And Correlation to the Late Triassic Newark Astrochronological Polarity Time Scale

Total Page:16

File Type:pdf, Size:1020Kb

And Correlation to the Late Triassic Newark Astrochronological Polarity Time Scale Tethyan magnetostratigraphy from Pizzo Mondello (Sicily) and correlation to the Late Triassic Newark astrochronological polarity time scale Giovanni Muttoni† Department of Earth Sciences, University of Milan, Via Mangiagalli 34, I-20133 Milan, Italy Dennis V. Kent Lamont-Doherty Earth Observatory, Palisades, New York 10964, USA and Department of Geological Sciences, Rutgers University, Piscataway, New Jersey 08854, USA Paul E. Olsen Lamont-Doherty Earth Observatory, Palisades, New York 10964, USA Piero Di Stefano Department of Geology and Geodesy, University of Palermo, Corso Tukory 131, I-90134 Palermo, Italy William Lowrie Stefano M. Bernasconi Fátima Martín Hernández Departement Erdwissenschaften, ETH-Zentrum, CH-8092 Zürich, Switzerland ABSTRACT early part of the Newark APTS. We prefer marine stages, historically based on ammonoid option #2 in which the Carnian-Norian biostratigraphy, to continental successions. For We present the magnetostratigraphy and boundary based on conodonts, as well as the Late Triassic, an astrochronology anchored stable isotope stratigraphy from an expanded its closely associated positive δ13C shift, cor- to magnetostratigraphy and radiometric dates is (~430-m-thick) Upper Triassic marine lime- respond to Newark magnetozone E7 at ca. available from the Newark continental section stone section at Pizzo Mondello, Sicily, and 228–227 Ma (adopting Newark astrochronol- (Kent et al., 1995; Kent and Olsen, 1999; Olsen review published biostratigraphic informa- ogy), implying a long Norian with a duration and Kent, 1999), while magnetostratigraphy is tion that can be used to defi ne the location of ~20 m.y., and a Rhaetian of ~6 m.y. dura- thus far available in conjunction with marine of the conodont Carnian-Norian and Norian- tion. These ages are in fact not inconsistent biostratigraphy in the Tethyan realm. Continen- Rhaetian boundaries in this section. Pizzo with the few high-quality radiometric dates tal astrochronology and marine biostratigraphy Mondello offers good potential for magneto- that are available for Late Triassic time scale can therefore be correlated using the global stratigraphic correlation of marine biostrati- calibration. Based on its good exposure, record of polarity reversals for the construction graphic and chemostratigraphic data with accessibility, stratigraphic thickness and of an integrated Late Triassic time scale. Funda- the continental Newark astrochronological continuity, and multiple chronostratigraphic mental steps in this direction have already been polarity time scale (APTS) for development correlation possibilities, we propose Pizzo taken, but the issue is not yet settled (e.g., Mut- of an integrated Late Triassic time scale. Mondello as global stratigraphic section and toni et al., 2001a; Krystyn et al., 2002; Gallet et The relatively stable average values of δ18O point for the base of the Norian. al., 2003; Channell et al., 2003). centered on 0‰ are a strong indication that In this paper, we present magnetostrati- the Cherty Limestone at Pizzo Mondello Keywords: magnetostratigraphy, biostratig- graphic and chemostratigraphic data and suffered very little diagenetic overprinting. raphy, Late Triassic, Tethys, Sicily, Newark review biostratigraphic data from the literature, The conodont Carnian-Norian boundary astrochronological polarity time scale. from a ~430-m-thick Upper Triassic pelagic is located 12.5 m above a positive shift of limestone section located at Pizzo Mondello δ13C. A statistical approach was applied to INTRODUCTION in Sicily (Italy). This study represents the con- evaluate various Pizzo Mondello to Newark tinuation and, as far as magnetostratigraphy is magnetostratigraphic correlations. Two cor- Two apparently contrasting options for the concerned, completion of a magneto-biostrati- relation options have the highest correlation Late Triassic geomagnetic polarity time scale, graphic study conducted on the same section coeffi cients. In option #1, the base of Pizzo based on magnetostratigraphic data from the from its base up to meter level ~150 across the Mondello correlates with the middle part Tethys marine realm (Turkey) and continental conodont Carnian-Norian boundary (Muttoni of the Newark APTS, whereas in option #2, North America (western United States and et al., 2001a). the base of Pizzo Mondello starts toward the Newark Basin), are reported in Gradstein et Pizzo Mondello offers good potential for al. (1995). Resolving uncertainty about the correlation with the Newark APTS by virtue †E-mail: [email protected]. Late Triassic time scale requires correlation of of its simple diagenetic history, which allowed GSA Bulletin; September/October 2004; v. 116; no. 9/10; p. 1043–1058; doi: 10.1130/B25326.1; 11 fi gures; 1 table. For permission to copy, contact [email protected] © 2004 Geological Society of America 1043 MUTTONI et al. Figure 1. The Pizzo Mondello section is located in Sicily (A), and particularly in the Sicani Mountains of central-western Sicily (B). The section crops out near the village of Bivona at the locality La Cava along the Acque Bianche Creek (C, D) (section coordinates: topographic sheet 266 I NE “Bivona”; lat. 37.6°N, long. 13.4°E). preservation of the original magnetostrati- al., 2002). The aim of this paper is to correlate GEOLOGY graphic signal, as well as stratigraphic continu- marine age-diagnostic fossils as well as stable ity, with strata in strict stratigraphic superposi- isotope data from the Pizzo Mondello magne- The Pizzo Mondello section is located in tion, and relatively high rates of sedimentation tostratigraphic section to the Newark APTS the Neogene fold-and-thrust belt of the Sicani (20–30 m/m.y.) compared to classic Tethyan for construction of an integrated Late Triassic Mountains of western Sicily (Fig. 1). The sections of the Hallstatt type (e.g., Krystyn et time scale. Sicani Mountains are composed mainly of 1044 Geological Society of America Bulletin, September/October 2004 TETHYAN MAGNETOSTRATIGRAPHY FROM PIZZO MONDELLO (SICILY) Muttoni et al. (2001a)a this study Figure 2. The Late Triassic Pizzo Mondello section, whose ~150-m-thick basal part strad- dling the conodont Carnian- Norian boundary was studied by Muttoni et al. (2001a). The upper part of the section, up to meter level ~430 in the upper- most Norian, is the subject of this study. pelagic sediments of Permian to Cenozoic age, Muttoni et al. (2001a) analyzed the magne- from the lower ~150 m of the section (samples deposited in a Tethyan basinal setting of Afri- tostratigraphy and conodont biostratigraphy Pm1–46; Fig. 3). These authors placed the Car- can (Gondwanan) affi nity (Di Stefano, 1990; of units (i) and (ii) (Fig. 3). In this paper, we nian-Norian boundary in a conservative strati- for additional information, see Muttoni et al., present magnetostratigraphic data essentially graphic interval between the last occurrences of 2001a). The section, relatively well exposed and from unit (iv), chemostratigraphic data from the M. polygnathiformis and M. nodosus at meter continuous (Fig. 2), starts at the base with a few whole section [units (i) to (iv)], as well as an level 66.5 (sample Pm18) and the fi rst occur- meters of (unsampled) poorly outcropping marls overall interpretation of the available biostrati- rence of E. triangularis at meter level 105.5 and marly limestones of early-late Carnian age graphic data from the literature. (sample Pm31). Krystyn et al. (2002) reported of the uppermost Mufara Formation (Di Stefano data from fi ve new samples (samples K1–5; and Gullo, 1997; Buratti and Carrillat, 2002) BIOSTRATIGRAPHY Fig. 3), made an overall reinterpretation of the (Fig. 3). These are overlain by ~430 m of evenly conodonts distribution of Muttoni et al. (2001a), bedded to nodular cherty calcilutites, hereafter Triassic stage boundaries are historically and placed the Carnian-Norian boundary close referred to as Cherty Limestone (known also established using ammonoids. These are pres- to the last occurrence of M. communisti at meter as “Halobia” Limestone; De Capoa Bonardi, ent at Pizzo Mondello (Gemmellaro, 1904); level ~97 in the upper part of the stratigraphic 1985). The Cherty Limestone is overlain by a however, they have not yet been studied with interval of Muttoni et al. (2001a). A positive few tens of meters of poorly exposed lower to modern stratigraphic criteria. The age of the carbon isotope shift (described below) is located middle Rhaetian calcilutites and marls (Portella Pizzo Mondello section is therefore based 12.5 m below Krystyn et al.’s (2002) conodont Gebbia Formation), which are disconformably on conodont biostratigraphy as a proxy for Carnian-Norian boundary (Fig. 3). overlain by Jurassic sediments (Gullo, 1996). the ammonoid zonation (e.g., Krystyn, 1980; The Cherty Limestone is subdivided, from base Krystyn et al., 2002). The Norian and Rhaetian to top, into four lithostratigraphic units (Fig. 3): i. A basal 3-m-thick interval located just The Carnian-Norian Boundary The breccia level of unit (iii) is within the above the Mufara Formation and characterized early Norian (Gullo, 1996; A. Nicora, 2003, by calcilutites with rare chert nodules; The ammonoid Carnian-Norian boundary personal commun.) and does not seem to be ii. A 143.5-m-thick interval of dm-thick, well- is approximated by conodonts using the fi rst associated with a major biostratigraphic gap. bedded white calcilutites with black chert nod- appearances of Metapolygnathus communisti A, The overlying unit (iv) contains Norian con- ules,
Recommended publications
  • Gondwana Vertebrate Faunas of India: Their Diversity and Intercontinental Relationships
    438 Article 438 by Saswati Bandyopadhyay1* and Sanghamitra Ray2 Gondwana Vertebrate Faunas of India: Their Diversity and Intercontinental Relationships 1Geological Studies Unit, Indian Statistical Institute, 203 B. T. Road, Kolkata 700108, India; email: [email protected] 2Department of Geology and Geophysics, Indian Institute of Technology, Kharagpur 721302, India; email: [email protected] *Corresponding author (Received : 23/12/2018; Revised accepted : 11/09/2019) https://doi.org/10.18814/epiiugs/2020/020028 The twelve Gondwanan stratigraphic horizons of many extant lineages, producing highly diverse terrestrial vertebrates India have yielded varied vertebrate fossils. The oldest in the vacant niches created throughout the world due to the end- Permian extinction event. Diapsids diversified rapidly by the Middle fossil record is the Endothiodon-dominated multitaxic Triassic in to many communities of continental tetrapods, whereas Kundaram fauna, which correlates the Kundaram the non-mammalian synapsids became a minor components for the Formation with several other coeval Late Permian remainder of the Mesozoic Era. The Gondwana basins of peninsular horizons of South Africa, Zambia, Tanzania, India (Fig. 1A) aptly exemplify the diverse vertebrate faunas found Mozambique, Malawi, Madagascar and Brazil. The from the Late Palaeozoic and Mesozoic. During the last few decades much emphasis was given on explorations and excavations of Permian-Triassic transition in India is marked by vertebrate fossils in these basins which have yielded many new fossil distinct taxonomic shift and faunal characteristics and vertebrates, significant both in numbers and diversity of genera, and represented by small-sized holdover fauna of the providing information on their taphonomy, taxonomy, phylogeny, Early Triassic Panchet and Kamthi fauna.
    [Show full text]
  • ' Or ''Long'' Rhaetian? Astronomical Calibration of Austrian Key Sections
    ”Short” or ”long” Rhaetian ? Astronomical calibration of Austrian key sections Bruno Galbrun, Slah Boulila, Leopold Krystyn, Sylvain Richoz, Silvia Gardin, Annachiara Bartolini, Martin Maslo To cite this version: Bruno Galbrun, Slah Boulila, Leopold Krystyn, Sylvain Richoz, Silvia Gardin, et al.. ”Short” or ”long” Rhaetian ? Astronomical calibration of Austrian key sections. Global and Planetary Change, Elsevier, 2020, 192, pp.103253. 10.1016/j.gloplacha.2020.103253. hal-02884087 HAL Id: hal-02884087 https://hal.archives-ouvertes.fr/hal-02884087 Submitted on 29 Jun 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Galbrun B., Boulila S., Krystyn L., Richoz S., Gardin S., Bartolini A., Maslo M. (2020). « Short » or « long » Rhaetian ? Astronomical calibration of Austrian key sections. Global Planetary Change. Vol. 192C. https://doi.org/10.1016/j.gloplacha.2020.103253 « Short » or « long » Rhaetian ? Astronomical calibration of Austrian key sections Bruno Galbruna,*, Slah Boulilaa, Leopold Krystynb, Sylvain Richozc,d, Silvia Gardine, Annachiara
    [Show full text]
  • Geologia Della Sicilia - Geology of Sicily IV - Vulcanismo - Volcanism
    Geologia della Sicilia - Geology of Sicily IV - Vulcanismo - Volcanism BRANCA S. (*) 1. - VuLCANISMO QuATERNARIO DELLA ratterizzavano questo settore dell’Altipiano Ibleo SICILIA ORIENTALE (SChMINCkE et alii, 1997). La prosecuzione dell’at- tività vulcanica verso nord durante il Pleistocene La fase più recente del vulcanismo ibleo è da- inferiore-medio è evidenziata da anomalie magne- tata Pliocene inferiore-Pleistocene inferiore, ed è tiche (GRASSO & BEN-AVRAhAM, 1992) e da dati caratterizzata da un’attività vulcanica sia sottoma- di pozzi perforati dall’AGIP (LONGARETTI et alii, rina che subaerea ad affinità da alcalina a subalca- 1991; TORELLI et alii, 1998) in corrispondenza della lina (CARBONE et alii, 1986, 1987; CARVENI et alii, Piana di Catania, che mostrano la presenza di 1991; SChMINCkE et alii, 1997). grossi corpi di vulcaniti, con spessori di alcune Le vulcaniti affiorano estesamente lungo il centinaia di metri, che si approfondiscono verso bordo settentrionale dell’Avampaese Ibleo mo- nord per la presenza di sistemi di faglie dirette. In strando una leggera migrazione verso nord rispetto particolare, le vulcaniti più recenti in sottosuolo, alle manifestazioni vulcaniche del Miocene supe- attribuite al Pleistocene inferiore (LONGARETTI et riore (CARBONE et alii, 1982c). Le vulcaniti plioce- alii, 1991), sono localizzate nella parte più setten- niche del margine occidentale dell’Altipiano Ibleo, trionale della Piana di Catania in prossimità della sono rappresentate da una potente successione, periferia meridionale dell’Etna fra Paternò e Cata- costituita da prevalenti ialoclastiti e da brecce vul- nia. Tali vulcaniti presentano una composizione canoclastiche e colate a pillow. Lungo il bordo basaltica ad affinità sia tholeiitica che alcalina orientale del plateau si rinvengono prevalentemente (LONGARETTI & ROCChI, 1990).
    [Show full text]
  • Review Articlemiddle Triassic (Anisian-Ladinian) Tejra Red Beds
    Marine and Petroleum Geology 79 (2017) 222e256 Contents lists available at ScienceDirect Marine and Petroleum Geology journal homepage: www.elsevier.com/locate/marpetgeo Review article Middle Triassic (Anisian-Ladinian) Tejra red beds and Late Triassic (Carnian) carbonate sedimentary records of southern Tunisia, Saharan Platform: Biostratigraphy, sedimentology and implication on regional stratigraphic correlations * Mohamed Soussi a, , Grzegorz Niedzwiedzki b, Mateusz Tałanda c, Dawid Drozd_ z_ c, d, Tomasz Sulej d, Kamel Boukhalfa a, e, Janusz Mermer c,Błazej_ Błazejowski_ d a University of Tunis El Manar, Faculty of Sciences, Department of Geology, 2092 Tunis, Tunisia b Uppsala University, Department of Organismal Biology, Evolutionary Biology Center, Norbyvagen€ 18A, 752 36 Uppsala, Sweden c _ University of Warsaw, Faculty of Biology, Department of Paleobiology and Evolution, Biological and Chemical Research Centre, Zwirki i Wigury 101, 02-089 Warszawa, Poland d Polish Academy of Sciences, Institute of Paleobiology, Twarda 51/55, 00-818 Warsaw, Poland e University of Gabes, Faculty of Sciences of Gabes, City Riadh, Zerig 6029, Gabes, Tunisia article info abstract Article history: The “red beds” of the Triassic succession outcropping at Tejra-Medenine (southern Tunisia, Saharan Received 10 July 2016 Platform) have yielded rich fossil assemblages of both freshwater and brackish-marine invertebrates and Received in revised form vertebrates. The new discovered fauna indicates an Anisian-Lower Ladinian age for the Tejra section. Its 11 October 2016 lowermost part is considered as equivalent of Ouled Chebbi Formation, while the medium and upper Accepted 20 October 2016 parts are considered as equivalent of the Kirchaou Formation. Both sedimentological characteristics and Available online 22 October 2016 fossil assemblages indicate the increasing marine influences within the middle part of the section and the migration of brackish and freshwater fauna into the lacustrine/playa environment at the top.
    [Show full text]
  • What Really Happened in the Late Triassic?
    Historical Biology, 1991, Vol. 5, pp. 263-278 © 1991 Harwood Academic Publishers, GmbH Reprints available directly from the publisher Printed in the United Kingdom Photocopying permitted by license only WHAT REALLY HAPPENED IN THE LATE TRIASSIC? MICHAEL J. BENTON Department of Geology, University of Bristol, Bristol, BS8 1RJ, U.K. (Received January 7, 1991) Major extinctions occurred both in the sea and on land during the Late Triassic in two major phases, in the middle to late Carnian and, 12-17 Myr later, at the Triassic-Jurassic boundary. Many recent reports have discounted the role of the earlier event, suggesting that it is (1) an artefact of a subsequent gap in the record, (2) a complex turnover phenomenon, or (3) local to Europe. These three views are disputed, with evidence from both the marine and terrestrial realms. New data on terrestrial tetrapods suggests that the late Carnian event was more important than the end-Triassic event. For tetrapods, the end-Triassic extinction was a whimper that was followed by the radiation of five families of dinosaurs and mammal- like reptiles, while the late Carnian event saw the disappearance of nine diverse families, and subsequent radiation of 13 families of turtles, crocodilomorphs, pterosaurs, dinosaurs, lepidosaurs and mammals. Also, for many groups of marine animals, the Carnian event marked a more significant turning point in diversification than did the end-Triassic event. KEY WORDS: Triassic, mass extinction, tetrapod, dinosaur, macroevolution, fauna. INTRODUCTION Most studies of mass extinction identify a major event in the Late Triassic, usually placed at the Triassic-Jurassic boundary.
    [Show full text]
  • Magnetochronology of the Entire Chinle Formation (Norian Age) in A
    RESEARCH ARTICLE Magnetochronology of the Entire Chinle 10.1029/2019GC008474 Formation (Norian Age) in a Scientific Drill Core From Key Points: Petrified Forest National Park (Arizona, USA) and • Chinle Formation as recovered extends from ~224 to 209 Ma Implications for Regional and Global Correlations (Chrons E9n to E17r) • Base of Sonsela Member at ~216 Ma (Chron E14n) places older age limit in the Late Triassic ‐ on Adamanian Revueltian faunal Dennis V. Kent1,2 , Paul E. Olsen2, Christopher Lepre1,2 , Cornelia Rasmussen3,4 , transition 5 6 6 3,7 • Published high‐precision U‐Pb Roland Mundil , George E. Gehrels , Dominique Giesler , Randall B. Irmis , detrital zircon ages from the lower John W. Geissman8 , and William G. Parker9 Sonsela and Blue Mesa members tend to be anomalously old by 1Department of Earth and Planetary Sciences, Rutgers University, Piscataway, NJ, USA, 2Lamont‐Doherty Earth comparison Observatory, Columbia University, Palisades, NY, USA, 3Department of Geology and Geophysics, University of Utah, Salt Lake City, UT, USA, 4Institute for Geophysics, Jackson School of Geosciences, University of Texas at Austin, Austin, TX, Supporting Information: USA, 5Berkeley Geochronology Center, Berkeley, CA, USA, 6Department of Geosciences, University of Arizona, Tucson, • Supporting Information S1 AZ, USA, 7Natural History Museum of Utah, University of Utah, Salt Lake City, UT, USA, 8Department of Geosciences, University of Texas at Dallas, Richardson, TX, USA, 9Petrified Forest National Park, Petrified Forest, AZ, USA Correspondence to: D. V. Kent, fi ‐ [email protected] Abstract Building on an earlier study that con rmed the stability of the 405 kyr eccentricity climate cycle and the timing of the Newark‐Hartford astrochronostratigraphic polarity time scale back to 215 Ma, we extend the magnetochronology of the Late Triassic Chinle Formation to its basal unconformity in scientific Citation: ‐ fi ‐ ‐ Kent, D.
    [Show full text]
  • 2009 Geologic Time Scale Cenozoic Mesozoic Paleozoic Precambrian Magnetic Magnetic Bdy
    2009 GEOLOGIC TIME SCALE CENOZOIC MESOZOIC PALEOZOIC PRECAMBRIAN MAGNETIC MAGNETIC BDY. AGE POLARITY PICKS AGE POLARITY PICKS AGE PICKS AGE . N PERIOD EPOCH AGE PERIOD EPOCH AGE PERIOD EPOCH AGE EON ERA PERIOD AGES (Ma) (Ma) (Ma) (Ma) (Ma) (Ma) (Ma) HIST. HIST. ANOM. ANOM. (Ma) CHRON. CHRO HOLOCENE 65.5 1 C1 QUATER- 0.01 30 C30 542 CALABRIAN MAASTRICHTIAN NARY PLEISTOCENE 1.8 31 C31 251 2 C2 GELASIAN 70 CHANGHSINGIAN EDIACARAN 2.6 70.6 254 2A PIACENZIAN 32 C32 L 630 C2A 3.6 WUCHIAPINGIAN PLIOCENE 260 260 3 ZANCLEAN 33 CAMPANIAN CAPITANIAN 5 C3 5.3 266 750 NEOPRO- CRYOGENIAN 80 C33 M WORDIAN MESSINIAN LATE 268 TEROZOIC 3A C3A 83.5 ROADIAN 7.2 SANTONIAN 271 85.8 KUNGURIAN 850 4 276 C4 CONIACIAN 280 4A 89.3 ARTINSKIAN TONIAN C4A L TORTONIAN 90 284 TURONIAN PERMIAN 10 5 93.5 E 1000 1000 C5 SAKMARIAN 11.6 CENOMANIAN 297 99.6 ASSELIAN STENIAN SERRAVALLIAN 34 C34 299.0 5A 100 300 GZELIAN C5A 13.8 M KASIMOVIAN 304 1200 PENNSYL- 306 1250 15 5B LANGHIAN ALBIAN MOSCOVIAN MESOPRO- C5B VANIAN 312 ECTASIAN 5C 16.0 110 BASHKIRIAN TEROZOIC C5C 112 5D C5D MIOCENE 320 318 1400 5E C5E NEOGENE BURDIGALIAN SERPUKHOVIAN 326 6 C6 APTIAN 20 120 1500 CALYMMIAN E 20.4 6A C6A EARLY MISSIS- M0r 125 VISEAN 1600 6B C6B AQUITANIAN M1 340 SIPPIAN M3 BARREMIAN C6C 23.0 345 6C CRETACEOUS 130 M5 130 STATHERIAN CARBONIFEROUS TOURNAISIAN 7 C7 HAUTERIVIAN 1750 25 7A M10 C7A 136 359 8 C8 L CHATTIAN M12 VALANGINIAN 360 L 1800 140 M14 140 9 C9 M16 FAMENNIAN BERRIASIAN M18 PROTEROZOIC OROSIRIAN 10 C10 28.4 145.5 M20 2000 30 11 C11 TITHONIAN 374 PALEOPRO- 150 M22 2050 12 E RUPELIAN
    [Show full text]
  • Paleozoic Evolution of Pre-Variscan Terranes: from Gondwana to the Variscan Collision
    Geological Society of America Special Paper 364 2002 Paleozoic evolution of pre-Variscan terranes: From Gondwana to the Variscan collision Gérard M. Stamp×i Institut de Géologie et Paléontologie, Université de Lausanne, CH-1015 Lausanne, Switzerland Jürgen F. von Raumer Institut de Minéralogie et Pétrographie, Université de Fribourg, CH-1700 Fribourg, Switzerland Gilles D. Borel Institut de Géologie et Paléontologie, Université de Lausanne, CH-1015 Lausanne, Switzerland ABSTRACT The well-known Variscan basement areas of Europe contain relic terranes with a pre-Variscan evolution testifying to their peri-Gondwanan origin (e.g., relics of Neo- proterozoic volcanic arcs, and subsequent stages of accretionary wedges, backarc rift- ing, and spreading). The evolution of these terranes was guided by the diachronous subduction of the proto-Tethys oceanic ridge under different segments of the Gond- wana margin. This subduction triggered the emplacement of magmatic bodies and the formation of backarc rifts, some of which became major oceanic realms (Rheic, paleo- Tethys). Consequently, the drifting of Avalonia was followed, after the Silurian and a short Ordovician orogenic event, by the drifting of Armorica and Alpine domains, ac- companied by the opening of the paleo-Tethys. The slab rollback of the Rheic ocean is viewed as the major mechanism for the drifting of the European Variscan terranes. This, in turn, generated a large slab pull force responsible for the opening of major rift zones within the passive Eurasian margin. Therefore, the µrst Middle Devonian Variscan orogenic event is viewed as the result of a collision between terranes detached from Gondwana (grouped as the Hun superterrane) and terranes detached from Eurasia.
    [Show full text]
  • Ph.D Thesis: Stratigraphic, Structural and Geomorphological Features of the Sicilian Continental Shelf: Study Cases from Southern Tyrrhenian and Sicily Channel
    Ph.D Thesis: Stratigraphic, structural and geomorphological features of the Sicilian continental shelf: study cases from Southern Tyrrhenian and Sicily Channel. Ph.D Thesis: Stratigraphic, structural and geomorphological features of the Sicilian continental shelf: study cases from Southern Tyrrhenian and Sicily Channel. Ph.D Thesis: Stratigraphic, structural and geomorphological features of the Sicilian continental shelf: study cases from Southern Tyrrhenian and Sicily Channel. INDEX GENERAL INTRODUCTION PART I: METHODOLOGY 1.0 INTRODUCTION 1.1 SONAR PRINCIPLES IN THE WATER 1.2 ECHOSOUNDING 1.3 MULTIBEAM 1.4 CHIRP SUB-BOTTOM 1.5 SPARKER SYSTEM 1.6 BATHYMETRIC AND SEISMIC INTERPRETATION SOFTWARES 1.6.1 GLOBAL MAPPER 1.6.2 SWANPRO™ 1.6.3 GEOSUITE ALLWORKS 1.7 SEISMIC STRATIGRAPHY PRINCIPLES 1.8 THE SEISMIC RESOLUTION PART II: CONTINENTAL SHELF ENVIRONMENT: STRUCTURAL-STRATIGRAPHIC EVOLUTION OF LAMPEDUSA ISLAND AND SOUTH-EAST SICILY OFFSHORE 2.0 INTRODUCTION 2.1 PHYSIOGRAPHIC FEATURES OF THE CONTINENTAL SHELF 2.2 DEPOSITIONAL ENVIROMENTS: AUTOGENIC AND ALLOGENIC CONTROLS 2.3 SEQUENCE STRATIGRAPHY 2.3.1 SEQUENCE STRATIGRAPHIC UNITS 2.3.2 SEQUENCE STRATIGRAPHIC SURFACES 2.4 LATE MIOCENE TO QUATERNARY STRUCTURAL EVOLUTION OF THE LAMPEDUSA ISLAND OFFSHORE 1 Ph.D Thesis: Stratigraphic, structural and geomorphological features of the Sicilian continental shelf: study cases from Southern Tyrrhenian and Sicily Channel. 2.4.1 GEOLOGICAL SETTING 2.4.2 DATA DESCRIPTION AND INTERPRETATION 2.4.2.1 Northern sector 2.4.2.2 Southern Sector 2.4.2.3 Eastern
    [Show full text]
  • CHRISTOPHER THOMAS GRIFFIN DEPARTMENT of EARTH and PLANETARY SCIENCES Yale University 210 Whitney Ave
    Christopher Griffin 1 Curriculum Vitae CHRISTOPHER THOMAS GRIFFIN DEPARTMENT OF EARTH AND PLANETARY SCIENCES Yale University 210 Whitney Ave. New Haven CT 06511 Phone: +1 (530) 217-9516 E-mail: [email protected] www.ctgriffin.wixsite.com/site Current Position Postdoctoral Associate (July 2020–present) Yale University, Department of Earth and Planetary Sciences Education Virginia Tech, Blacksburg, VA, USA Ph.D. in Geosciences (2020) M.S. in Geosciences (2016) Cedarville University, Cedarville, OH, USA B.S. in Biology, Geology, and Molecular & Cellular Biology, with highest honor (2014) External Grants and Fellowships Total amount of competitive funding offered: $618,382.74 (USD) Total amount of competitive funding received: $364,442 (USD) 2020 COVID-19 Grant Support National Geographic Society, $3,350 (co-principal investigator) Postdoctoral Research Fellowship in Biology (NSF PRFB) National Science Foundation, $138,000. Marie Skłodowska-Curie Actions Individual Fellowship European Commission Research Executive Agency, 212,933.76 €. Review score 98.20/100. Declined. 2019 Arthur J. Boucot Student Research Award Paleontological Society, $1,200 Jackson School of Geosciences Student Travel Grant Society of Vertebrate Paleontology, $600 Young Researcher Travel Grant for Evolutionary Developmental Biology Developmental Dynamics, $500 2018 Exploration Grant National Geographic Society, $27,390 (co-principal investigator) 2017 Graduate Student Research Grant Geological Society of America, $1,755 Early Career Grant National Geographic Society,
    [Show full text]
  • A Late Triassic Major Negative Δ13c Spike Linked to Wrangellia LIP: The
    716 Goldschmidt Conference Abstracts A Late Triassic major negative !13C Widespread evidence for spike linked to Wrangellia LIP: heterogeneous accretion of the The Carnian Pluvial Event revealed terrestrial planets and planetisimals J. DAL CORSO1*, P. MIETTO1, R.J. NEWTON2, C.W. DALE1*, K.W. BURTON2, D.G. PEARSON1,3, R.D. PANCOST3, N. PRETO1, G. ROGHI4 AND AND R. GREENWOOD4 2 P.B. WIGNALL 1 Dept. of Earth Sciences, Durham University, DH1 3LE, UK 1Dipartimento di Geoscienze, Università degli Studi di (correspondence: [email protected]) Padova, via Gradenigo 6, 35131, Padova, Italy 2Dept. of Earth Sciences, Oxford University, OX1 3PR, UK (*correspondence: [email protected]). 3Dept. for Earth & Atmos Sci, University of Alberta, 2School of Earth and Environments, University of Leeds, Edmonton, Canada Woodhouse Lane, LS2 1JT, Leeds, UK. 4PSSRI, Open University, Milton Keynes, UK 3Organic Geochemistry Unit, School of Chemistry, University of Bristol, BS8 1TS, Bristol, UK. The abundance and relative proportion of highly 4Istituto di Geoscienze e Georisorse, CNR, via Gradenigo 6, siderophile elements (HSEs) in Earth’s mantle deviate from 35131, Padova, Italy. those predicted by low-pressure equilibrium partitioning between metal and silicate during formation of the core. For During the Carnian (Late Triassic) a major climatic and many elements, high-pressure equilibration in a deep molten biotic change is known, namely the Carnian Pluvial Event silicate layer (or ‘magma ocean’) may account for this (CPE) [1]. This event is characterized by more humid discrepancy [1], but some highly siderophile element conditions testified by hygrophytic palynological assemblages abundances demand the late addition, a ‘late veneer’, of and palaeosols typical of humid climates; the crisis of rimmed extraterrestrial material (i.e.
    [Show full text]
  • K2SO4 Across the Neogene: Implications, Part 4 of 4
    www.saltworkconsultants.com Salty MattersJohn Warren - Tuesday, May 12, 2015 Danakil potash: K2SO4 across the Neogene: Implications, Part 4 of 4 marine brine feeds that most of the world’s larger Phaneorzo- How to deal with K2SO4 ic (SOP) potash ore deposits were precipitated (Warren, 2015). In this the fourth blog focusing on Danakhil potash, we look SOP is also produced from Quaternary Lake brines in China at the potash geology of formerly mined Neogene deposits in and Canada (see Cryogenic salt blog; 24 Feb. 2015). Sicily and the Ukraine, then compare them and relevant pro- cessing techniques used to exploit their K2SO4 ore feeds. This information is then used to hlep guide a discussion of process- ing implications for potash extraction in the Danakhil, where SOP in Messinian evaporites, Sicily kainite is the dominant widespread potash salt. As seen in the A number of potash mines on the island extracted kainitite from previous three blogs there are other potash mineral styles present the late Miocene Solofifera Series of Sicily (Figure 1). The last in the Danakhil, which constitute more re- stricted ore fairways than the widespread bedded kainaite, these other potash styles Sicilian-Maghrebian units (deep meteoiric -blog 2 of 4 and hydro- thermal - blog 3 of 4), could be processed Palermo X Kabylian-Calabrian units to extract MOP, but these other potash Calatami inner C styles are also tied to high levels of MgCl2, im Madonie M. in Petralia Nebrodi M. na b which must be dealt with in the brine pro- S. Ninfa asin Nicosia Be M.
    [Show full text]