73 400 16 Zestoceras sp. LADINIAN 46°30’N 25 Canazei Catinaccio Orestites sp. Celtites epolensis Grohmann section lies above the Marmolada Conglomerates (Wengen Fm.) SAN CASSIANO FM. 14 GR2n Group - GRH 6 Asklepioceras sp. Zestoceras cf. lorigae 12 20 Marmolada and is topped by the caotic breccias of the Cassian Dolomite Fm., marking 10 0 10 km 300 Latemar Moena 15 the progradation of the Cassian platforms on the basinal sequences. In the - GRH 5 8 11°30’E 11°45’E 12°00’E lower part of the section, the ammonoid biostratigraphy is characterized by 6 10 237.579 ± 0.042 Ma Magnetization (A/m) Magnetization (A/m) Lecanites glaucus GR1r 200 237.680 ± 0.047 Ma 4 assemblages typical of the Regoledanus Subzone, while in the upper part (~490 m) the first appearance ofZestoceras cf. - GRH 2 5 - GRH 9 2 lorigae (Canadensis Sbz.; Mietto et al., 2012) approximates the LCB. The conodont assemblages recovered from Punta - GRH 100 0 0 0 100 200 300 400 500 600 700Grohmann0 100 (e.g.200 Russo300 400 et500 al., 6001997)700 are typical of the upper Ladinian - lower Carnian interval (Gianolla et al., 2010). The 100 - GRH 9 cf. Joannites sp. WENGEN FM. TemperaturePG (°C) 21 TemperaturePG 38 (°C) Frankites regoledanus - GRH 4 Frankites apertus 70 Frankites sp. 40 U-Pb ages of 237.58±0.04 Ma and 237.68±0.05 Ma (Storck et al., 2019) are located at ~217 m. Maclearnoceras spp. - GRH 1 Lobites ellipticus 35 PG 21 PG 38 GR1n 60 40 70 PG 81 30 35 60 0 m 12 400050 Marmolada Conglomerates 0 500 1000 1500 2000 0 5000 10000 15000 -90 -60 -30 0 30 60 90 30 25 50 3000 10 40 25 20 40 20 PALEOMAGNETISM OF PUNTA GROHMANN 200030 8 30 15 15 vertical Magnetization (A/m) Magnetization (A/m) 20 Magnetization (A/m) 1000Magnetization (A/m) 20 10 A total of 93 samples for paleomagnetism have been horizontal 6 10 PG1 PG50 10 Units: A/m ×10-2 IN SITU TILT CORRECTED 100 5 Units: A/m ×10-3 5 collected from the Punta Grohmann section, The 5000 1000 1500 2000 25000 W,U W,U Magnetization (A/m) 0 0 4 10 8 0 -10000 0 100 200Field (mT)300 400 500 600 700 0 100 200 300 400 500 600 700 PG34 Temperature (°C) Temperature (°C) highest values of magnetic susceptibility and NRM -2 0 100 200 300 400 500 600 700Magnetization (A/m) 0 100 200 300 400 500 600 700 Units: A/m ×10 2 W,U Temperature (°C) -2000 PG20 PG50TemperaturePG71 (°C) PG74 PG82 PG84 PG 49 PG 57 3 16 40 magnetization are generally located in the lower part of S N 0 -3000 5 20 PG 49 14 PG 57 35 0 16 100 200 300 400 500 600 700 40 the section (within Wengen Fm.), except for a peak in 12 0.12 T 30 Temperature (°C) PG 21 PG 38 PG 21 0.4 T 70 PG 38 14 3540 4010 2570 2.5 T both curves located in a level of the San Cassiano Fm. S N 270 90 270 90 8 20 5 1 12 0.12 T 3035 35 6060 306 15 0.4 T 30 50 and probably related to locally weathered rocks. IRM 10 Magnetization (A/m) 25 50Magnetization (A/m) 2.5 T 254 10 40 S N 25 4 2 8 20 2 acquisition and thermal demagnetization of three-axis 20 405 30 3 6 1520 150 0 E,D Magnetization (A/m) 0 100 200 300 400 500 600 700 30Magnetization (A/m) 20 0 100IRM200 on300 representative400 500 600 700 samples indicate magnetite as the Magnetization (A/m) Magnetization (A/m) 10 4 1015 Temperature (°C) Temperature (°C) 10 5 180 180 Magnetization (A/m) Magnetization (A/m) 20 main carrier of the remanence in the Punta Grohmann 2 105 0 0 35 4 E,D E,D 0 100 200 300PG 61400 500 600 700 10 0 100 200 300PG 73400 500 600 700 5 16 0 0 Temperature (°C) 25 section.Temperature (°C) 0 100 200 300 400 500 600 700 0 100 14 200 300 400 500 600 700 MEAN DIRECTIONS 0 0 Temperature (°C) 12 Temperature (°C)PG 49 20 PG 57 PG87 0 100 16 200 300 400 500 600 700 40 0 100 200 300 400 500 600 700 PG59 In Situ Tilt-Corrected -4 10 Temperature (°C) Temperature (°C) Units: A/m ×10-2 Units: A/m ×10 14 3515 8 W,U W,U Site N k 95 Dec. Inc. k 95 Dec. Inc. After thermal demagnetization, 56 of 93 samples revealed a ChRM component oriented north-down15 12 0.12 T 30 5 PG 61 6 PG 73 10 Magnetization (A/m) PG 49 PG 57 0.4 T Magnetization (A/m) PG70 16 16 10 4025 Punta Grohmann 56 5.4 17.3°E 61.6° 5.5 6.4°E 40.5° 25 4 2.5 T and south-up in in situ coordinates. The mean directions obtained from the ChRMUnits: A/m ×10components-3 (Dec.: 5 8 14 2 20 W,U 14 35 6 PALEOMAGNETIC POLE AND PALEOLATITUDE 6 20 0 150 6.4°E, Inc.: 40.5°, a = 9°) in tilt-corrected coordinates yield to a paleopole position having Lat.: 66.3°N 12 S N Magnetization (A/m) 95 12 0 100 200 300 400 500 600 700 30Magnetization (A/m) 0 100 200 300 400 500 600 700 95 4 0.12 T 10 20 5 Site Lat. Long. k A Paleolatitude 10 Temperature (°C)0.4 T Temperature (°C) 1510 2 255 and Long.: 176.7°E (A = 6.6°). The stratigraphic sequence of the Virtual Geomagnetic Poles (VGP), Punta Grohmann 66.3°N 5.5 6.6° 23.1°N +7.2°/-6.1° 2.5 T 95 8 0 8 PG 81 200 12 0 100 200 300 400 500 600 700 4000 0 100 200 300 400 500 600 700 S N 6 10 calculated for each ChRM component, was used for intepreting the polarity2 stratigraphy.10 The latitude Temperature (°C) Temperature (°C) Magnetization (A/m) S N Magnetization (A/m) 6 300015 2 1 4 10 Magnetization (A/m) Magnetization (A/m) of the samples VGP defined 8 magnetozones named GR. 5 2000 4 8 10 2 PG 61 PG 73 16 1000 2 525 0 6 0 14 0 Wayao 0 100 200 300 400 500 600 700 0 100 200 300 400 500 600 700 500 1000 1500 2000 2500 0 Magnetization (A/m) 4 020 Prati di Stuores 12 -1000 Option C (China) Field (mT) Temperature (°C) 0 100 200 Temperature300 400 (°C) 500 600 700 0 100 200 300 400 500 600 700 102 Magnetization (A/m) (Italy) Temperature (°C) -200015 PG20 PG50 PG71TemperaturePG74 (°C)PG82 PG84 8 4 10 40 E,D s E,D E,D 0 -3000 i Age 6 0 100 200 300 400 500 600 700 10 Wa5 GAP PG 81 Magnetization (A/m) Magnetization (A/m) (Ma) 12 4000 Temperature (°C) 4 0.4 1.0 Wa4 Wa5 5 PG 61 PG 73 0.5 2.0 Wa4 300016 2 0.0 10 25 0.0 Mayerling 234 0-0.4 0 -0.5 Punta Grohmann 14 aon 2000 t-value 0 100 200 300 400 500 600 700 0 100 200 300 400 500 600 700 1.5 -0.8 t-value -1.0 (Austria) 8 200 lygnathiform Temperature (°C) 20 Temperature (°C) (Italy) 12 -1.2 -1.5 o Wa3 Wa3 1000 -2.0 180 6 10 S4n 1.0 0 PG 81 15 s 160 12 4000 i 235 8 500 1000 1500 2000 2500 140 S3r Magnetization (A/m) 4 Mayerling Mayerling lorigae -1000 10 Field (mT) 3000 MA5r 0.5 6 10 120 S3n Wa2 cf.
Recommended publications
  • Conodonts and Foraminifers
    Journal of Asian Earth Sciences 108 (2015) 117–135 Contents lists available at ScienceDirect Journal of Asian Earth Sciences journal homepage: www.elsevier.com/locate/jseaes An integrated biostratigraphy (conodonts and foraminifers) and chronostratigraphy (paleomagnetic reversals, magnetic susceptibility, elemental chemistry, carbon isotopes and geochronology) for the Permian–Upper Triassic strata of Guandao section, Nanpanjiang Basin, south China ⇑ Daniel J. Lehrmann a, , Leanne Stepchinski a, Demir Altiner b, Michael J. Orchard c, Paul Montgomery d, Paul Enos e, Brooks B. Ellwood f, Samuel A. Bowring g, Jahandar Ramezani g, Hongmei Wang h, Jiayong Wei h, Meiyi Yu i, James D. Griffiths j, Marcello Minzoni k, Ellen K. Schaal l,1, Xiaowei Li l, Katja M. Meyer l,2, Jonathan L. Payne l a Geoscience Department, Trinity University, San Antonio, TX 78212, USA b Department of Geological Engineering, Middle East Technical University, Ankara 06531, Turkey c Natural Resources Canada-Geological Survey of Canada, Vancouver, British Columbia V6B 5J3, Canada d Chevron Upstream Europe, Aberdeen, Scotland, UK e Department of Geology, University of Kansas, Lawrence, KS 66045, USA f Louisiana State University, Baton Rouge, LA 70803, USA g Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA h Guizhou Geological Survey, Bagongli, Guiyang 550011, Guizhou Province, China i College of Resource and Environment Engineering, Guizhou University, Caijiaguan, Guiyang 550003, Guizhou Province, China j Chemostrat Ltd., 2 Ravenscroft Court, Buttington Cross Enterprise Park, Welshpool, Powys SY21 8SL, UK k Shell International Exploration and Production, 200 N. Dairy Ashford, Houston, TX 77079, USA l Department of Geological and Environmental Sciences, Stanford University, Stanford, CA 94305, USA article info abstract Article history: The chronostratigraphy of Guandao section has served as the foundation for numerous studies of the Received 13 October 2014 end-Permian extinction and biotic recovery in south China.
    [Show full text]
  • Microbialite-Dominated Fossil Associations in Cipit Boulders from Alpe Di Specie and Misurina (St. Cassian Formation, Middle to Upper Triassic, Dolomites, NE Italy)
    PUBLICACIÓN CONTINUA ARTÍCULO ORIGINAL © 2019 Universidad Nacional Autónoma de México, Facultad de Estudios Superiores Zaragoza. This is an Open Access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). TIP Revista Especializada en Ciencias Químico-Biológicas, 22: 1-18, 2019. DOI: 10.22201/fesz.23958723e.2019.0.171 Microbialite-dominated fossil associations in Cipit Boulders from Alpe di Specie and Misurina (St. Cassian Formation, Middle to Upper Triassic, Dolomites, NE Italy) Francisco Sánchez-Beristain1* and Joachim Reitner2 1Museo de Paleontología, Facultad de Ciencias, Universidad Nacional Autónoma de México. Circuito Exterior S/N. Ciudad Universitaria. Coyoacán 04510. Ciudad de México, México. 2Geowissenschaftliches Zentrum der Universität Göttingen, Abt. Geobiologie, Goldschmidtstraße 3. 37077 Göttingen, Germany. E-mail: *[email protected] Abstract In this paper we describe four new fossil associations of “reef” and “reef”-like environments of the St. Cassian Formation (Ladinian-Carnian, Dolomites, NE Italy), based on thirty thin sections from 10 “Cipit boulders” olistoliths, which slided from the Cassian platform into coeval basin sediments. The fossil associations were determined by means of microfacies analysis using point-counting and visual estimation, as well as with aid of statistical methods, based on all fractions with a biotic significance (biomorpha and microbialites). Cluster Analyses in Q-Mode were performed, coupling three algorithms and two indices. In all samples, the main components of the framework are microbialite (average of 75%), and macrofossils (average of 20%), whereas cements and allochtonous components, such as allomicrite, do not represent a significant fraction. Based on both microbialite and fossil content, Chaetetid–microencruster Association, Microbialite–microencruster Association, Dual-type Microbialite Association and Microbialite–Terebella Association, were differentiated.
    [Show full text]
  • How to Cite Complete Issue More Information About This Article
    TIP. Revista especializada en ciencias químico-biológicas ISSN: 1405-888X ISSN: 2395-8723 Universidad Nacional Autónoma de México, Facultad de Estudios Superiores, Plantel Zaragoza Sánchez-Beristain, Francisco; Reitner, Joachim Microbialite-dominated fossil associations in Cipit Boulders from Alpe di Specie and Misurina (St. Cassian Formation, Middle to Upper Triassic, Dolomites, NE Italy) TIP. Revista especializada en ciencias químico-biológicas, vol. 22, 2019 Universidad Nacional Autónoma de México, Facultad de Estudios Superiores, Plantel Zaragoza DOI: 10.22201/fesz.23958723e.2019.0.171 Available in: http://www.redalyc.org/articulo.oa?id=43265210003 How to cite Complete issue Scientific Information System Redalyc More information about this article Network of Scientific Journals from Latin America and the Caribbean, Spain and Journal's webpage in redalyc.org Portugal Project academic non-profit, developed under the open access initiative PUBLICACIÓN CONTINUA ARTÍCULO ORIGINAL © 2019 Universidad Nacional Autónoma de México, Facultad de Estudios Superiores Zaragoza. This is an Open Access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). TIP Revista Especializada en Ciencias Químico-Biológicas, 22: 1-18, 2019. DOI: 10.22201/fesz.23958723e.2019.0.171 Microbialite-dominated fossil associations in Cipit Boulders from Alpe di Specie and Misurina (St. Cassian Formation, Middle to Upper Triassic, Dolomites, NE Italy) Francisco Sánchez-Beristain1* and Joachim Reitner2 1Museo de Paleontología, Facultad de Ciencias, Universidad Nacional Autónoma de México. Circuito Exterior S/N. Ciudad Universitaria. Coyoacán 04510. Ciudad de México, México. 2Geowissenschaftliches Zentrum der Universität Göttingen, Abt. Geobiologie, Goldschmidtstraße 3. 37077 Göttingen, Germany. E-mail: *[email protected] Abstract In this paper we describe four new fossil associations of “reef” and “reef”-like environments of the St.
    [Show full text]
  • The Magnetobiostratigraphy of the Middle Triassic and the Latest Early Triassic from Spitsbergen, Arctic Norway Mark W
    Intercalibration of Boreal and Tethyan time scales: the magnetobiostratigraphy of the Middle Triassic and the latest Early Triassic from Spitsbergen, Arctic Norway Mark W. Hounslow,1 Mengyu Hu,1 Atle Mørk,2,6 Wolfgang Weitschat,3 Jorunn Os Vigran,2 Vassil Karloukovski1 & Michael J. Orchard5 1 Centre for Environmental Magnetism and Palaeomagnetism, Geography, Lancaster Environment Centre, Lancaster University, Bailrigg, Lancaster, LA1 4YQ, UK 2 SINTEF Petroleum Research, NO-7465 Trondheim, Norway 3 Geological-Palaeontological Institute and Museum, University of Hamburg, Bundesstrasse 55, DE-20146 Hamburg, Germany 5 Geological Survey of Canada, 101-605 Robson Street, Vancouver, BC, V6B 5J3, Canada 6 Department of Geology and Mineral Resources Engineering, Norwegian University of Sciences and Technology, NO-7491 Trondheim, Norway Keywords Abstract Ammonoid biostratigraphy; Boreal; conodonts; magnetostratigraphy; Middle An integrated biomagnetostratigraphic study of the latest Early Triassic to Triassic. the upper parts of the Middle Triassic, at Milne Edwardsfjellet in central Spitsbergen, Svalbard, allows a detailed correlation of Boreal and Tethyan Correspondence biostratigraphies. The biostratigraphy consists of ammonoid and palynomorph Mark W. Hounslow, Centre for Environmental zonations, supported by conodonts, through some 234 m of succession in two Magnetism and Palaeomagnetism, adjacent sections. The magnetostratigraphy consists of 10 substantive normal— Geography, Lancaster Environment Centre, Lancaster University, Bailrigg, Lancaster, LA1 reverse polarity chrons, defined by sampling at 150 stratigraphic levels. The 4YQ, UK. E-mail: [email protected] magnetization is carried by magnetite and an unidentified magnetic sulphide, and is difficult to fully separate from a strong present-day-like magnetization. doi:10.1111/j.1751-8369.2008.00074.x The biomagnetostratigraphy from the late Olenekian (Vendomdalen Member) is supplemented by data from nearby Vikinghøgda.
    [Show full text]
  • Università Degli Studi Di Milano
    1 UNIVERSITÀ DEGLI STUDI DI MILANO DOTTORATO DI RICERCA IN SCIENZE DELLA TERRA Ciclo XXXII DIPARTIMENTO DI SCIENZE DELLA TERRA TESI DI DOTTORATO DI RICERCA EARLY CARNIAN AMMONOIDS FROM NEVADA: REVISED TAXONOMY, EVOLUTIONARY TRENDS AND USEFULNESS FOR THE DEFINITION OF THE LATE TRIASSIC TIME SCALE RUBEN MARCHESI Matr. n. R11510 Tutore: Prof. MARCO BALINI Coordinatore: Prof. FERNANDO CAMARA ARTIGAS Anno Accademico 2018-2019 1 2 2 3 Abstract ................................................................................................................................................ 5 Introduction to the biochronostratigraphy of the Upper Ladinian and Lower Carnian ................ 7 1.1 - Basic concepts ............................................................................................................................. 7 1.2 - Evolution of the Tethyan and North American upper Ladinian – Lower Carnian chronostratigraphic scale ...................................................................................................................... 9 1.3 - Carnian Stage GSSP and open problems ................................................................................... 12 Studied localities: geological and structural setting.......................................................................... 15 2.1 - Regional geological and structural setting ................................................................................. 15 2.2 - South Canyon............................................................................................................................
    [Show full text]
  • Of the Carnian Stage
    Rivista Italiana di Paleontologia e Stratigrafia volume I u) numero 1 tavole 1-10 pagne 37-78 Aprrle 1999 THE PRATI DI STUORES/STUORES \TIESEN SECTION (DOLOMITES, ITALY): A CANDIDATE GLOBAL STRATOTYPE SECTION AND POINT FOR THE BASE OF THE CARNIAN STAGE CARME,LA BROGLIO LORIGAI, SIMONETTA CIRILLI2, VITTORIO DE ZANCHE], DONATO DI BARI4, P]ERO GIANOLLA], G]AN FRANCO LAGH14, \íILLIAM LowRIEs, STEFANo MANFRIN]. ADELAIDE MASTANDREA4, PAOLO MIETTOs, GIOVANNI MUTTbNI5, CLAUDIO NERI1, RENATO POSENATO', MARIACARMELA RECHICHI4, ROBE,MO RETTORI2 & GUIDO ROGHI3 Receioed August 20, 1998; accepted February 23, 1999 Key-*^ords: Carnian, Biostratigraphy, Ammonoids, Conodonts, rari brachiopodi sono limitati aila pane medio superiore della sezio- Palynomorphs, Foraminifers, Gastropods, Bivalves, Brachiopods, Mi- ne (Kaninckina leonbardi, Retzia sp.), dove pure si rrovano nove spe- crocrinoids, Holothurians, Magnetostratigraphn Sequence stnti cie di gasteropodi. Un picco di diversità tassonomica molto netto ri- graphy, Dolomites, Southern Alps. guarda i foraminiferi bentonici isolati e le scleriti di oloturie ed è palese nella parte superiore delia Subzona a Duatina cf. canadensis. Riassunto. \il/iesen La sezione di Prati di Stuores/Stuores (For- In panicolare, vi compaiono scleriti finora segnalate nella Subzona ad mazione di San Cassiano), affiorante nei dintorni di Pralongià, a S$l Aon. le variazioni in frequenza e drversità tassonomica di queste fau- di San Cassiano/St. Kassian, sul versante meridionale del crinale che ne mìnori suggeriscono condizioni anaerobiche-disaerobiche del fon- separa la Val Badia/Abtei dalln Val (BL), @Z) Cordevole è nota come dale nella pane rnedio-inferiore della sezione (O-105 m), quindi una sezione tìpo del Cordevolico. In tempi recenti sono stati individuati tendenza ad ossigenazione più stabile nella pane superiore.
    [Show full text]
  • Trace Fossil Assemblages in a Middle Triassic Mixed Siliciclastic- Carbonate Marginal Marine Depositional System, British Columbia
    Palaeogeography, Palaeoclimatology, Palaeoecology 166 (2001) 249–276 www.elsevier.nl/locate/palaeo Trace fossil assemblages in a Middle Triassic mixed siliciclastic- carbonate marginal marine depositional system, British Columbia J.-P. Zonnevelda,c,*, M.K. Gingrasb,c, S.G. Pembertonc aGeological Survey of Canada (Calgary), 3303, 33rd Street N.W., Calgary, Alta., Canada T2L 2A7 bDepartment of Geology, University of New Brunswick, Fredericton, NB, Canada E3B 5A3 cIchnology Research Group, Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton, Alta., Canada T6G 2E3 Received 20 July 1999; accepted for publication 1 August 2000 Abstract A diverse ichnofossil assemblage characterizes the mixed siliciclastic-carbonate marginal marine succession of the upper Liard Formation (Middle Triassic), Williston Lake, northeastern British Columbia. Sedimentary facies within this succession consist of five recurring facies associations: FA1 (upper shoreface/foreshore); FA2 (washover fan/lagoon); FA3 (intertidal flat); FA4 (supratidal sabkha) and FA5 (aeolian dune). Shoreface/foreshore sediments (FA1) accumulated on a storm-dominated, prograding barrier island coast and are characterized by a low-diversity Skolithos assemblage (Diplocraterion, Ophiomorpha, Palaeophycus, Planolites, Skolithos and Thalassinoides). Washover fan/lagoonal sediments (FA2) are dominated by trophic generalists. (Cylindrichnus, Gyrochorte, Palaeophycus, Planolites, Skolithos, Trichichnus and an unusual type of bivalve resting trace), consistent with deposition in a setting subject to periodic salinity and oxygenation stresses. Intertidal flat deposits (FA3) are characterized by a diverse mixture of dwelling, feeding, and crawling forms (Arenicolites, Cylindrichnus, Diplo- craterion, Laevicyclus, Lingulichnus, Lockeia, Palaeophycus, Planolites, Rhizocorallium, Siphonichnus, Skolithos, Teichich- nus, Taenidium, and Thalassinoides, reflecting the presence of adequate food resources in both the substrate and in the water column.
    [Show full text]
  • Dinosaur Diversification Linked with the Carnian Pluvial Episode
    ARTICLE DOI: 10.1038/s41467-018-03996-1 OPEN Dinosaur diversification linked with the Carnian Pluvial Episode Massimo Bernardi 1,2, Piero Gianolla 3, Fabio Massimo Petti 1,4, Paolo Mietto5 & Michael J. Benton 2 Dinosaurs diversified in two steps during the Triassic. They originated about 245 Ma, during the recovery from the Permian-Triassic mass extinction, and then remained insignificant until they exploded in diversity and ecological importance during the Late Triassic. Hitherto, this 1234567890():,; Late Triassic explosion was poorly constrained and poorly dated. Here we provide evidence that it followed the Carnian Pluvial Episode (CPE), dated to 234–232 Ma, a time when climates switched from arid to humid and back to arid again. Our evidence comes from a combined analysis of skeletal evidence and footprint occurrences, and especially from the exquisitely dated ichnofaunas of the Italian Dolomites. These provide evidence of tetrapod faunal compositions through the Carnian and Norian, and show that dinosaur footprints appear exactly at the time of the CPE. We argue then that dinosaurs diversified explosively in the mid Carnian, at a time of major climate and floral change and the extinction of key herbivores, which the dinosaurs opportunistically replaced. 1 MUSE—Museo delle Scienze, Corso del Lavoro e della Scienza 3, 38122 Trento, Italy. 2 School of Earth Sciences, University of Bristol, Bristol BS8 1RJ, UK. 3 Dipartimento di Fisica e Scienze della Terra, Università di Ferrara, via Saragat 1, 44100 Ferrara, Italy. 4 PaleoFactory, Dipartimento di Scienze della Terra, Sapienza Università di Roma, Piazzale Aldo Moro, 5, 00185 Rome, Italy. 5 Dipartimento di Geoscienze, Universitàdegli studi di Padova, via Gradenigo 6, I-35131 Padova, Italy.
    [Show full text]
  • Author-Title Index
    AUTHOR-TITLE INDEX A ___. Paleoecology of cyclic sediments of the lower Green River Formation, central Utah. 1969. 16(1):3- Ahlborn, R. C. Mesozoic-Cenozoic structural develop­ 95. ment of the Kern Mountains, eastern Nevada-western Utah. 1977. 24(2):117-131. ___ and J. K. Rigby. Studies for students no. 10: Ge­ ologic guide to Provo Canyon and Weber Canyon, Alexander, D. W. Petrology and petrography of the Bridal Veil Limestone Member of the Oquirrh Formation at central Wasatch Mountains, Utah. 1980. 27(3):1-33. Cascade Mountain, Utah. 1978. 25(3):11-26. ___. See Chamberlain, C. K. 1973. 20(1):79-94. Anderson, R. E. Quaternary tectonics along the inter­ ___. See George, S. E. 1985. 32(1):39-61. mountain seismic belt south of Provo, Utah. 1978. ___. See Johnson, B. T. 1984. 31(1):29-46. 25(1):1-10. ___. See Young, R. B. 1984. 31(1):187-211. Anderson, S. R. Stratigraphy and structure of the Sunset Bagshaw, L. H. Paleoecology of the lower Carmel Forma- Peak area near Brighton, Utah. 1974. 21(1):131-150. tion of the San Rafael Swell, Emery County, Utah. Anderson, T. C. Compound faceted spurs and recurrent 1977. 24(2):51-62. movement in the Wasatch fault zone, north central Bagshaw, R. L. Foraminiferal abundance related to bento­ Utah. 1977. 24(2):83-101. nitic ash beds in the Tununk Member of the Mancos Armstrong, R. M. Environmental geology of the Provo­ Shale (Cretaceous) in southeasternUtah. 1977. Orem area. 1975. 22(1):39-67. 24(2):33-49.
    [Show full text]
  • ABSTRACT BOOK a Cura Della Società Geologica Italiana
    https://doi.org/10.3301/ABSGI.2019.04 Milano, 2-5 July 2019 ABSTRACT BOOK a cura della Società Geologica Italiana 3rd International Congress on Stratigraphy GENERAL CHAIRS Marco Balini, Università di Milano, Italy Elisabetta Erba, Università di Milano, Italy - past President Società Geologica Italiana 2015-2017 SCIENTIFIC COMMITTEE Adele Bertini, Peter Brack, William Cavazza, Mauro Coltorti, Piero Di Stefano, Annalisa Ferretti, Stanley C. Finney, Fabio Florindo, Fabrizio Galluzzo, Piero Gianolla, David A.T. Harper, Martin J. Head, Thijs van Kolfschoten, Maria Marino, Simonetta Monechi, Giovanni Monegato, Maria Rose Petrizzo, Claudia Principe, Isabella Raffi, Lorenzo Rook ORGANIZING COMMITTEE The Organizing Committee is composed by members of the Department of Earth Sciences “Ardito Desio” and of the Società Geologica Italiana Lucia Angiolini, Cinzia Bottini, Bernardo Carmina, Domenico Cosentino, Fabrizio Felletti, Daniela Germani, Fabio M. Petti, Alessandro Zuccari FIELD TRIP COMMITTEE Fabrizio Berra, Mattia Marini, Maria Letizia Pampaloni, Marcello Tropeano ABSTRACT BOOK EDITORS Fabio M. Petti, Giulia Innamorati, Bernardo Carmina, Daniela Germani Papers, data, figures, maps and any other material published are covered by the copyright own by the Società Geologica Italiana. DISCLAIMER: The Società Geologica Italiana, the Editors are not responsible for the ideas, opinions, and contents of the papers published; the authors of each paper are responsible for the ideas opinions and con- tents published. La Società Geologica Italiana, i curatori scientifici non sono responsabili delle opinioni espresse e delle affermazioni pubblicate negli articoli: l’autore/i è/sono il/i solo/i responsabile/i. © Società Geologica Italiana, Roma 2019 STRATI 2019 ABSTRACT INDEX ST1.1 History of Stratigraphy in Italian environments (17th – 20th centuries) ........................................
    [Show full text]
  • Xu Et Al Palaeo-3 2014
    Palaeogeography, Palaeoclimatology, Palaeoecology 395 (2014) 222–232 Contents lists available at ScienceDirect Palaeogeography, Palaeoclimatology, Palaeoecology journal homepage: www.elsevier.com/locate/palaeo Cause of Upper Triassic climate crisis revealed by Re–Os geochemistry of Boreal black shales Guangping Xu a,b,⁎, Judith L. Hannah a,b,c,HollyJ.Steina,b,c, Atle Mørk d,e, Jorunn Os Vigran d, Bernard Bingen b, Derek L. Schutt f, Bjørn A. Lundschien g a AIRIE Program, Colorado State University, Fort Collins, CO 80523-1482, USA b Geological Survey of Norway, 7491 Trondheim, Norway c CEED, University of Oslo, 0316 Oslo, Norway d SINTEF Petroleum Research, NO-7465 Trondheim, Norway e Norwegian University of Sciences and Technology, NO-7491 Trondheim, Norway f Department of Geosciences, Colorado State University, Fort Collins, CO 80523-1482, USA g Norwegian Petroleum Directorate, NO-4003 Stavanger, Norway article info abstract Article history: The Triassic Period is bracketed by two of the ‘big five’ Phanerozoic mass extinctions. Though long viewed as a Received 2 April 2013 period of climatic stability, emerging data suggest multiple climatic swings and at least one severe ecological cri- Received in revised form 13 December 2013 sis. Linking these climatic instabilities with probable causes is hampered by poor age control within the Triassic Accepted 19 December 2013 time scale. Here we present new Re–Os ages for shale sections straddling Middle–Upper Triassic stage bound- Available online 29 December 2013 aries. Nominal Re–Os isochron ages of 236.6 and 239.3 Ma for the top and base of the Ladinian (upper Middle Triassic) bring absolute time into the contentious Triassic time scale, and place the beginning of the Late Triassic Keywords: 187 188 Triassic about 12 m.y.
    [Show full text]
  • Download Download
    Triassic palynoevents in the circum-Arctic region Gunn Mangerud1*, Niall W. Paterson2 and Jonathan Bujak3 1. Department of Earth Science, University of Bergen, Allégaten 41, N-5007 Bergen, Norway 2. CASP, West Building, Madingley Rise, Cambridge, CB3 0UD, UK 3. Bujak Research (International), 114 Abbotsford Road, Blackpool, Lancashire FY3 9RY, UK *Corresponding author: <[email protected]> Date received: 2 September 2019 ¶ Date accepted: 23 December 2020 ABSTRACT Triassic successions of the present-day Arctic contain abundant and diverse assemblages of nonmarine palynomorphs that have provided important biostratigraphic information. Dinoflagellate cyst are biostratigraphically useful in marine intervals in the Upper Triassic. Based on published records, we present a compilation of 78 last occurrences (LOs), first occurrences (FOs), and some abundance events that are anticipated to have correlation potential in the Arctic region. Palynological work has been carried out in many Arctic areas, with extensive palynological research published on the Triassic successions of the Norwegian Barents Sea and Svalbard. An updated, recent palynological zonation scheme exists for that region, integrating previous schemes and illustrating the chronostratigraphic value of palynology in the Triassic. For the Lower and Middle Triassic, good ammonoid control ties the palynological zones to the chronostratigraphic scale. Independent control is sparse, and resolution is lower in the Upper Triassic, so that palynology is commonly the only biostratigraphic discipline available for chronostratigraphic dating and correlation. RÉSUMÉ Les successions triassiques de l’Arctique actuel abritent des assemblages abondants et diversifiés de palynomorphes terrestres qui ont livré des renseignements biostratigraphiques précieux. Les kystes dinoflagellés sont utiles sur le plan biostratigraphique dans les intervalles marins du Trias supérieur.
    [Show full text]