Xu Et Al Palaeo-3 2014
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Conodonts and Foraminifers
Journal of Asian Earth Sciences 108 (2015) 117–135 Contents lists available at ScienceDirect Journal of Asian Earth Sciences journal homepage: www.elsevier.com/locate/jseaes An integrated biostratigraphy (conodonts and foraminifers) and chronostratigraphy (paleomagnetic reversals, magnetic susceptibility, elemental chemistry, carbon isotopes and geochronology) for the Permian–Upper Triassic strata of Guandao section, Nanpanjiang Basin, south China ⇑ Daniel J. Lehrmann a, , Leanne Stepchinski a, Demir Altiner b, Michael J. Orchard c, Paul Montgomery d, Paul Enos e, Brooks B. Ellwood f, Samuel A. Bowring g, Jahandar Ramezani g, Hongmei Wang h, Jiayong Wei h, Meiyi Yu i, James D. Griffiths j, Marcello Minzoni k, Ellen K. Schaal l,1, Xiaowei Li l, Katja M. Meyer l,2, Jonathan L. Payne l a Geoscience Department, Trinity University, San Antonio, TX 78212, USA b Department of Geological Engineering, Middle East Technical University, Ankara 06531, Turkey c Natural Resources Canada-Geological Survey of Canada, Vancouver, British Columbia V6B 5J3, Canada d Chevron Upstream Europe, Aberdeen, Scotland, UK e Department of Geology, University of Kansas, Lawrence, KS 66045, USA f Louisiana State University, Baton Rouge, LA 70803, USA g Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA h Guizhou Geological Survey, Bagongli, Guiyang 550011, Guizhou Province, China i College of Resource and Environment Engineering, Guizhou University, Caijiaguan, Guiyang 550003, Guizhou Province, China j Chemostrat Ltd., 2 Ravenscroft Court, Buttington Cross Enterprise Park, Welshpool, Powys SY21 8SL, UK k Shell International Exploration and Production, 200 N. Dairy Ashford, Houston, TX 77079, USA l Department of Geological and Environmental Sciences, Stanford University, Stanford, CA 94305, USA article info abstract Article history: The chronostratigraphy of Guandao section has served as the foundation for numerous studies of the Received 13 October 2014 end-Permian extinction and biotic recovery in south China. -
A New Archosauriform Reptile with Distinctive Teeth from the Middle Triassic (Ladinian) of Germany
Journal of Vertebrate Paleontology ISSN: (Print) (Online) Journal homepage: https://www.tandfonline.com/loi/ujvp20 A new archosauriform reptile with distinctive teeth from the Middle Triassic (Ladinian) of Germany Hans-Dieter Sues , Rainer R. Schoch , Gabriela Sobral & Randall B. Irmis To cite this article: Hans-Dieter Sues , Rainer R. Schoch , Gabriela Sobral & Randall B. Irmis (2020) A new archosauriform reptile with distinctive teeth from the Middle Triassic (Ladinian) of Germany, Journal of Vertebrate Paleontology, 40:1, e1764968, DOI: 10.1080/02724634.2020.1764968 To link to this article: https://doi.org/10.1080/02724634.2020.1764968 View supplementary material Published online: 23 Jun 2020. Submit your article to this journal Article views: 200 View related articles View Crossmark data Full Terms & Conditions of access and use can be found at https://www.tandfonline.com/action/journalInformation?journalCode=ujvp20 Journal of Vertebrate Paleontology e1764968 (14 pages) The work of Hans–Dieter Sues was authored as part of his official duties as an Employee of the United States Government and is therefore a work of the United States Government. In accordance with 17 USC. 105, no copyright protection is available for such works under US Law. Rainer R. Schoch, Gabriela Sobral and Randall B. Irmis hereby waive their right to assert copyright, but not their right to be named as co–authors in the article. DOI: 10.1080/02724634.2020.1764968 ARTICLE A NEW ARCHOSAURIFORM REPTILE WITH DISTINCTIVE TEETH FROM THE MIDDLE TRIASSIC (LADINIAN) OF GERMANY HANS-DIETER SUES, *,1 RAINER R. SCHOCH, 2 GABRIELA SOBRAL, 2 and RANDALL B. IRMIS3 1Department of Paleobiology, National Museum of Natural History, Smithsonian Institution, MRC 121, P.O. -
Microbialite-Dominated Fossil Associations in Cipit Boulders from Alpe Di Specie and Misurina (St. Cassian Formation, Middle to Upper Triassic, Dolomites, NE Italy)
PUBLICACIÓN CONTINUA ARTÍCULO ORIGINAL © 2019 Universidad Nacional Autónoma de México, Facultad de Estudios Superiores Zaragoza. This is an Open Access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). TIP Revista Especializada en Ciencias Químico-Biológicas, 22: 1-18, 2019. DOI: 10.22201/fesz.23958723e.2019.0.171 Microbialite-dominated fossil associations in Cipit Boulders from Alpe di Specie and Misurina (St. Cassian Formation, Middle to Upper Triassic, Dolomites, NE Italy) Francisco Sánchez-Beristain1* and Joachim Reitner2 1Museo de Paleontología, Facultad de Ciencias, Universidad Nacional Autónoma de México. Circuito Exterior S/N. Ciudad Universitaria. Coyoacán 04510. Ciudad de México, México. 2Geowissenschaftliches Zentrum der Universität Göttingen, Abt. Geobiologie, Goldschmidtstraße 3. 37077 Göttingen, Germany. E-mail: *[email protected] Abstract In this paper we describe four new fossil associations of “reef” and “reef”-like environments of the St. Cassian Formation (Ladinian-Carnian, Dolomites, NE Italy), based on thirty thin sections from 10 “Cipit boulders” olistoliths, which slided from the Cassian platform into coeval basin sediments. The fossil associations were determined by means of microfacies analysis using point-counting and visual estimation, as well as with aid of statistical methods, based on all fractions with a biotic significance (biomorpha and microbialites). Cluster Analyses in Q-Mode were performed, coupling three algorithms and two indices. In all samples, the main components of the framework are microbialite (average of 75%), and macrofossils (average of 20%), whereas cements and allochtonous components, such as allomicrite, do not represent a significant fraction. Based on both microbialite and fossil content, Chaetetid–microencruster Association, Microbialite–microencruster Association, Dual-type Microbialite Association and Microbialite–Terebella Association, were differentiated. -
How to Cite Complete Issue More Information About This Article
TIP. Revista especializada en ciencias químico-biológicas ISSN: 1405-888X ISSN: 2395-8723 Universidad Nacional Autónoma de México, Facultad de Estudios Superiores, Plantel Zaragoza Sánchez-Beristain, Francisco; Reitner, Joachim Microbialite-dominated fossil associations in Cipit Boulders from Alpe di Specie and Misurina (St. Cassian Formation, Middle to Upper Triassic, Dolomites, NE Italy) TIP. Revista especializada en ciencias químico-biológicas, vol. 22, 2019 Universidad Nacional Autónoma de México, Facultad de Estudios Superiores, Plantel Zaragoza DOI: 10.22201/fesz.23958723e.2019.0.171 Available in: http://www.redalyc.org/articulo.oa?id=43265210003 How to cite Complete issue Scientific Information System Redalyc More information about this article Network of Scientific Journals from Latin America and the Caribbean, Spain and Journal's webpage in redalyc.org Portugal Project academic non-profit, developed under the open access initiative PUBLICACIÓN CONTINUA ARTÍCULO ORIGINAL © 2019 Universidad Nacional Autónoma de México, Facultad de Estudios Superiores Zaragoza. This is an Open Access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). TIP Revista Especializada en Ciencias Químico-Biológicas, 22: 1-18, 2019. DOI: 10.22201/fesz.23958723e.2019.0.171 Microbialite-dominated fossil associations in Cipit Boulders from Alpe di Specie and Misurina (St. Cassian Formation, Middle to Upper Triassic, Dolomites, NE Italy) Francisco Sánchez-Beristain1* and Joachim Reitner2 1Museo de Paleontología, Facultad de Ciencias, Universidad Nacional Autónoma de México. Circuito Exterior S/N. Ciudad Universitaria. Coyoacán 04510. Ciudad de México, México. 2Geowissenschaftliches Zentrum der Universität Göttingen, Abt. Geobiologie, Goldschmidtstraße 3. 37077 Göttingen, Germany. E-mail: *[email protected] Abstract In this paper we describe four new fossil associations of “reef” and “reef”-like environments of the St. -
Gondwana Vertebrate Faunas of India: Their Diversity and Intercontinental Relationships
438 Article 438 by Saswati Bandyopadhyay1* and Sanghamitra Ray2 Gondwana Vertebrate Faunas of India: Their Diversity and Intercontinental Relationships 1Geological Studies Unit, Indian Statistical Institute, 203 B. T. Road, Kolkata 700108, India; email: [email protected] 2Department of Geology and Geophysics, Indian Institute of Technology, Kharagpur 721302, India; email: [email protected] *Corresponding author (Received : 23/12/2018; Revised accepted : 11/09/2019) https://doi.org/10.18814/epiiugs/2020/020028 The twelve Gondwanan stratigraphic horizons of many extant lineages, producing highly diverse terrestrial vertebrates India have yielded varied vertebrate fossils. The oldest in the vacant niches created throughout the world due to the end- Permian extinction event. Diapsids diversified rapidly by the Middle fossil record is the Endothiodon-dominated multitaxic Triassic in to many communities of continental tetrapods, whereas Kundaram fauna, which correlates the Kundaram the non-mammalian synapsids became a minor components for the Formation with several other coeval Late Permian remainder of the Mesozoic Era. The Gondwana basins of peninsular horizons of South Africa, Zambia, Tanzania, India (Fig. 1A) aptly exemplify the diverse vertebrate faunas found Mozambique, Malawi, Madagascar and Brazil. The from the Late Palaeozoic and Mesozoic. During the last few decades much emphasis was given on explorations and excavations of Permian-Triassic transition in India is marked by vertebrate fossils in these basins which have yielded many new fossil distinct taxonomic shift and faunal characteristics and vertebrates, significant both in numbers and diversity of genera, and represented by small-sized holdover fauna of the providing information on their taphonomy, taxonomy, phylogeny, Early Triassic Panchet and Kamthi fauna. -
Was a Global Carnian Pluvial Event Responsible for the Origin of the Dinosaurs?
Geophysical Research Abstracts Vol. 21, EGU2019-13185, 2019 EGU General Assembly 2019 © Author(s) 2019. CC Attribution 4.0 license. Was a global Carnian Pluvial Event responsible for the origin of the dinosaurs? Randall Irmis (1), Adriana Mancuso (2), Cecilia Benavente (2), Jessica Whiteside (3), and Roland Mundil (4) (1) Natural History Museum of Utah and Department of Geology & Geophysics, University of Utah, Salt Lake City, UT 84108-1214, USA ([email protected]), (2) Instituto Argentino de Nivología Glaciología y Ciencias Ambientales (IANIGLA), CONICET, Mendoza, 5500, Argentina, (3) Ocean and Earth Science, National Oceanography Centre Southampton, University of Southampton, Southampton, SO14 3ZH, United Kingdom, (4) Berkeley Geochronology Center, Berkeley, CA 94709, USA The Late Triassic Period was a pivotal time in Earth history during a hothouse world with high atmospheric CO2, and included the origin of many animal groups that dominated ecosystems for the rest of the Mesozoic. One sud- den climate event during this time that has received renewed attention is the Carnian Pluvial Event (CPE) (or Humid Phase/Wet Intermezzo), which some recent authors suggest was responsible for the origin and early di- versification of dinosaurs. The CPE began during the middle Julian (>231 Ma), and is associated with warming, increased precipitation, perturbation of the carbon cycle, enhanced weathering, and disruption of the carbonate factory. Most of this evidence comes from marine sections in the Tethys region, so the global extent of the CPE is poorly supported. Furthermore, precise and accurate absolute age constraints for key CPE sections are lacking. To help rectify this situation, we present new multiproxy paleoenvironmental evidence from Carnian lacustrine strata in Argentina (∼45◦S paleolatitude) calibrated by a new high-precision U-Pb CA-TIMS zircon age from an interbedded tuff. -
The Magnetobiostratigraphy of the Middle Triassic and the Latest Early Triassic from Spitsbergen, Arctic Norway Mark W
Intercalibration of Boreal and Tethyan time scales: the magnetobiostratigraphy of the Middle Triassic and the latest Early Triassic from Spitsbergen, Arctic Norway Mark W. Hounslow,1 Mengyu Hu,1 Atle Mørk,2,6 Wolfgang Weitschat,3 Jorunn Os Vigran,2 Vassil Karloukovski1 & Michael J. Orchard5 1 Centre for Environmental Magnetism and Palaeomagnetism, Geography, Lancaster Environment Centre, Lancaster University, Bailrigg, Lancaster, LA1 4YQ, UK 2 SINTEF Petroleum Research, NO-7465 Trondheim, Norway 3 Geological-Palaeontological Institute and Museum, University of Hamburg, Bundesstrasse 55, DE-20146 Hamburg, Germany 5 Geological Survey of Canada, 101-605 Robson Street, Vancouver, BC, V6B 5J3, Canada 6 Department of Geology and Mineral Resources Engineering, Norwegian University of Sciences and Technology, NO-7491 Trondheim, Norway Keywords Abstract Ammonoid biostratigraphy; Boreal; conodonts; magnetostratigraphy; Middle An integrated biomagnetostratigraphic study of the latest Early Triassic to Triassic. the upper parts of the Middle Triassic, at Milne Edwardsfjellet in central Spitsbergen, Svalbard, allows a detailed correlation of Boreal and Tethyan Correspondence biostratigraphies. The biostratigraphy consists of ammonoid and palynomorph Mark W. Hounslow, Centre for Environmental zonations, supported by conodonts, through some 234 m of succession in two Magnetism and Palaeomagnetism, adjacent sections. The magnetostratigraphy consists of 10 substantive normal— Geography, Lancaster Environment Centre, Lancaster University, Bailrigg, Lancaster, LA1 reverse polarity chrons, defined by sampling at 150 stratigraphic levels. The 4YQ, UK. E-mail: [email protected] magnetization is carried by magnetite and an unidentified magnetic sulphide, and is difficult to fully separate from a strong present-day-like magnetization. doi:10.1111/j.1751-8369.2008.00074.x The biomagnetostratigraphy from the late Olenekian (Vendomdalen Member) is supplemented by data from nearby Vikinghøgda. -
Review Articlemiddle Triassic (Anisian-Ladinian) Tejra Red Beds
Marine and Petroleum Geology 79 (2017) 222e256 Contents lists available at ScienceDirect Marine and Petroleum Geology journal homepage: www.elsevier.com/locate/marpetgeo Review article Middle Triassic (Anisian-Ladinian) Tejra red beds and Late Triassic (Carnian) carbonate sedimentary records of southern Tunisia, Saharan Platform: Biostratigraphy, sedimentology and implication on regional stratigraphic correlations * Mohamed Soussi a, , Grzegorz Niedzwiedzki b, Mateusz Tałanda c, Dawid Drozd_ z_ c, d, Tomasz Sulej d, Kamel Boukhalfa a, e, Janusz Mermer c,Błazej_ Błazejowski_ d a University of Tunis El Manar, Faculty of Sciences, Department of Geology, 2092 Tunis, Tunisia b Uppsala University, Department of Organismal Biology, Evolutionary Biology Center, Norbyvagen€ 18A, 752 36 Uppsala, Sweden c _ University of Warsaw, Faculty of Biology, Department of Paleobiology and Evolution, Biological and Chemical Research Centre, Zwirki i Wigury 101, 02-089 Warszawa, Poland d Polish Academy of Sciences, Institute of Paleobiology, Twarda 51/55, 00-818 Warsaw, Poland e University of Gabes, Faculty of Sciences of Gabes, City Riadh, Zerig 6029, Gabes, Tunisia article info abstract Article history: The “red beds” of the Triassic succession outcropping at Tejra-Medenine (southern Tunisia, Saharan Received 10 July 2016 Platform) have yielded rich fossil assemblages of both freshwater and brackish-marine invertebrates and Received in revised form vertebrates. The new discovered fauna indicates an Anisian-Lower Ladinian age for the Tejra section. Its 11 October 2016 lowermost part is considered as equivalent of Ouled Chebbi Formation, while the medium and upper Accepted 20 October 2016 parts are considered as equivalent of the Kirchaou Formation. Both sedimentological characteristics and Available online 22 October 2016 fossil assemblages indicate the increasing marine influences within the middle part of the section and the migration of brackish and freshwater fauna into the lacustrine/playa environment at the top. -
What Really Happened in the Late Triassic?
Historical Biology, 1991, Vol. 5, pp. 263-278 © 1991 Harwood Academic Publishers, GmbH Reprints available directly from the publisher Printed in the United Kingdom Photocopying permitted by license only WHAT REALLY HAPPENED IN THE LATE TRIASSIC? MICHAEL J. BENTON Department of Geology, University of Bristol, Bristol, BS8 1RJ, U.K. (Received January 7, 1991) Major extinctions occurred both in the sea and on land during the Late Triassic in two major phases, in the middle to late Carnian and, 12-17 Myr later, at the Triassic-Jurassic boundary. Many recent reports have discounted the role of the earlier event, suggesting that it is (1) an artefact of a subsequent gap in the record, (2) a complex turnover phenomenon, or (3) local to Europe. These three views are disputed, with evidence from both the marine and terrestrial realms. New data on terrestrial tetrapods suggests that the late Carnian event was more important than the end-Triassic event. For tetrapods, the end-Triassic extinction was a whimper that was followed by the radiation of five families of dinosaurs and mammal- like reptiles, while the late Carnian event saw the disappearance of nine diverse families, and subsequent radiation of 13 families of turtles, crocodilomorphs, pterosaurs, dinosaurs, lepidosaurs and mammals. Also, for many groups of marine animals, the Carnian event marked a more significant turning point in diversification than did the end-Triassic event. KEY WORDS: Triassic, mass extinction, tetrapod, dinosaur, macroevolution, fauna. INTRODUCTION Most studies of mass extinction identify a major event in the Late Triassic, usually placed at the Triassic-Jurassic boundary. -
Università Degli Studi Di Milano
1 UNIVERSITÀ DEGLI STUDI DI MILANO DOTTORATO DI RICERCA IN SCIENZE DELLA TERRA Ciclo XXXII DIPARTIMENTO DI SCIENZE DELLA TERRA TESI DI DOTTORATO DI RICERCA EARLY CARNIAN AMMONOIDS FROM NEVADA: REVISED TAXONOMY, EVOLUTIONARY TRENDS AND USEFULNESS FOR THE DEFINITION OF THE LATE TRIASSIC TIME SCALE RUBEN MARCHESI Matr. n. R11510 Tutore: Prof. MARCO BALINI Coordinatore: Prof. FERNANDO CAMARA ARTIGAS Anno Accademico 2018-2019 1 2 2 3 Abstract ................................................................................................................................................ 5 Introduction to the biochronostratigraphy of the Upper Ladinian and Lower Carnian ................ 7 1.1 - Basic concepts ............................................................................................................................. 7 1.2 - Evolution of the Tethyan and North American upper Ladinian – Lower Carnian chronostratigraphic scale ...................................................................................................................... 9 1.3 - Carnian Stage GSSP and open problems ................................................................................... 12 Studied localities: geological and structural setting.......................................................................... 15 2.1 - Regional geological and structural setting ................................................................................. 15 2.2 - South Canyon............................................................................................................................ -
On the Causes of Mass Extinctions
ÔØ ÅÒÙ×Ö ÔØ On the causes of mass extinctions David P.G. Bond, Stephen E. Grasby PII: S0031-0182(16)30691-5 DOI: doi: 10.1016/j.palaeo.2016.11.005 Reference: PALAEO 8040 To appear in: Palaeogeography, Palaeoclimatology, Palaeoecology Received date: 16 August 2016 Revised date: 2 November 2016 Accepted date: 5 November 2016 Please cite this article as: Bond, David P.G., Grasby, Stephen E., On the causes of mass extinctions, Palaeogeography, Palaeoclimatology, Palaeoecology (2016), doi: 10.1016/j.palaeo.2016.11.005 This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. ACCEPTED MANUSCRIPT On the causes of mass extinctions David P.G. Bond1* and Stephen E. Grasby2, 3 1School of Environmental Sciences, University of Hull, Hull, HU6 7RX, United Kingdom 2Geological Survey of Canada, 3303 33rd St. N.W. Calgary AB Canada, T2L 2A7. 3Department of Geoscience, University of Calgary, Calgary AB Canada. *Corresponding author. E-mail: [email protected] (D. Bond). ACCEPTED MANUSCRIPT ACCEPTED MANUSCRIPT ABSTRACT The temporal link between large igneous province (LIP) eruptions and at least half of the major extinctions of the Phanerozoic implies that large scale volcanism is the main driver of mass extinction. -
And Correlation to the Late Triassic Newark Astrochronological Polarity Time Scale
Tethyan magnetostratigraphy from Pizzo Mondello (Sicily) and correlation to the Late Triassic Newark astrochronological polarity time scale Giovanni Muttoni† Department of Earth Sciences, University of Milan, Via Mangiagalli 34, I-20133 Milan, Italy Dennis V. Kent Lamont-Doherty Earth Observatory, Palisades, New York 10964, USA and Department of Geological Sciences, Rutgers University, Piscataway, New Jersey 08854, USA Paul E. Olsen Lamont-Doherty Earth Observatory, Palisades, New York 10964, USA Piero Di Stefano Department of Geology and Geodesy, University of Palermo, Corso Tukory 131, I-90134 Palermo, Italy William Lowrie Stefano M. Bernasconi Fátima Martín Hernández Departement Erdwissenschaften, ETH-Zentrum, CH-8092 Zürich, Switzerland ABSTRACT early part of the Newark APTS. We prefer marine stages, historically based on ammonoid option #2 in which the Carnian-Norian biostratigraphy, to continental successions. For We present the magnetostratigraphy and boundary based on conodonts, as well as the Late Triassic, an astrochronology anchored stable isotope stratigraphy from an expanded its closely associated positive δ13C shift, cor- to magnetostratigraphy and radiometric dates is (~430-m-thick) Upper Triassic marine lime- respond to Newark magnetozone E7 at ca. available from the Newark continental section stone section at Pizzo Mondello, Sicily, and 228–227 Ma (adopting Newark astrochronol- (Kent et al., 1995; Kent and Olsen, 1999; Olsen review published biostratigraphic informa- ogy), implying a long Norian with a duration and Kent, 1999), while magnetostratigraphy is tion that can be used to defi ne the location of ~20 m.y., and a Rhaetian of ~6 m.y. dura- thus far available in conjunction with marine of the conodont Carnian-Norian and Norian- tion.