<<

PERMIAN- GLOBAL CHANGE: THE STRONTIUM CYCLE AND BODY SIZE EVOLUTION IN MARINE CLADES

A DISSERTATION SUBMITED TO THE DEPARTMENT OF GEOLOGICAL & ENVIRONMENTAL SCIENCES AND THE COMMITTEE ON GRADUATE STUDIES OF STANFORD UNIVERSITY IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

Ellen Kadrmas Schaal June 2014

© 2014 by Ellen Kadrmas Schaal. All Rights Reserved. Re-distributed by Stanford University under license with the author.

This dissertation is online at: http://purl.stanford.edu/st726zn9395

ii I certify that I have read this dissertation and that, in my opinion, it is fully adequate in scope and quality as a dissertation for the degree of Doctor of Philosophy.

Jonathan Payne, Primary Adviser

I certify that I have read this dissertation and that, in my opinion, it is fully adequate in scope and quality as a dissertation for the degree of Doctor of Philosophy.

C. Kevin Boyce

I certify that I have read this dissertation and that, in my opinion, it is fully adequate in scope and quality as a dissertation for the degree of Doctor of Philosophy.

George Hilley

I certify that I have read this dissertation and that, in my opinion, it is fully adequate in scope and quality as a dissertation for the degree of Doctor of Philosophy.

Donald Lowe

Approved for the Stanford University Committee on Graduate Studies. Patricia J. Gumport, Vice Provost for Graduate Education

This signature page was generated electronically upon submission of this dissertation in electronic format. An original signed hard copy of the signature page is on file in University Archives.

iii ABSTRACT

Immediately following the most severe in the history of life, the was a time of major changes in ocean chemistry and delayed biotic recovery. Many hypotheses for the cause of the end- extinction invoke the environmental consequences of Siberian Traps flood basalt eruption. However, the precise relationship between volcanism, ocean chemistry, and the tempo and mode of biotic recovery remain incompletely understood. I present four studies that investigate the relationship between environmental change and biological evolution during this unique time interval, using carbonate and samples from south China and literature-based and geochemical data from around the globe. (1) I test strontium isotopic constraints on Permian-Triassic global change with a new high- resolution seawater 87Sr/86Sr record and a numerical model of the strontium cycle.

Strontium isotope data reveal a rapid radiogenic excursion occurred during the first two million years of Early Triassic time. Model results show that the magnitude of

CO2 release during Siberian Traps volcanism is sufficient to account for much of the

87 86 observed increase in seawater Sr/ Sr through CO2 enhancement of continental weathering rates. (2) The small size of Early Triassic marine organisms has important implications for the ecological and environmental pressures operating during and after the end-Permian mass extinction. I quantify Permian-Triassic body size trends in eight marine clades and find widespread size decrease after the extinction in ecologically and physiologically disparate clades. Nektonic habitat or physiological buffering capacity may explain the contrast of Early Triassic size increase and

iv diversification in ammonoids versus size reduction and slow recovery in benthic clades. (3) I compare size evolution in at the end-Permian extinction to their entire evolutionary history. Quantifying size trends reveals a long-term pattern of size increase during the early followed by size decrease until conodonts went extinct at the end of Triassic. Conodont size change during intervals of mass extinction and rapid environmental change appears small compared to long-term trends. (4) Finally, I review the constraints on Permian-Triassic ocean redox chemistry provided by lithological and geochemical proxy records. Paleoredox records show a rapid shift from relatively well-ventilated Late Permian oceans to widespread anoxic and euxinic conditions coincident with the end-Permian extinction horizon. Earth system models and geological observations support the eruption of the

Siberian Traps as a mechanism for the expansion of anoxia at the Permian-Triassic boundary. Taken together, these results suggest that the physical environment has a large impact on biological evolution during intervals of rapid environmental change, but long-term evolutionary trends may be primarily driven by ecology.

v A NOTE ON AUTHORSHIP

This dissertation consists of four projects that reflect a collaborative effort between Ellen Schaal and coauthors. E. Schaal collected data for each chapter, analyzed the data, and wrote the main body of text. For Chapter 1, Jonathan Payne collected carbonates in Turkey and south China. Dan Lehrmann and Meiyi Yu advised field work in south China, where E. Schaal collected conodonts. 87Sr/86Sr analyses were run by Crystal Breier and E. Schaal in Adina Paytan’s lab at UC Santa

Cruz. Demír Altiner provided foraminiferal for Turkey and Rachelle

Kernen helped calibrate carbon and strontium isotope curves. For Chapter 2, Matthew

Clapham contributed size data for brachipods, bivalves, ammonoids, and ostracods,

Jonathan Payne contributed size data for gastropods, and Brianna Rego contributed size data for . Steve Wang gave advice on statistical methods and developed the method used to measure the relative effects of the three components of size change. M. Clapham and S. Wang commented on the manuscript. For Chapter 3,

Daniel Morgan measured numerous conodonts and assisted with analyses. For

Chapter 4, Katja Meyer contributed writing on biomarkers and modeling, Kimberly

Lau on cerium and uranium, Juan Carlos Silva-Tamayo on molybdenum, and J. Payne on lithologic evidence. J. Payne supervised all projects and commented on drafts of this dissertation.

vi ACKNOWLEDGMENTS

I would first like to thank my advisor, Jonathan Payne, for all his great advice and support over the course of my time at Stanford. He has been a wonderful role model, for research, mentoring, and building a lab that fosters scientific collaboration.

Thank you to all of my coauthors and members of my committee, whose valuable insights contributed greatly to this work. I would also like to thank the members of the Stanford Paleobiology Lab, past and present, for fantastic discussions and comments: A. Bachan, S. Finnegan, K. Fristad, N. Goudemand, P. Harnik, N.

Heim, J. Hinojosa, A. Jost, C. Keating-Bitonti, B. Kelley, M. Knope, K. Lau, K.

Meyer, B. Rego, and J. C. Silva-Tamayo. Many thanks to my undergraduate research assistants, Daniel Morgan, Kathryn (Kit) Vanderboll, and Margaret Chapman, who helped with conodont picking and size data collection, and to my field assistants in south China, Fu Hongbin, Li Xiaowei, Wen Xuefeng, Xiao Long, and Xiao Wei. My work was supported by the Eugene Holman Stanford Graduate Fellowship, the Shell

Foundation, and the National Science Foundation (EAR-0807377 to J. Payne).

On a personal note, I am very thankful for all of the amazing friends I met at

Stanford, who have made graduate school such a good experience. Special thanks go to David for cheering me on during the final stages of my dissertation. Finally, I am deeply grateful to my family for all their love and support.

vii TABLE OF CONTENTS

Abstract……...... …………………………………………………………………..iv A Note on Authorship…………………………………..…………………………vi Acknowledgments………………………..………………………………………vii List of Figures…...……………………………………………………………..….xi List of Tables…...………………………………………………………………...xii INTRODUCTION……………………………………………………………………..1 References……………………………………………………………………….....4 CHAPTER 1: STRONTIUM ISOTOPE CONSTRAINTS ON PERMIAN-TRIASSIC GLOBAL CHANGE…………………………………………………………………..7 Introduction…………………………………………………………………….…..9 Field Setting and Methods……………………………………………………..…12 Strontium and Carbon Isotope Results……………………………………………17 Numerical Modeling…………………………………………………………...…18 Discussion………………………………………………………………………...23 Conclusions……………………………………………………………………….27 Acknowledgments…..………………………………………………………….…28 References………………………………………………………………………...29 Figure Captions…………………………………………………………………...37 Table Caption……………………………………………………………………..39 Chapter 1 Figures…………………………………………………………………40 Chapter 1 Table…………………………………………………………………...45 CHAPTER 2: COMPARATIVE SIZE EVOLUTION OF MARINE CLADES FROM THE LATE PERMIAN THOUGH …………………………..46 Introduction……………………………………………………………………….48 Methods…………………………………………………………………………...52 Results…………………………………………………………………………….54 Discussion………………………………………………………………………...61 Conclusions…………………………………………………………………….…69

viii Acknowledgments…..………………………………………………………….…70 References………………………………………………………………………...71 Figure Captions………………………………………………………………...…82 Table Caption……………………………………………………………………..84 Chapter 2 Figures…………………………………………………………………85 Chapter 2 Table…………………………………………………………………...89 CHAPTER 3: BODY SIZE EVOLUTION IN CONODONTS FROM THE THROUGH THE TRIASSIC………………………………………….90 Introduction……………………………………………………………………….92 Data and Methods……………………………………………………………...…94 Results…………………………………………………………………………….98 Discussion…………………………………………………………………….....100 Conclusions……………………………………………………………………...103 Acknowledgments……..………………………………………………………...104 References……………………………………………………………………….105 Figure Captions………………………………………………………………….114 Table Caption……………………………………………………………………115 Chapter 3 Figures……………………………………………………………..…116 Chapter 3 Tables………………………………………………………………...122 CHAPTER 4: OCEANIC ANOXIA DURING THE PERMIAN-TRIASSIC TRANSITION AND LINKS TO VOLCANISM…………………………………...124 Introduction…………………………………………………………………...…125 Lithologic Evidence for Anoxia…………………………………………………126 Geochemical Evidence for Anoxia……………………………………………...128 Summary: Pattern of Anoxia…………………………………………………….133 Volcanism and Anoxia………………………………………………………..…135 Conclusions……………………………………………………………………...138 Acknowledgments……..………………………………………………………...139 References……………………………………………………………………….140 Figure Captions………………………………………………………………….150

ix Table Caption……………………………………………………………………151 Chapter 4 Figures…………………………………………………………….…152 Chapter 4 Table………………………………………………………………….155 APPENDIX A: Strontium and carbon isotope data from Tashkent, Turkey (Chapter 1) …………………………………………………………………………………...156 APPENDIX B: Strontium and carbon isotope data from the Great Bank of Guizhou, south China (Chapter 1)…………………………………………………………164 APPENDIX C: -level size data for eight marine clades (Chapter 2)………..186 APPENDIX D: Species-level conodont size data from the Catalogue of Conodonts (Chapter 3)………………………………………………………………………253 APPENDIX E: Conodont specimen size data from the Great Bank of Guizhou, south China (Chapter 3)……………………………………………………………...... 266

x LIST OF FIGURES

Figure 1.1. Strontium cycle cartoon…………………………………………………40 Figure 1.2. Geologic setting………………………………………………………….41 Figure 1.3. Sr and C isotope data from Turkey and south China……………..……..42 Figure 1.4. 87Sr/86Sr data summary……………………………………………….….43 Figure 1.5. Model experiments……………………………………………………....44 Figure 2.1. Species-level size data…………………………………………………...85 Figure 2.2. Median clade size………………………………………………………..86 Figure 2.3. Raw and resampled maximum clade size………………………………..87 Figure 2.4. The three components of size change…………………………………...88 Figure 3.1. The conodont apparatus……………………………………………...…116 Figure 3.2. Species-level conodont size…………………………………………….117 Figure 3.3. Mean conodont size………………………………………………….…118 Figure 3.4. Conodont sizes from south China……………………………...……….119 Figure 3.5. Regression analysis………………………………………………….….120 Figure 3.6. Fish diversity……………………………………………………….…..121 Figure 4.1. Paleogeography of redox proxies………………………………………152 Figure 4.2. Anoxia through time…………………………………………………....153 Figure 4.3. Ocean redox model……………………………………………….…….154

xi LIST OF TABLES

Table 1.1. Model equations and parameters………………………………………….45 Table 2.1. Change in clade median size across stage boundaries…………………....89 Table 3.1. Linear regression statistics………………………………………………122 Table 3.2. Model comparison………………………………………………………123 Table 4.1. Redox proxy sensitivity……………………………………………..…..155

xii INTRODUCTION

A long-standing question in paleobiological research is the extent to which change in the physical environment affects evolution. Critical transitions in the history of life, such as major radiations and , tend to involve both environmental perturbation and ecologic change. Therefore, understanding the relationship between environmental and biological change requires the integration of many different high-resolution records (sedimentological, geochemical, and paleontological) from both a local and global scale. Spanning a huge mass extinction and major changes in ocean chemistry, the Permian-Triassic transition provides an ideal time interval to study the links between environmental change, geochemical cycles, and biological evolution.

At the end of the Permian Period, approximately 252 million years ago

(Burgess et al. 2014), the largest mass extinction of the Phanerozoic marked major taxonomic and ecological changes in the history of life (McGhee et al. 2004). The extinction eliminated 79% of all marine genera (Payne and Clapham 2012), and terrestrial and vascular plants also suffered significant losses (Ward et al.

2005; Rees 2002). The Permian-Triassic ecological transition from Paleozoic to modern evolutionary faunas saw the switch from rhynchonelliform - to mollusc-dominated paleocommunities (Sepkoski 1981; Fraiser and Bottjer 2005).

Many hypotheses for the extinction mechanism invoke environmental consequences of the Siberian Traps flood basalt eruption, which was of short duration (~1 Ma), coincided with the extinction, and released large quantities of greenhouse gases (e.g.,

1 Renne et al. 1995; Kamo et al. 2003; Wignall 2007; Svensen et al. 2009; Payne and

Clapham 2012). Potential kill mechanisms resulting directly or indirectly from the massive volcanism include global warming, marine anoxia, hydrogen sulfide, ocean acidification, and CO2 poisoning (Kump et al. 2005; Knoll et al. 2007; Wignall 2007;

Sun et al. 2012).

Many geochemical and paleontological records suggest persistent or recurring environmental disturbance continued through the Early Triassic. There is widespread lithological and geochemical evidence for shallow marine anoxia and euxinia above the Permian-Triassic boundary and at least intermittently throughout Lower Triassic rocks (Wignall and Twitchett 2002). During this approximately 5 My interval

(Ovtcharova et al. 2006), a series of carbon isotope fluctuations of up to 8‰ continued until the Middle Triassic, suggesting repeated environmental disturbances (Payne et al.

2004). The end-Permian through the Early Triassic also saw the most rapid increase in seawater 87Sr/86Sr of the entire Phanerozoic (Korte et al. 2003). This strontium isotope excursion has implications for tectonic and climatic change at the Permian-

Triassic transition, but the timing and cause of the excursion remain poorly understood. After the end-Permian mass extinction, the recovery of marine diversity and ecosystems was largely delayed until the end of the Early Triassic. Low diversity, low evenness, low abundances, and small body sizes characterize marine invertebrate communities, while many major reef-building taxa were absent (Flügel 1994; Schubert and Bottjer 1995; Payne et al. 2006). The small size of marine organisms during the

Early Triassic has implications for the environmental and ecological pressures operating during and after the end-Permian mass extinction, but the controls on body

2 size evolution remain poorly understood. Quantitative interpretation of high- resolution geochemical and paleontological data is needed to assess links between volcanism, environmental change, ocean chemistry, and biotic recovery in the wake of the end-Permian mass extinction.

In the following four studies, I investigate the relationship between environmental change and biological evolution using carbonate and conodont samples from south China and Turkey, as well as literature-based fossil and geochemical data from around the globe. I focus on quantifying and interpreting the strontium isotope record, marine paleoredox proxies, and body size evolution in marine clades during the Permian-Triassic transition, and in the case of body size evolution, on longer

Phanerozoic time scales. Combining environmental and biological records is essential if we are going to achieve a satisfactory understanding of the Earth as a physical and biological system.

3 REFERENCES

Burgess, S. D., S. Bowring, and S.-Z. Shen. 2014. High-precision timeline for Earth’s most severe extinction. Proceedings of the National Academy of Sciences, USA doi: 10.1073/pnas.1317692111.

Flügel, E. 1994. Pangean shelf carbonates: controls and paleoclimatic significance of Permian and Triassic reefs. In Pangea: paleoclimate, tectonics, and sedimentation during accretion, zenith, and breakup of a supercontinent. G. D. Klein, ed., Geological Society of America, Boulder, CO, pp. 274-266.

Fraiser, M. L., and D. J. Bottjer. 2005. Restructuring in benthic level-bottom shallow marine communities due to prolonged environmental stress following the end-Permian mass extinction. Comptes Rendus Palevol 4:515-523.

Kamo, S. L., G. K. Czamanske, Y. Amelin, V. A. Fedorenko, D. W. Davis, and V. R. Trofimov. 2003. Rapid eruption of Siberian flood-volcanic rocks and evidence for coincidence with the Permian–Triassic boundary and mass extinction at 251 Ma. Earth and Planetary Science Letters 214:75-91.

Knoll, A. H., R. K. Bambach, J. L. Payne, S. Pruss, and W. W. Fischer. 2007. Paleophysiology and end-Permian mass extinction. Earth and Planetary Science Letters 256:295-313.

Korte, C., Kozur, H. W., Bruckschen, P., Veizer, J., 2003. Strontium isotope evolution of Late Permian and Triassic seawater. Geochim. Cosmochim. Acta 67, 47-62.

Kump, L. R., A. P. Pavlov, and M. A. Arthur. 2005. Massive release of hydrogen sulfide to the surface ocean and atmosphere during intervals of oceanic anoxia. Geology 33:397-400.

4

McGhee, G. R., P. M. Sheehan, D. J. Bottjer, and M. L. Droser. 2004. Ecological ranking of Phanerozoic biodiversity crises: ecological and taxonomic severities are decoupled. Palaeogeography, Palaeoclimatology, Palaeoecology 211:289-297.

Ovtcharova, M., H. Bucher, U. Schalteger, T. Galfetti, A. Brayard, and J. Guex. 2006. New Early to Middle Triassic U-Pb ages from South China: calibration with ammonoid biochronozones and implications for the timing of the Triassic biotic recovery. Earth and Planetary Science Letters 243:463-475.

Payne, J. L., and M. E. Clapham. 2012. End-Permian mass extinction in the oceans: an ancient analog for the 21st century? Annual Reviews of Earth and Planetary Science 40:89-111.

Payne, J. L., D. J. Lehrmann, J. Wei, and A. H. Knoll. 2006. The Pattern and Timing of Biotic Recovery from the End-Permian Extinction on the Great Bank of Guizhou, Guizhou Province, China. Palaios 21:63-85.

Payne, J. L., D. J. Lehrmann, J. Wei, M. J. Orchard, D. P. Schrag, and A. H. Knoll. 2004. Large perturbations of the carbon cycle during recovery from the end-permian extinction. Science 305:506-9.

Rees, P. M. Land-plant diversity and the end-Permian mass extinction. Geology 30:827-830.

Renne, P. R., Z. Zichao, M. A. Richards, M. T. Black, and A. R. Basu. 1995. Synchrony and causal relations between Permian-Triassic boundary crises and Siberian flood volcanism. Science 269:1413-1416.

5 Schubert, J. K., and D. J. Bottjer. 1995. Aftermath of the Permian-Triassic mass extinction event: paleoecology of Lower Triassic carbonates in the western USA. Palaeogeography, Palaeoclimatology, Palaeoecology 116:1-39.

Sepkoski, J. J. 1981. A factor analytic description of the Phanerozoic marine fossil record. Paleobiology 7:36-53.

Sun, Y., M. M. Joachimski, P. B. Wignall, C. Yan, Y. Chen, H. Jiang, L. Wang, and X. Lai. 2012. Lethally hot temperatures during the Early Triassic greenhouse. Science 338:366-370.

Svensen, H., S. Planke, A. G. Polozov, N. Schmidbauer, F. Corfu, Y. Y. Podladchikov, and B. Jamtveit. 2009. Siberian gas venting and the end-Permian environmental crisis. Earth and Planetary Science Letters 227:490-500.

Ward, P. D., J. Botha, R. Buick, M. O. De Kock, D. H. Erwin, G. Garrison, J. Kirschvink, and R. Smith. 2005. Abrupt and gradual extinction among Late Permian land vertebrates in the Karoo Basin, South Africa. Science 307:709-714.

Wignall, P. B. 2007. The end-Permian mass extinction – how bad did it get? Geobiology 5:303-309.

Wignall, P. B., and R. J. Twitchett. 2002. Extent, duration, and nature of the Permian- Triassic superanoxic event. Geological Society of America Special Papers 356:395- 413.

6 CHAPTER 1: STRONTIUM ISOTOPE CONSTRAINTS ON

PERMIAN-TRIASSIC GLOBAL CHANGE

Ellen K. Schaal1, Adina Paytan2, Daniel J. Lehrmann3, Demír Altiner4, Meiyi Yu5,

Crystal Breier1, Rachelle A. Kernen6, and Jonathan L. Payne1

1Department of Geological & Environmental Sciences, Stanford University, Stanford, CA 94305, U.S.A.

2Institute of Marine Sciences, University of California, Santa Cruz, CA 95064, U.S.A.

3Department of Geosciences, Trinity University, San Antonio, Texas 78212, U.S.A.

4Department of Geological Engineering, Middle East Technical University, 06531 Ankara, Turkey

5College of Resource and Environmental Engineering, Guizhou University, Caijiaguan, Guiyang 550003, Guizhou Province, PR China

6Department of Geology, University of Wisconsin Oshkosh, Oshkosh, WI 54901, U.S.A.

E-mail: [email protected].

Keywords: strontium isotopes, Permian-Triassic, strontium cycle, Siberian Traps, flood basalt, extinction

ABSTRACT

The most rapid large excursion in seawater 87Sr/86Sr during the Phanerozoic occurred from the latest Permian through the Early Triassic. 87Sr/86Sr values climbed from 0.7070 to 0.7082 in less than 10 million years. However, the precise rate and

7 timing of Early Triassic isotopic change are poorly known because of gaps in the data and poor age control. Previous work has suggested that enhanced continental weathering drove the increase in seawater 87Sr/86Sr ratio, but the underlying control remains poorly understood because the timing of major Permian glacial and orogenic events is too early to account for the large radiogenic excursion. To address this problem, we collected new Sr isotope data from Lower Triassic carbonates of south

China and Turkey, and use this record to model the Sr cycle through the same time interval. Constrained by recent improvements in Early Triassic geochronology, the Sr data reveal a dramatic rate of change in seawater 87Sr/86Sr: most of the excursion occurred during the first two million years of Early Triassic time. We use a strontium cycle box model to investigate possible causes of the Sr excursion and to quantitatively assess the potential role of Siberian Traps volcanism through weathering feedbacks. We find that the proposed magnitude of CO2 release (150,000

Gt) during Siberian Traps volcanism is sufficient to account for much of the observed

87 86 increase in seawater Sr/ Sr through CO2 enhancement of continental weathering rates. This interpretation of the Sr cycle is consistent with geological, geochemical, and paleontological evidence for end-Permian and Early Triassic global warming, enhanced continental weathering and nutrient delivery, high primary productivity, and marine anoxia.

8 INTRODUCTION

The end-Permian through the Early Triassic interval is characterized by one of the largest and most rapid excursions in seawater 87Sr/86Sr of the entire Phanerozoic

(Veizer et al. 1999). In the Late Permian (Wuchiapingian stage), 87Sr/86Sr values were near a minimum value for the Phanerozoic (0.7070), but by the late Early Triassic

(Spathian stage) they had reached 0.7082, a magnitude and rate of change that is comparable to the well-studied Cenozoic 87Sr/86Sr increase (Korte et al. 2003, 2006).

However, the rate and timing of strontium isotope change in between these two extremes, as well as the factors that caused this major perturbation in the strontium cycle, remain poorly understood. Because the strontium isotopic record works as a proxy for tectonic and climatic change in the Earth system, understanding what drove this large excursion is important for understanding global change at the Permian-

Triassic transition.

Seawater 87Sr/86Sr is controlled primarily by the relationship between two principal strontium fluxes of different isotopic composition: riverine input of radiogenic (87Sr-rich) strontium from the weathering of continental rocks, and non- radiogenic “mantle” signature strontium from hydrothermal circulation at mid ocean ridges and the weathering of basalts (Fig. 1.1; Elderfield 1986). Because the residence time of strontium in the modern ocean is approximately 3 My, the ocean is well-mixed with respect to strontium isotopes and records only globally significant changes in strontium inputs and outputs (Kump 1989; Capo and DePaolo 1992; Martin and

Macdougall 1995). Therefore, large radiogenic excursions have been interpreted as

9 representing a pulse of continental weathering products or a major decline in basalt production and weathering. The timing of major Permian ice ages and orogenies is too early to account for the Early Triassic rapid increase in 87Sr/86Sr (Martin and

Macdougall 1995). However, the strontium excursion is coincident with the eruption of the Siberian Traps, one of the largest known continental flood basalts (Courtillot and Renne 2003; Kamo et al. 2003). Given the low strontium isotopic composition of these basalts (0.703-0.705; Basu et al. 1995; Arndt et al. 1998), the radiogenic excursion is perhaps the opposite of the expected response. Increasing empirical constraints on ancient ocean strontium isotope geochemistry is necessary to distinguish among different strontium cycle scenarios.

The dramatic rise in seawater 87Sr/86Sr at the P/Tr boundary has been well documented, but a new Triassic timescale shows the rate of change is unparalleled in the Phanerozoic. The large increase in 87Sr/86Sr from a low in the Late Permian to a

Middle Triassic high was apparent even in early analyses of seawater strontium isotopic composition in deep time (Peterman et al. 1970). Later studies confirmed this striking feature of the Sr record (Burke et al. 1982; Martin and Macdougall 1995;

Veizer et al. 1999). Korte et al. (2003 and 2006) present high-resolution records of seawater Sr isotope evolution through the whole Permian and Triassic as recorded by and conodont elements. However, very few data points constrain the record of the Early Triassic 87Sr/86Sr rise because many are small and rare during the aftermath of the mass extinction. It is not clear from the Korte et al. curve

(2003) whether the 87Sr/86Sr rise reaches its maximum at the Spathian- boundary or earlier in the Spathian or Smithian. In addition, new radiometric dates in

10 the Griesbachian and Smithian shorten the duration of the Griesbachian through

Smithian stages while lengthening the Spathian (Galfetti et al. 2007; Burgess et al.

2014). This adjustment considerably increases the rate of change of the strontium isotope excursion. Previous work has compared the Permian-Triassic 87Sr/86Sr increase with the Cenozoic rise (Martin and Macdougall 1995; Korte et al. 2003), but the Early Triassic excursion now appears steeper than even the interval of highest

Cenozoic rates. A more detailed record is needed to assess the fine-scale structure of the Late Permian through Middle Triassic strontium isotope curve; the shape of the curve will serve as a tool for stratigraphic correlation and for quantitative interpretation of strontium cycle behavior.

Using numerical models to interpret the strontium isotope record will help determine which mechanisms of seawater 87Sr/86Sr change are geologically feasible.

Many models of the seawater strontium isotope system have focused on the Cenozoic increase in 87Sr/86Sr, but this interval does not provide a good analogue for the

Permian-Triassic. Major orogenic events are often invoked to explain large radiogenic strontium excursions (Attendorn and Bowen 1997). For example, geologic and modeling evidence suggests the Cenozoic rise in 87Sr/86Sr is related to uplift and unroofing of the Himalayas (e.g., Raymo et al. 1988; Goddéris and François 1995). In contrast, with the supercontinent Pangaea fully assembled, the Late Permian was not a time of major continental collision and mountain building. In addition, if the rate of change in Permian-Triassic seawater 87Sr/86Sr is much faster than in the Cenozoic, it suggests a different type of trigger. Proposed explanations for the Early Triassic strontium record include high continental weathering rates due to atmospheric pCO2,

11 humid climate, and loss of land plant cover in the wake of the mass extinction (Korte et al. 2003; Martin and Macdougall 1995). Martin and Macdougall (1995) used a simple strontium cycle model to suggest the Permian-Triassic rise in 87Sr/86Sr was most likely due to an increase in the riverine isotopic ratio and riverine strontium flux.

However, not only has our picture of the shape and slope of the strontium excursion changed considerably since this work, but their model results require changes in continental weathering that depend on paleoclimate, and thus could be tested against new quantitative estimates of pCO2 change. In addition, the climatic and geochemical consequences of Siberian Traps volcanism have received much attention as a potential mechanism for the extinction and delayed recovery (as reviewed in Wignall 2007;

Payne and Clapham 2012), but the impact of this unusual tectonic event on the strontium cycle remains poorly understood. The causes of strontium isotope variation may or may not be related to the end-Permian extinction, but the temporal correspondence between the strontium excursion and delayed biotic recovery suggests this relationship deserves to be explored. To address these problems, we present new

Early Triassic strontium isotope data and investigate the causes of the excursion and the potential role of Siberian Traps volcanism using a strontium cycle box model.

FIELD SETTING AND METHODS

Geologic setting

To constrain the timing and rate of the excursion, we measured strontium isotopes from Late Permian to Middle Triassic carbonates and conodonts with age

12 control from and carbon isotope chemostratigraphy.

Samples came from previously published stratigraphic sections in Tashkent, Turkey, and the Great Bank of Guizhou carbonate platform in south China (Fig 1.2; Lehrmann et al. 2005; Payne et al. 2007).

The Tashkent strata were deposited in the interior of a shallow-marine, attached carbonate platform of Late Permian to Middle Triassic age. The platform developed on the Tauride block, which was located in equatorial waters of the westernmost Tethys during the Permian and Early Triassic (Groves et al. 2005).

Upper Permian fossiliferous limestones give way to Lower Triassic microbialites and carbonate mudstones, all representing an open-marine, subtidal environment (Payne et al. 2007). The Tashkent section is >1km thick, allowing high temporal resolution sampling of Early and Middle Triassic strata.

The Great Bank of Guizhou (GBG) is an exceptionally exposed isolated carbonate platform of Late Permian to age. It is located in the

Nanpanjiang Basin near the southern margin of the Yangtze Platform (Fig. 1.2C). The

GBG is part of the Yangtze Block microcontinent, which was located near the equator in the eastern Tethys during the Triassic (Lehrmann et al. 1998). The isolated platform evolved from a low-relief bank in the Early Triassic to an aggrading

Tubiphytes reef-rimmed platform in the Middle Triassic, developing into a high-relief platform with an erosional escarpment margin in the (Lehrmann et al. 1998).

A cross section of the GBG is exposed by a faulted syncline running NW to SE through the platform. This two-dimensional cross section gives an excellent picture of platform architecture, with shallow platform interior to deeper-water basin margin

13 environments all represented (Lehrmann et al. 1998). Thick Early to Middle Triassic stratigraphic sections (Fig. 1.2D) allow the collection of high-resolution paleontological and geochemical data (e.g., Payne et al. 2004; Payne et al. 2006).

Carbon isotope records from the GBG correlate from basin margin to platform interior and with sections from across the Tethys, suggesting that these carbonates reflect global isotope variation (Payne et al. 2004). We sampled end-Permian through Early

Triassic strata in both a shallow-water platform interior section (Dajiang) and a deeper-water platform slope section (Guandao).

Sample preparation and analysis

Carbon isotopes were measured on micritic carbonates from Tashkent, Turkey.

Analyses were performed at the Stable Isotope Biogeochemistry Lab, Stanford

University. Limestone samples were powdered using a 0.8 mm dental drill bit, targeting micrites and avoiding fossils and calcite veins. For !13C analysis, 60–100 µg of dry carbonate powder was added to each glass reaction vial. Samples were dissolved in H3PO4 acid at 70°C for 600s and analyzed using a Finnigan Kiel III carbonate device coupled to a MAT 252 isotope ratio mass spectrometer. Isotopic composition is reported relative to the VPDB standard.

87Sr/86Sr was measured on micritic carbonates from Tashkent and the GBG, as well as some conodont samples from the same south China sections. Limestone samples were screened petrologically and geochemically: thin sections were examined for homogeneous micritic texture and C and O isotopes for values suggesting diagenetic alteration. Selectively drilled carbonate powders were dissolved in dilute

14 HCl, conodont material dissolved in dilute HNO3, and strontium separated by cation- exchange column chemistry. Strontium isotope ratios were measured using a thermal ionization mass spectrometer at University of California, Santa Cruz, and a small subset at the Berkeley Center for Isotope Geochemistry. 87Sr/86Sr measurements were corrected using the NBS 987 standard.

Model description

We constructed a one-box ocean model of the global strontium cycle to investigate possible causes of the observed excursion. The model builds on the basic isotope mass-balance equation given by Martin and Macdougall (1995):

dRsw/dt = [Fr(Rr-Rsw) + Fh(Rh-Rsw)]/N

where F is a flux of Sr (in mol/yr) into the ocean; R is a 87Sr/86Sr ratio; r denotes riverine source; h denotes hydrothermal source; sw means seawater; and N is the number of moles of Sr in the ocean. The model was built in STELLA 9.1.4 and solved using finite differences. A complete list of model equations and parameter values is provided in Table 1.1.

Our model describes the isotopic compositions and fluxes involved in the interaction of the oceanic Sr reservoir, continental and oceanic crust, carbonate deposition, and indirectly, atmospheric composition (pCO2) through its control on continental weathering rates. Estimates of Sr oceanic residence time and isotopic values and fluxes for continental weathering and hydrothermal exchange at mid-ocean

15 ridges are taken from the literature, including Kump (1989), Berner and Rye (1992),

Goddéris and François (1995), Attendorn and Bowen (1997), Jones and Jenkins

(2001), and Korte et al. (2003). Silicate weathering fluxes are parameterized as a function of pCO2 following Berner’s model of the carbon cycle (Berner 2004; Payne and Kump 2007) in order to quantify the effect of CO2 release from Siberian Traps volcanism on continental weathering. To do this, we used CO2 release estimates from the work of Svensen et al. (2009), Self et al. (2005), Payne and Kump (2007), and

Sobolev et al. (2011). The Siberian Traps released an estimated 150,000 Gt or more

CO2 in perhaps as little as 100 thousand years (Svensen et al. 2009; Sobolev et al.

2011).

This model makes several important assumptions about the strontium cycle.

Initial flux magnitudes are assumed to be similar to those observed in the modern strontium cycle. Like many authors who have previously modeled the strontium cycle, we assumed that the isotopic composition of mantle strontium does not change through time (0.703), which is very reasonable for the short timescale of this model

(Kump 1989; Richter et al. 1992). We did not include carbonate diagenesis: the flux from pore waters altered by low temperature carbonate dissolution and reprecipitation.

This flux is small compared to the riverine and hydrothermal inputs (Martin and

Macdougall 1995). In addition, inclusion of this flux would only dampen the magnitude of an excursion, because it would release less radiogenic strontium from very young carbonate sediments back into seawater. Before the excursion, seawater

87Sr/86Sr ratios were decreasing throughout the Permian, reaching as low as 0.7069 in the late (Korte et al. 2006). This near all-time Phanerozoic low 87Sr/86Sr

16 of Late Permian seawater is probably not an appropriate steady state for this model.

Therefore, for this model we chose a latest Permian steady state seawater strontium isotope composition of 0.7075, which is within the range of values measured at the

Permian-Triassic boundary (Korte et al. 2003).

STRONTIUM AND CARBON ISOTOPE RESULTS

Figure 1.3 shows our new strontium isotope data from Turkey and south

China, and new carbon isotope data from Turkey (carbon isotopes from south China have been previously published in Payne et al. 2004). The two localities from opposite sides of the Tethyan realm show extremely similar trends in !13C and seawater 87Sr/86Sr from the latest Permian through the Early Triassic. The China and

Turkey stratigraphic sections were correlated using radiometric age constraints, biostratigraphy, and chemostratigraphy (Fig. 1.4). The age model for the strata was developed using recent radiometric age constraints from Lehrmann et al. (2006),

Mundil et al. (1996, 2004), Ovtcharova et al. (2006), and Galfetti et al. (2007), and is published in Payne et al. (2011). The time scale for south China data is based on conodont biostratigraphy and for Turkey based on foraminiferan biostratigraphy and carbon isotope data.

Strontium isotope values match well with previous records (Martin and

Macdougall 1995; Korte et al. 2003). There is some scatter in the record, and because diagenetic alteration tends to add radiogenic strontium, we have the most confidence in the lowest values (excepting extreme outliers that clearly depart from the trend).

17 Constrained by recent improvements in Early Triassic geochronology, the new strontium data reveal a dramatic rate of change in seawater 87Sr/86Sr. In fact, most of the excursion occurred during the first 2 million years of Early Triassic time (Fig. 1.4).

This is more than 5 times as fast as previously thought (Korte et al. 2003) and up to 20 times faster than the radiogenic excursion that has happened over the last 40 million years of the Cenozoic.

NUMERICAL MODELING

We used model experiments to investigate the behavior of the strontium cycle in response to changes in the hydrothermal flux, weathering flux, and carbonate burial flux, as well as the isotopic composition of riverine strontium. We explored the effect of each forcing separately and also combined scenarios in an attempt to recreate the observed Permian-Triassic 87Sr/86Sr excursion (from 0.7075 to 0.7082 in 2 My). We determined the magnitude of forcing necessary to match the observed record and also what magnitude excursion is created using geologically reasonable forcings. We ran the model under a variety of perturbation scenarios, described below.

When modeling the strontium cycle, there is no unique solution because the same excursion could be created in multiple different ways (Waltham and Gröcke

2006). A positive seawater 87Sr/86Sr shift can result from decreasing the non- radiogenic hydrothermal flux or increasing the radiogenic weathering flux. However, the possible magnitude of variation in a source flux or source 87Sr/86Sr ratio can be constrained by the geologic conditions and events of the end-Permian.

18

Decreasing hydrothermal flux

In our first experiment, we recreated the strontium excursion using only perturbations to the rate of hydrothermal exchange. Decreasing the hydrothermal flux by 80% resulted in an excursion that matches the Permian-Triassic 87Sr/86Sr record

(Fig. 1.5A). However, decreasing this flux by nearly a whole order of magnitude is unrealistic. Assuming hydrothermal flux is directly proportional to mid ocean ridge volume, the maximum calculated change in ridge volume is about 2% in 2 My from a

Cenozoic ridge example (Kominz 1984). A reconstruction of global spreading rates suggests that ocean plate production has not varied significantly from a constant rate in the past 180 My (Rowley 2002). Therefore, an 80% change in 2 My would be extremely unlikely. In addition, given the continental configuration through this time interval, there is no reason to expect a major loss of mid ocean ridges and their associated hydrothermal flux.

Changing riverine isotopic composition

This experiment examined only changes in the riverine isotopic composition, without changing the riverine flux. In order to replicate the strontium excursion, riverine 87Sr/86Sr must become more radiogenic, changing from 0.7090 to 0.7113.

This large shift is within the range of possibility, as the global average composition of modern rivers is estimated to be between 0.7110 and 0.7119 (Palmer and Edmond

1989; Richter et al. 1992; Goddéris and François 1995). However, there is not an obvious source of newly exposed radiogenic continental rocks in the latest Permian

19 (Martin and Macdougall 1995). It is also not clear how the weathering of new radiogenic source rocks would turn on and off abruptly in a 2 My window. The

Himalayan orogeny exposed high-grade metamorphic rocks with very radiogenic strontium isotopic composition, but the resulting shift in seawater 87Sr/86Sr was more gradual than in the Early Triassic (Goddéris and François 1995). Even so, we cannot rule out that some change in the ratio of exposed granitic to carbonate and basaltic rocks may have occurred.

Increased weathering flux

The goal of this experiment was to determine how much change in the strontium weathering flux is needed to replicate the excursion. The weathering flux was increased by raising the atmospheric concentration of CO2 (see flux Fr, Table

1.1). Quadrupling the steady state pCO2 for the duration of the Early Triassic creates an excursion with peak value 0.7076. However, it takes 8 times Permian background pCO2 maintained over the Early Triassic to reach a strontium isotope ratio of 0.7082

(Fig. 1.5B). This larger forcing is required to achieve the full excursion magnitude because the riverine input end member (0.709) is not that much more radiogenic than the target value, and the rate of 87Sr/86Sr increase declines as the seawater value becomes more radiogenic. In our model, the riverine input is less radiogenic than the modern in order to achieve the less radiogenic Permian seawater values and to account for the absence of the Himalayas, a major input of radiogenic strontium in the modern

(Goddéris and François 1995).

20 We also ran this experiment using estimates of degassed CO2 from Siberian

Traps eruptions to perturb the system. The massive CO2 release from the eruption of

6 3 4"10 km of Siberian Traps basalts would have elevated Permian pCO2 (Kamo et al.

2003), increased continental weathering, and created a positive excursion. Payne and

Kump (2007) calculate that the Siberian Traps flood basalts would have released at

18 least 3"10 moles of CO2 and increased Permian pCO2 to about 2.75 times background levels. Releasing that quantity of CO2 over 100 ky would have elevated pCO2 for about a million years. The magnitude of the strontium excursion created by our model of Siberian Traps volatile release is smaller than the observed record (Fig.

1.5C), but the excursion magnitude is also dependent on the timescale over which the

CO2 was released, as well as the mass of CO2. Svensen et al. (2004) find that basalt intrusion into organic-rich country rocks may increase CO2 release by more than an order of magnitude. An estimated Siberian Traps CO2 release of 150,000 Gt over

100,000 years creates a large radiogenic excursion (up to 0.7080), but does not reach the peak value of 0.7082. However, these impacts on weathering probably constitute a minimum estimate because there would be a host of other volcanic volatiles also affecting weathering rates (sulfur and chlorine gases; Black et al. 2012). If we take into account the added affect of other volcanic products such as acid rain, the modeled excursion can only grow.

Riverine isotopic composition in addition to Siberian Traps CO2

Next, we investigated how much change in the isotopic composition of riverine strontium was needed to reproduce the observed excursion on top of an already

21 increased weathering flux from Siberian Traps CO2. This experiment shows that shifting riverine 87Sr/86Sr as little as from 0.709 to 0.710 effectively replicates the strontium record (Fig. 1.5D). A riverine isotope value of 0.710 is quite reasonable because it is similar to the global average isotopic ratio of non-Himalayan rivers today

(Richter et al. 1992; Martin and Macdougall 1995). Combining these two factors

(riverine flux and isotope composition) makes it easier to replicate the excursion using geologically feasible inputs.

Shift from calcite- to aragonite-dominated sedimentation

About twice as much strontium is taken up in the formation of aragonite than of calcite. Thus a shift in dominant mineralogy across the Permian-Triassic boundary could change the concentration of strontium in the ocean. Such a global shift is consistent with the greater relative abundance of aragonite- versus calcite-skeleton producing in the Early Triassic (Kiessling et al. 2008). The goal of this experiment was to determine the effect of changing carbonate sedimentation rates (and thus the concentration of strontium in the ocean) to reflect an end-Permian carbonate mineralogy shift toward aragonite-dominated deposition. We modeled a scenario where half of all carbonate sediments shift from calcite to aragonite across the P/Tr boundary, a magnitude of change that matches the excursion seen in the calcium isotope record (Payne et al. 2010). The resulting increase in carbonate burial flux decreases the strontium concentration in the ocean. This causes the same perturbations performed in previous experiments to result in a slightly larger excursion, on the order of 0.1 per mil.

22

DISCUSSION

Our model investigations suggest that the observed strontium excursion was caused by a combination of increase in riverine flux and riverine 87Sr/86Sr. Strontium cycle model results show that decreased hydrothermal flux is unlikely to account for the excursion because of an unreasonable rate of change in mid ocean ridge volume at a time in Earth history when rifting should not be decreasing. It is possible that an increase in riverine 87Sr/86Sr drove the excursion, but unlikely that the weathering of highly radiogenic source rocks initiated and ceased so rapidly in the absence of a major orogenic event. The rivers that drain the Himalayan region today have some of the most radiogenic 87Sr/86Sr values, both from the exposure of ancient granitic rocks and metamorphic mobilization of strontium into easily weathered phases (Richter et al. 1992; Goddéris and François 1995), but there is not an equivalent tectonic event initiated at the end-Permian. Increased weathering flux is a very plausible forcing, particularly because it can be linked with a known geologic event (Siberian Traps eruption). Siberian Traps CO2 release estimates create a smaller radiogenic excursion than the one observed, so some additional forcing is necessary. Additional volcanic volatiles (sulfur and chlorine gases), which enhance weathering rates through acid rain formation, may have played an important role in the end-Permian atmosphere (Black et al. 2012). In combination with an increased weathering flux, a small change in average riverine 87Sr/86Sr could help reach the observed excursion magnitude. The excursion might also have been enhanced by a more efficient strontium sink in the

23 oceans from increased aragonitic deposition (Kiessling et al. 2008). In general, a smaller strontium reservoir would facilitate such a rapid shift in seawater 87Sr/86Sr

(Kump 1989), but better estimates of the Permian seawater strontium concentration are needed to assess the importance of reservoir size.

As a potential driver for increased continental weathering, the scale, location, and timing of the Siberian Traps eruption fits well with the pattern of seawater

87Sr/86Sr change. By volume of erupted material, the Siberian Traps is the single largest subaerial volcanic event known (Kamo et al. 2003). Eruption released a correspondingly large quantity of CO2, perhaps more than 150,000 Gt due to interactions with carbon-rich country rocks (Svensen et al. 2009; Sobolev et al. 2011).

Although the weathering of the Siberian Traps basalts themselves would have yielded non-radiogenic strontium (0.703-0.705; Basu et al. 1995; Arndt et al. 1998), the location of the Traps at high paleolatitude would have limited chemical weathering rates. Unlike a major mountain building event, a massive volcanic eruption is perhaps more appropriate for the rapid tempo of the strontium excursion. Because most of the excursion occurred during the first 2 million years of the Early Triassic, the geologic driver needs to be relatively short in duration. Geochronology supports the link between Siberian Traps volcanism and the timing of the strontium isotope excursion.

The high rate of 87Sr/86Sr change begins at the Permian-Triassic boundary, coeval with the initiation of Siberian Traps eruption, specifically the early explosive phase with phreatomagmatic pipes (Mundil et al. 2004; Svensen et al. 2009; Burgess et al. 2014).

Most of the volume of the Siberian Traps erupted in less than 1 million years, perhaps as short as 100 thousand years, and any late stage volcanism had terminated by 250.2

24 Ma (Kamo et al. 2003), about the same time as the stabilization of the strontium cycle

(Fig. 1.4).

In contrast to oceanic volcanism, the subaerial and continental nature of the

Siberian Traps eruption may be key to its link with a radiogenic strontium isotope excursion. Evidence from the and 87Sr/86Sr curve suggests that increased oceanic volcanism and hydrothermal activity can cause a decrease in seawater 87Sr/86Sr (Jones and Jenkyns 2001). Unlike oceanic volcanism, continental flood basalts do not interact with seawater, removing the hydrothermal source for non- radiogenic strontium. Cut off from direct communication with the atmosphere, the volatile release from submarine large igneous provinces would be strongly buffered by the ocean, especially inhibiting the environmental impact of SO2 (Courtillot and

Renne 2003). In addition, the geochemistry of continental flood basalts and their interaction with country rocks can significantly increase volatile emissions. CO2- and

SO2-rich carbonatite-alkaline volcanism associated with the Deccan Traps and other continental flood basalts may be important for their environmental impact (Ray and

Pande 1999). The Siberian Traps erupted through sedimentary sequences containing abundant coal and anhydrite, greatly enhancing CO2 and SO2 emissions (Czamanske et al. 1998; Kamo et al. 2003; Svensen et al. 2004). Large continental flood basalts may be the only type of basaltic volcanism that has the potential to cause radiogenic excursions in seawater 87Sr/86Sr.

Other continental flood basalts are associated with radiogenic excursions, but seawater 87Sr/86Sr change coincident with Siberian Traps emplacement dwarfs other events. The Central Atlantic Magmatic Province (CAMP) and the Deccan Traps also

25 erupted more than 2 million km3 of basalt (Courtillot and Renne 2003). CAMP and

Deccan are each associated with a radiogenic excursion in the seawater 87Sr/86Sr curve

(Jones and Jenkyns 2001), but only on the order of 2"10-4 as compared with the

10"10-4 shift seen after the Permian-Triassic boundary. This suggests that either

Siberian Trap eruption only explains part of the excursion or that the Traps represent an unusual forcing. In support of the latter case, the erupted volume of the Siberian

Traps is larger, estimated at 4 million km3 (Kamo et al. 2003). Both CAMP and the

Deccan Traps erupted near the paleo-equator, and the more intensive weathering of fresh basalt at that latitude may have provided a larger CO2 sink than Siberian Traps basalts. In addition, concentrations of sulfur and chlorine were anomalously high in

Siberian Traps magmas compared to other flood basalts, implying an unusual volatile load (Black et al. 2012). If the size of the oceanic strontium reservoir was relatively small in the Late Permian, the strontium cycle would have been primed for rapid change. These factors may have enhanced the Siberian Traps’ potential to affect continental weathering rates and the global strontium cycle.

This interpretation of the strontium cycle is consistent with geological, geochemical, and paleontological evidence for high continental weathering rates at the end-Permian and Early Triassic. Intense paleosol weathering at high latitudes implies global warming at the poles (e.g., Retallack 1999). Globally distributed continental margin sections show enhanced siliciclastic sediment fluxes and more clay-rich compositions in the aftermath of the end-Permian crisis, suggesting accelerated rates of chemical and physical weathering due to higher surface temperatures (Algeo and

Twitchett 2010). These conditions would have greatly increased nutrient delivery to

26 the oceans, with consequences for marine life. The Early Triassic water column supported a large !13C gradient with depth, consistent with high primary productivity and anoxic and sulfidic conditions in the water column (e.g., Meyer et al. 2011).

Global warming and high primary productivity led to the development of extensive marine anoxia and euxinia (e.g., Hallam 1991; Isozaki 1997; Wignall and Twitchett

2002; Grice et al. 2005; Meyer et al. 2008). This independent evidence for global warming and enhanced continental weathering supports the role of Siberian Traps eruption in driving climate change and geochemical change at the Permian-Triassic transition.

CONCLUSIONS

Our new strontium isotope data show that the Early Triassic radiogenic excursion is now clearly steeper than even the interval of highest Cenozoic rates.

Most of the seawater 87Sr/86Sr excursion occurred during the first two million years of

Early Triassic time. Modeling results show that changes in hydrothermal flux are unlikely to account for the excursion. The strontium excursion was probably caused by a combination of increase in continental weathering flux and riverine strontium isotopic composition. The proposed magnitude of CO2 release (150,000 Gt) during

Siberian Traps volcanism is sufficient to account for a large part of the observed

87 86 increase in seawater Sr/ Sr through CO2 enhancement of continental weathering rates. Both the timing of eruption and high-volatile release support the role of

Siberian Traps flood basalts in driving the global strontium cycle. This interpretation

27 of strontium cycle behavior matches other geological, geochemical, and paleontological evidence for conditions at the end-Permian and Early Triassic, including global warming, enhanced continental weathering and nutrient delivery, high primary productivity, and marine anoxia, forming a coherent picture of environmental stresses in the Early Triassic world.

ACKNOWLEDGMENTS

The authors thank J. Street for laboratory assistance and K. Meyer, A. Jost, J.

Hinojosa, and A. Bachan for comments and discussion. This work was supported by the U.S. National Science Foundation, the Shell Foundation, and Stanford University.

28 REFERENCES

Algeo, T. J., and R. J. Twitchett. 2010. Anomalous Early Triassic sediment fluxes due to elevated weathering rates and their biological consequences. Geology 38:1023- 1026.

Arndt, N., C. Chauvel, G. Czamanske, and V. Fedorenko. 1998. Two mantle sources, two plumbing systems: tholeiitic and alkaline magmatism of the Maymecha River basin, Siberian flood volcanic province. Contributions to Mineralology and Petrology 133:297-313.

Attendorn, H. G., and R. N. Bowen. 1997. Radioactive and Stable Isotope Geology. Chapman & Hall, London.

Basu, A. R., R. J. Poreda, P. R. Renne, F. Teichmann, Y. R. Vasiliev, N. V. Sobolev, and B. D. Turrin. 1995. High-3He Plume Origin and Temporal-Spatial Evolution of the Siberian Flood Basalts. Science 269:822-825.

Berner, R. A. 2004. The Phanerozoic Carbon Cycle: CO2 and O2. Oxford University Press, New York.

Berner, R. A., and D. M. Rye. 1992. Calculation of the Phanerozoic strontium isotope record of the oceans from a carbon cycle model. American Journal of Science 292:136-148.

Black, B. A., L. T. Elkins-Tanton, M. C. Rowe, and I. U. Peate. 2012. Magnitude and consequences of volatile release from the Siberian Traps. Earth and Planetary Science Letters 317-318:363-373.

29 Burgess, S. D., S. Bowring, and S.-Z. Shen. 2014. High-precision timeline for Earth’s most severe extinction. Proceedings of the National Academy of Sciences, USA doi: 10.1073/pnas.1317692111.

Burke, W. H., R. E. Denison, E. A. Hetherington, R. B. Koepnick, H. F. Nelson, and J. B. Otto. 1982. Variation of seawater 87Sr/86Sr throughout Phanerozoic time. Geology 10:516-519.

Capo, R. C., and D. J. DePaolo. 1992. Homogeneity of Sr isotopes in the oceans. EOS, Transactions of the American Geophysical Union 73:272.

Courtillot, V. E., and P. R. Renne. 2003. On the ages of flood basalt events. Comptes Rendus Geoscience 335:113-140.

Czamanske, G. K., A. B. Gurevitch, V. Fedorenko, and O. Simonov. 1998. Demise of the Siberian plume: paleogeographic and paleotectonic reconstruction from the prevolcanic and volcanic record, north-central Siberia. International Geology Review 40:95-115.

Elderfield, H. 1986. Strontium isotope . Palaeogeography, Palaeoclimatology, Palaeoecology 57:71-90.

Galfetti, T., H. Bucher, M. Ovtcharova, U. Schaltegger, A. Brayard, T. Brühwiler, N. Goudemand, H. Weissert, P. A. Hochuli, F. Cordey, and K. Guodun. 2007. Timing of the Early Triassic carbon cycle perturbations inferred from new U-Pb ages and ammonoid biochronozones. Earth and Planetary Science Letters 258:593-604.

Goddéris, Y., and L. M. François. 1995. The Cenozoic evolution of the strontium and carbon cycles: relative importance of continental erosion and mantle exchanges. Chemical Geology 126:169-190.

30

Grice, K., C. Q. Cao, G. D. Love, M. E. Bottcher, R. J. Twitchett, E. Grosjean, R. E. Summons, S. C. Turgeon, W. Dunning, and Y. G. Jin. 2005. Photic zone euxinia during the Permian-Triassic superanoxic event. Science 307:706-709.

Groves, J. R., D. Altiner, and R. Rettori. 2005. Extinction, survival, and recovery of lagenide foraminifers in the Permian-Triassic boundary interval, central Taurides, Turkey. Journal of Paleontology, Memoir 62:1–38.

Hallam, A. 1991. Why was there a delayed radiation after the end-Paleozoic extinction? Historical Biology 5:257-262.

Isozaki, Y. 1997. Permo-Triassic boundary superanoxia and stratified superocean: records from lost deep sea. Science 276:235-238.

Jones, C. E., and H. C. Jenkyns. 2001. Seawater strontium isotopes, oceanic anoxic events, and seafloor hydrothermal activity in the Jurassic and Cretaceous. American Journal of Science 301:112-149.

Kamo, S. L., G. K. Czamanske, Y. Amelin, V. A. Fedorenko, D. W. Davis, and V. R. Trofimov. 2003. Rapid eruption of Siberian flood-volcanic rocks and evidence for coincidence with the Permian–Triassic boundary and mass extinction at 251 Ma. Earth and Planetary Science Letters 214:75-91.

Kiessling, W., M. Aberhan, and L. Villier. 2008. Phanerozoic trends in skeletal mineralogy driven by mass extinctions. Nature Geoscience 1:527-530.

Knoll, A. H., R. K. Bambach, J. L. Payne, S. Pruss, and W. W. Fischer. 2007. Paleophysiology and end-Permian mass extinction. Earth and Planetary Science Letters 256:295-313.

31

Kominz, M. A. 1984. Oceanic ridge volumes and sea-level change – an error analysis, in: Interregional Unconformities and Hydrocarbon Accumulation. pp. 109-127.

Korte, C., T. Jasper, H. W. Kozur, and J. Veizer. 2006. 87Sr/86Sr record of Permian seawater. Palaeogeography, Palaeoclimatology, Palaeoecology 240:89-107.

Korte, C., H. W. Kozur, P. Bruckschen, and J. Veizer. 2003. Strontium isotope evolution of Late Permian and Triassic seawater. Geochimica et Cosmochimica Acta 67:47-62.

Kump, L. R. 1989. Alternative modeling approaches to the geochemical cycles of carbon, sulfur, and strontium isotopes. American Journal of Science 289:390-410.

Laishi, Z., M. J. Orchard, T. Jinnan, S. Zhiming, Z. Jinxun, Z. Suxin, and Y. Ailing. 2007. Lower Triassic conodont sequence in Chaohu, Anhui Province, China and its global correlation. Palaeogeography, Palaeoclimatology, Palaeoecology 252:24-38.

Lehrmann, D. J., J. L. Payne, P. Enos, P. Montgomery, J. Wei, Y. Yu, J. Xiao, and M. J. Orchard. 2005. Field Excursion 2: Permian-Triassic boundary and a Lower-Middle Triassic boundary sequence on the Great Bank of Guizhou, Nanpanjiang Basin, southern Guizhou Province. Albertiana 33:169-186.

Lehrmann, D. J., J. Ramezani, M. W. Martin, S. A. Bowring, P. Montgomery, P. Enos, J. L. Payne, M. J. Orchard, and J. Wei. 2006. Timing of biotic recovery from the end- Permian extinction: biostratigraphic and geochronologic constraints from south China. Geology 34:1053-1056.

32 Lehrmann, D. J., J.-y. Wei, and P. Enos. 1998. Controls on facies architecture of a large Triassic carbonate platform: the Great Bank of Guizhou, Nanpanjiang Basin, south China. Journal of Sedimentary Research 68:311-326.

Martin, E. E., and J. D. Macdougall. 1995. Sr and Nd isotopes at the Permian/Triassic boundary: a record of climate change. Chemical Geology 125:73-99.

Meyer, K. M., A. Ridgewell, and L. R. Kump. 2008. Biogeochemical controls on photic zone euxinia during the end-Permian mass extinction. Geology 36:747-750.

Meyer, K. M., M.-y. Yu, A. B. Jost, B. M. Kelley, and J. L. Payne. 2011. !13C evidence that high primary productivity delayed recovery from end-Permian mass extinction. Earth and Planetary Science Letters 302:378-384.

Mundil, R., P. Brack, M. Meier, H. Rieber, and F. Oberli. 1996. High resolution U-Pb dating of Middle Triassic volcaniclastics: time-scale calibration and verification of tuning parameters for carbonate sedimentation. Earth and Planetary Science Letters 141:137-151.

Mundil, R., K. R. Ludwig, I. Metcalfe, and P. R. Renne. 2004. Age and timing of the Permian mass extinctions: U/Pb dating of closed-system zircons. Science 305:1760- 1763.

Ovtcharova, M., H. Bucher, U. Schalteger, T. Galfetti, A. Brayard, and J. Guex. 2006. New Early to Middle Triassic U-Pb ages from South China: calibration with ammonoid biochronozones and implications for the timing of the Triassic biotic recovery. Earth and Planetary Science Letters 243:463-475.

Palmer, M. R., and J. M. Edmond. 1989. The strontium isotope budget of the modern ocean. Earth and Planetary Science Letters 92:11-26.

33

Payne, J. L., and M. E. Clapham. 2012. End-Permian mass extinction in the oceans: an ancient analog for the twenty-first century? Annual Reviews of Earth and Planetary Sciences 40:89-111.

Payne, J. L., and L. R. Kump. 2007. Evidence for recurrent Early Triassic massive volcanism from quantitative interpretation of carbon isotope fluctuations. Earth and Planetary Science Letters 256:264-277.

Payne, J. L., D. J. Lehrman, D. Follet, M. Seibel, L. R. Kump, A. Riccardi, D. Altiner, H. Sano, and J.-y. Wei. 2007. Erosional truncation of uppermost Permian shallow- marine carbonates and implications for Permian-Triassic boundary events. Geological Society of America Bulletin 119:771-784.

Payne, J. L., D. J. Lehrmann, J. Wei, and A. H. Knoll. 2006. The Pattern and Timing of Biotic Recovery from the End-Permian Extinction on the Great Bank of Guizhou, Guizhou Province, China. Palaios 21:63-85.

Payne, J. L., D. J. Lehrmann, J. Wei, M. J. Orchard, D. P. Schrag, and A. H. Knoll. 2004. Large perturbations of the carbon cycle during recovery from the end-permian extinction. Science 305:506-9.

Payne, J. L., M. Summers, B. L. Rego, D. Altiner, J.-y. Wei, M.-y. Yu, and D. J. Lehrmann. 2011. Early and Middle Triassic trends in diversity, evenness, and size of foraminifers on a carbonate platform in south China: implications for tempo and mode of biotic recovery from the end-Permian mass extinction. Paleobiology 37:409-425.

Payne, J. L., A. V. Turchyn, A. Paytan, D. J. DePaolo, D. J. Lehrmann, M.-y. Yu, and J.-y. Wei. 2010. Calcium isotope constraints on the end-Permian mass extinction. Proceedings of the National Academy of Sciences, USA 107:8543-8548.

34

Peterman, Z. E., C. E. Hedge, and H. A. Tourtelot. 1970. Isotopic composition of strontium in sea water throughout Phanerozoic time. Geochimica et Cosmochimica Acta 34:105-120.

Ray, J. S., and K. Pande. 1999. Carbonatite alkaline magmatism associated with continental flood basalts at stratigraphic boundaries: cause for mass extinctions. Geophysical Research Letters 26:1917-1920.

Raymo, M. E., W. F. Ruddiman, and P. N. Froelich. 1988. Influence of late Cenozoic mountain building on ocean geochemical cycles. Geology 16:649-653.

Renne, P. R., Z. Zichao, M. A. Richards, M. T. Black, and A. R. Basu. 1995. Synchrony and causal relations between Permian-Triassic boundary crises and Siberian flood volcanism. Science 269:1413-1416.

Retallack, G. J. 1999. Post-apocalyptic greenhouse paleoclimate revealed by earliest Triassic paleosols in the Sydney Basin, . Geological Society of America Bulletin 111:52-70.

Richter, F. M., D. B. Rowley, and D. J. DePaolo. 1992. Sr isotope evolution of seawater: the role of tectonics. Earth and Planetary Science Letters 109:11-23.

Rowley, D. B. 2002. Rate of plate creation and destruction: 180 Ma to present. Geological Society of America Bulletin 114:927-933.

Self, S., T. Thordarson, and M. Widdowson. 2005. Gas fluxes from flood basalt eruptions. Elements 1:283-287.

35 Sobolev, S. V., A. V. Sobolev, D. V. Kuzmin, N. A. Krivoluyskaya, A. G. Petrunin, N. T. Arndt, V. A. Radko, and Y. R. Vasiliev. 2011. Linking mantle plumes, large igneous provinces and environmental catastrophies. Nature 477:312-316.

Svensen, H., S. Planke, A. Malthe-Sorenssen, B. Jamtveit, R. Myklebust, T. R. Eidem, and S. S. Rey. 2004. Release of methane from a volcanic basin as a mechanism for initial Eocene global warming. Nature 429:542-545.

Svensen, H., S. Planke, A. G. Polozov, N. Schmidbauer, F. Corfu, Y. Y. Podladchikov, and B. Jamtveit. 2009. Siberian gas venting and the end-Permian environmental crisis. Earth and Planetary Science Letters 227:490-500.

Veizer, J., D. Ala, K. Azmy, P. Bruckschen, D. Buhl, F. Bruhn, G. A. F. Carden, A. Diener, S. Ebneth, Y. Godderis, T. Jasper, C. Korte, F. Pawellek, O. G. Podlaha, and H. Strauss. 1999. 87Sr/86Sr, !13C and !18O evolution of Phanerozoic seawater. Chemical Geology 161:59-88.

Waltham, D., and D. R. Gröcke. 2006. Non-uniqueness and interpretation of the seawater 87Sr/86Sr curve. Geochimica et Cosmochimica Acta 70:384-394.

Wignall, P. B. 2007. The end-Permian mass extinction – how bad did it get? Geobiology 5:303-309.

Wignall, P. B., and R. J. Twitchett. 2002. Extent, duration, and nature of the Permian- Triassic superanoxic event, in: Koeberl, C., MacLeod, K.G., (Eds), Catastrophic Events and Mass Extinctions: Impacts and Beyond. Geological Society of America Special Paper 356, Boulder, Colorado, pp. 395-413.

36 FIGURE CAPTIONS

FIGURE 1.1. Cartoon of the modern strontium cycle (modified from Goddéris and

François 1995; Kump 1989). Seawater 87Sr/86Sr is controlled by the relationship between two major Sr fluxes of different isotopic composition: riverine input of radiogenic (87Sr-rich) strontium from the weathering of continental rocks, and non- radiogenic “mantle” signature strontium from hydrothermal circulation at mid ocean ridges and the weathering of basalts. As Sr is removed from the ocean by carbonate sediments, they record the Sr isotopic composition of coeval seawater. Thus, Sr isotopes can tell us about major changes in continental weathering and seafloor exchange.

FIGURE 1.2. Permian-Triassic paleogeography and maps for studied sections

(modified after Payne et al. 2007; Meyer et al. 2011). (A) Paleogeographic reconstruction illustrating the position of the studied localities during the Early

Triassic. (B) Index map for the Tashkent section, Turkey. (C) Inset shows the location of the study area in the Nanpanjiang Basin, south China. The large map shows the location of the Great Back of Guizhou (GBG) isolated carbonate platform and the N-S trending syncline that exposes a cross section of the platform. (D)

Schematic cross section of the GBG. The vertical bars indicate the locations of stratigraphic sections within the GBG.

37 FIGURE 1.3. New strontium and carbon isotope data from Tashkent, Turkey, compared with previously published carbon isotope data (Payne et al. 2004) and new strontium isotope data from the Great Bank of Guizhou, south China. Carbon isotope data from the GBG is a composite from Dawen, Dajiang, and Guandao sections (Fig.

1.2D), and strontium isotope data is from Dajiang and Guandao sections.

FIGURE 1.4. All strontium isotope data plotted against the Early Triassic time scale.

87Sr/86Sr data includes carbonate samples from Tashkent, Turkey, and carbonates and conodonts from the Great Bank of Guizhou, south China. The age model for the strata is published in Payne et al. (2011) and uses radiometric age constraints from

Lehrmann et al. (2006), Mundil et al. (1996; 2004), Ovtcharova et al. (2006), and

Galfetti et al. (2007).

FIGURE 1.5. Model experiments - blue shows the perturbation in strontium cycle fluxes or isotopic compositions; red shows the response of seawater 87Sr/86Sr. (A) An

80% decrease in hydrothermal flux is needed to replicate the excursion. (B) The increase in continental weathering flux needed to replicate the Sr excursion. (C) An excursion created using estimated CO2 release from the Siberian Traps eruption. (D)

The change in isotopic composition of riverine Sr needed to replicate the excursion in addition to increased weathering flux from Siberian Traps global warming.

38 TABLE CAPTION

TABLE 1.1. Strontium box model differential equations, reservoirs, fluxes, constants, and variables.

39

FIGURE 1.1. Strontium cycle cartoon.

40 A C

B

41 D

FIGURE 1.2. Geologic setting.

42

FIGURE 1.3. Sr and C isotope data from Turkey (left) and south China (right).

FIGURE 1.4. 87Sr/86Sr data summary.

43

44

FIGURE 1.5. Model experiments.

TABLE 1.1. Model equations and parameters.

45 CHAPTER 2: COMPARATIVE SIZE EVOLUTION OF MARINE

CLADES FROM THE LATE PERMIAN THOUGH MIDDLE

TRIASSIC

Ellen K. Schaal1, Matthew E. Clapham2, Brianna L. Rego1, Steve C. Wang3, and

Jonathan L. Payne1

1Department of Geological & Environmental Sciences, Stanford University, Stanford, California 94305, U.S.A.

2Department of Earth and Planetary Sciences, University of California, Santa Cruz, California 95064, U.S.A.

3Department of Mathematics and Statistics, Swarthmore College, Swarthmore, Pennsylvania 19081, U.S.A., and Department of Geological and Environmental Sciences, Stanford University, Stanford, California 94305, U.S.A.

E-mail: [email protected].

Keywords: body size, Lilliput Effect, Permian-Triassic, extinction, recovery

ABSTRACT

The small size of Early Triassic marine organisms has important implications for the ecological and environmental pressures operating during and after the end-

Permian mass extinction. However, this “Lilliput Effect” has only been documented quantitatively in a few invertebrate clades. Moreover, the discovery of Early Triassic gastropod specimens larger than any previously known has called the extent and duration of the Early Triassic size reduction into question. Here, we document and

46 compare Permian-Triassic body size trends globally in eight marine clades

(gastropods, bivalves, calcitic and phosphatic brachiopods, ammonoids, ostracods, conodonts, and foraminiferans). Our database contains maximum size measurements for species present in each stage from the Late Permian through the Middle to Late

Triassic. The Permian/Triassic boundary (PTB) shows more size reduction among species than any other interval. For most higher taxa, maximum and median size among species decreased dramatically from the latest Permian () to the earliest Triassic (), and then increased during (late Early Triassic) and Anisian (early Middle Triassic) time. During the Induan, the only higher taxon above its long-term mean size was the ammonoids; they increased significantly in median size across the PTB, a response perhaps related to their comparatively rapid diversity recovery after the end-Permian extinction. The loss of large species in multiple clades across the PTB resulted from both selective extinction of larger species and evolution of surviving lineages toward smaller sizes. The within-lineage component of size decrease suggests that only part of the size decrease can be related to the end-Permian kill mechanism; in addition, Early Triassic environmental conditions or ecological pressures must have continued to favor small body size as well. After the end-Permian extinction, there was widespread size decrease across ecologically and physiologically disparate clades, but this size reduction was limited to the first part of the Early Triassic (Induan). Nektonic habitat or physiological buffering capacity may explain the contrast of Early Triassic size increase and diversification in ammonoids versus size reduction and slow recovery in benthic clades.

47 INTRODUCTION

The end-Permian mass extinction was the most taxonomically and ecologically severe extinction in the history of animal life, eliminating 79% of all marine genera on

Earth (McGhee et al. 2004; Payne and Clapham 2012). Following the extinction, many marine taxa appear to be smaller than those before the event (Schubert and

Bottjer 1995; Twitchett 1999; Fraiser and Bottjer 2004; Pruss and Bottjer 2004; Payne

2005; Luo et al. 2006; He et al. 2007; Twitchett 2007; Luo et al. 2008; He et al. 2010;

Metcalfe et al. 2011; Payne et al. 2011; Song et al. 2011). Size evolution may shed light on extinction and recovery processes beyond what can be learned from the study of taxonomic diversity. Because an organism’s size plays a key role in its physiology, life history, and ecology (Peters 1983; Calder 1984; Schmidt-Nielsen 1984; Brown

1995), size changes in the evolutionary history of a lineage represent profound changes in how species interact with each other and their environment. Thus, understanding Early Triassic size reduction is important for understanding the nature of biological, ecological, and environmental change during the biotic crisis and recovery. However, new larger Early Triassic fossils have recently been found, making the extent and duration of size decrease unclear (Brayard et al. 2010; Brayard et al. 2011). In a recent study, Brayard et al. (2010) reported large gastropod specimens from the Smithian and Spathian substages of the Early Triassic and argued based on these observations that the Early Triassic size decrease has been vastly overestimated. Because long-term patterns of size evolution in most well-fossilized taxa have never been documented, the magnitude and duration of size change during

48 and after the end-Permian mass extinction remains poorly known and the underlying mechanisms incompletely understood.

The phenomenon of size decrease associated with extinction events has been called the “Lilliput Effect,” after the island of miniature people in Jonathan Swift’s

Gulliver’s Travels (Urbanek 1993; Harries and Knorr 2009). Such size decreases have been observed in various animal groups after mass extinction events, and a pattern of size reduction may be common to major biotic crises (Arnold et al. 1995; Smith and

Jeffery 1998; Twitchett and Barras 2004; Lockwood 2005; Twitchett 2007; Harries and Knorr 2009; Huang et al. 2010). Urbanek (1993) originally used the term

“Lilliput Effect” to describe the temporary size reduction of a surviving species in the aftermath of an extinction event. Here, we are concerned with post-extinction size change more broadly, which may result from (1) within-lineage evolution toward smaller sizes, (2) extinction of larger species, or (3) origination of smaller species.

These three modes of size change can operate individually or in concert to shift the overall size distribution of a biota. Because large body size tends to be correlated with small population size, larger species are often assumed to be at greater risk of extinction (e.g., Stanley 1986; Brown 1995). Therefore, we might expect that size- selective extinction among lineages would be a likely mechanism of size reduction at extinction events. On the other hand, some taxa exhibit a component of within-species or within- evolution toward smaller size across extinction horizons (Smith and

Jeffery 1998; Twitchett 2007; Morten and Twitchett 2009). The relative importance of within-lineage processes and among-lineage processes (size-biased extinction and origination) has received little attention (Rego et al. 2012).

49 There is substantial evidence for size decrease between the Late Permian and

Early Triassic, but there has been little quantification of size change globally within major clades. Schubert and Bottjer (1995) first noted the small sizes of Early Triassic gastropods in the western USA. Fraiser and Bottjer (2004) compiled the first quantitative record of Early Triassic gastropod sizes, finding no gastropods larger than

2 cm in the Sinbad Limestone of southeastern Utah, in contrast to comparable assemblages from the Middle Permian of southwestern USA and the Middle Triassic of south China. Compiling a global database of gastropod size based on literature review, Payne (2005) showed the loss of large gastropods in the earliest Triassic, with small sizes persisting until the Middle Triassic. This pattern of size reduction has also been documented in trace fossils. In the Werfen Formation of northern Italy,

Twitchett (1999, 2007) recorded a decrease in both maximum and mean burrow diameter by approximately an order of magnitude across the Permian/Triassic boundary. Pruss and Bottjer (2004) measured the diameter of trace fossils in the Early

Triassic Virgin Limestone of southern Nevada and eastern California; though there was not enough data to assess the magnitude of size change, their results suggest Early

Triassic trace fossils are smaller than their Permian and Middle Triassic counterparts.

In addition to gastropods and trace fossils, Early Triassic size reduction has been reported in the sizes of the brachiopod Lingula from the Werfen Formation of northern

Italy (Metcalfe et al. 2011), foraminiferans from Meishan, Liangfengya, and Shangsi sections in south China (Song et al. 2011), as well as mean (but not maximum) bivalve size in collections from the Natural History Museum, London (Twitchett 2007). Size reduction also occurred during the mass extinction event in the latest Permian

50 (Changhsingian) of south China; bed-by-bed measurements of brachiopods from

Meishan, Dongpan, and Majiashan sections (He et al. 2007; He et al. 2010) and conodonts from Meishan and Shangsi sections (Luo et al. 2006; Luo et al. 2008) show many instances of size decrease, but instances of size increase as well.

One limitation to our understanding of Early Triassic size evolution is that most of the evidence comes from analyses based on data from geographically isolated sections. At the local scale, it may be difficult to distinguish facies effects from global patterns of size change. A compilation of size data from specimens around the world would enhance our understanding of global trends in body size. A further limitation to our understanding of Early Triassic size evolution is that only a few invertebrate clades have been studied quantitatively. Just as extinction selectivity can shed light on the causes of extinction (Knoll et al. 2007), differential patterns of size evolution among clades can illuminate processes controlling size reduction and recovery.

As a complement to this previous work, in this study we use data from the literature to build a global picture of size change in multiple clades. We compare patterns of size change from Late Permian through the Early Triassic across eight diverse marine clades: the gastropods, bivalves, calcitic and phosphatic brachiopods, ammonoids, ostracods, conodonts, and foraminiferans. These taxa differ in terms of life habit, motility, size, diversity dynamics, feeding methods, trophic level, skeletal mineralogy, skeletal buffering, and efficiency of circulatory and respiratory systems.

Consequently, differences in size evolution may shed light on the key environmental or biotic controls on extinction and recovery beyond what has been learned from analyses of taxonomic diversity and environmental context alone.

51

METHODS

We constructed a database containing size measurements for global fossil occurrences of eight marine clades spanning the Late Permian (Wuchiapingian) through Middle Triassic (Ladinian). The database includes 11,224 specimens representing 445 gastropod species, 194 bivalve species, 534 calcitic brachiopod species, 16 phosphatic brachiopod species, 907 ammonoid species, 116 ostracod species, 270 conodont species, and 261 foraminiferan species. We gathered size data from the published taxonomic literature, mostly monographs and single-locality to regional studies. We collected fossil specimen measurements directly from tables or text, or measured specimens from scaled figures using digital calipers. Monograph- derived size data have been shown to be a reasonable proxy for bulk sample populations (although typically recording the larger specimens from a collection) and a valuable data source for macroevolutionary size trends (Kosnik et al. 2006; Krause et al. 2007). Taxonomic identifications were standardized following recent publications for each clade.

The eight marine taxa in our database are ideal for comparing size evolution trends among clades through the end-Permian mass extinction and subsequent Triassic recovery. We chose well-fossilized marine groups with a good record from the Late

Permian through Middle Triassic. In addition, we chose clades with fossil size measurements that can be directly related to the size of the whole organism. We focused on higher taxa that produce one or two skeletal elements that are a good proxy

52 for that taxon’s soft tissue mass. Though conodonts have many skeletal elements, here we use P1 elements as a proxy for the size of the conodont animal. For a variety of animal groups, tooth size correlates with body weight over many orders of magnitude and is commonly used to predict body size in fossils (Randall 1973; Gingerich et al.

1982). Tooth size and body length are correlated in and lampreys, the closest extant relatives of the conodonts (Krejsa et al. 1990). Though this relationship cannot be established quantitatively for conodont animals due to the lack of complete body fossils, it is likely to hold; larger conodont animals certainly had larger elements

(Gabbott et al. 1995).

For our analyses, we used the maximum linear dimension recorded for each species or genus in a given time interval. We chose maximum linear dimension because it is a simple, accurate proxy for biovolume (Niklas 1994; Novack-Gottshall

2008) that allowed us to merge many different datasets of morphologically disparate taxa. Using only the maximum size per species avoids the influence of juvenile specimens in the database and is common practice for studies of body size (Stanley

1973; Jablonski 1997; Lockwood 2005). Maximum specimen size is a reasonable metric for species size because size variation within species is very small relative to that among species (Dommergues et al. 2002; Payne 2005). After culling smaller species measurements, there are 3,189 unique species-stage combinations in the dataset. We binned time as geologic stages (Wuchiapingian through ) because it was the finest temporal resolution that allowed us to retain most of the data.

All subsequent analyses are done on species-level data at the time resolution of stages.

Mann-Whitney U-tests were used to determine whether size data from two stages were

53 consistent with samples drawn from the same underlying distribution, or if the distribution of sizes was significantly different between time intervals.

RESULTS

Figure 2.1 illustrates the species-level size history of the eight marine clades studied here. Most clades decrease in both maximum and median size from the latest

Permian (Changhsingian) to earliest Triassic (Induan) (Fig. 2.1). The major exception to this pattern is the ammonoids, which increase in median size from the latest

Permian to the earliest Triassic. After the Induan (earliest Triassic), many clades increase in maximum or median size during Olenekian (late Early Triassic) and

Anisian (early Middle Triassic) time.

Median size

Comparing size change across the eight marine clades, we focused on two metrics of body size distribution: (1) median and (2) maximum size per stage. Median size is highly correlated with mean size in our dataset and should not be sensitive to sample size. Six out of the eight marine clades decrease in median size from Late

Permian to Early Triassic (Changhsingian to Induan stages) (Fig. 2.2). Furthermore, the decrease in median size is significant for foraminiferans, calcitic brachiopods, conodonts, and ostracods (Table 2.1). The two exceptions are the bivalves, which show some increase in median size despite a large decrease in maximum size, and the ammonoids, which dramatically increase in median size. The change in bivalve

54 median size is not significant (Mann-Whitney U-test, p = 0.37, two-tailed test), whereas the increase in ammonoid median size is highly significant (p < 0.001).

Not only do most clades show a prominent size reduction from the

Changhsingian to the Induan, but all clades except for the ammonoids and conodonts are also well below their long-term mean size in the Induan. In fact, four of the eight clades show their smallest median size of the entire study interval in the Induan (Fig.

2.2). No stage other than the Induan contains more than one overall clade minimum in median size. Given 51 clade-stage combinations with eight overall clade minimum sizes, the probability of observing four overall clade minima in the Induan is 0.02, indicating that the size minima within these clades are non-randomly clustered in this time interval. In contrast, the ammonoids reach large median size in the Induan: larger than the rest of their Permian-Triassic size history (Fig. 2.2).

Maximum size

The second metric, maximum size, highlights the largest organisms present in a clade or ecosystem, and can suggest possible upper bounds on size. There is unlikely to be a strong sampling bias against large species because they are easy to see and collect, and they tend to be described in the literature before smaller species

(Payne 2005; Cooper et al. 2006; Payne et al. 2009; Sessa et al. 2009). Seven out of eight clades decrease in maximum size from the latest Permian to earliest Triassic

(Fig. 2.3A); this is significant concentration of size decreases in the Induan compared to the overall frequency of size decreases in our dataset (binomial test, p = 0.015).

The one clade that does not decrease in maximum size across the Permian/Triassic

55 boundary (PTB) is the clade for which we have the least amount of data (only 16 species): the phosphatic brachiopods, which show very little change in maximum size.

In contrast, calcitic brachiopods, foraminiferans, gastropods, and bivalves experience particularly large reductions in maximum size across the PTB. Ostracods decrease notably in maximum size both going into the Changhsingian (with the disappearance of the large Myodocopids) and across the extinction horizon. These five clades show their lowest maximum size of the whole study interval in the Induan. Although ammonoids and conodonts decrease slightly in maximum size across the PTB, the change is small compared to their size variation later in the Triassic. The

Permian/Triassic boundary was not an interval of notable maximum size change for these two clades.

Standardizing sample size

Before we accept the observed pattern of size decrease as real evolutionary change, we must rule out the effects of sampling bias. A decrease in sample size for a given stage will tend to cause the sample extremes (e.g., maximum fossil size) to become closer to the mean value for that time interval. Thus, unevenly sampling the available record could cause an artificial reduction in maximum size. In addition, real diversity decrease from species extinction could cause an actual reduction in maximum size (due to the log-normal distribution of body size within clades). We would expect the diversity decrease after the end-Permian mass extinction to decrease the maximum observed body size, even if the elimination of species was random with respect to size. However, the size decrease may be smaller or larger than expected

56 from random elimination of species from pre-extinction size distributions. In order to evaluate whether there was significant change in the underlying size distributions beyond what was expected due to sample size change, we standardized sample size in each stage. Figure 2.3B presents the results of a resampling analysis; every time interval was subsampled 10,000 times with replacement to match the smallest number of specimens per stage for that clade. Figure 2.3B shows the medians of the subsample maximum body size values. Overall, sample-standardization does not notably alter the body size trends observed in Figure 2.3A, and the size decrease in the

Early Triassic still stands out as a major shift in size distributions. The frequency of size decreases in the Induan is significantly higher than the expectation from all stages

(binomial test, p = 0.009). In addition, significantly more clades show their smallest maximum size of the entire study interval in the Induan than expected for all stages

(six out of eight clades; binomial test, p = 0.0003).

Components of size change

How was this Early Triassic size reduction accomplished? In order to accommodate a size decrease across the Permian/Triassic boundary, large species could go extinct (size-biased extinction), surviving species could evolve toward a smaller size (within-lineage evolution), or originating species could be unusually small

(size-biased origination). Mean size decrease in a clade may represent any combination of these three modes of size change. We investigated the extent to which these three components of size change contributed to the total change in mean clade size across the boundary (as in Rego et al. 2012). The total change in mean clade size

57 is T2 – T1, the difference between the mean size of all species in the Induan (T2) and the mean size of all species in the Changhsingian (T1). For each clade, we divided the species in the latest Permian (Changhsingian) into victims of the extinction and those that survived into the Triassic; the species in the earliest Triassic (Induan) were likewise separated into survivors from the preceding stage and newly originated species. To determine the within-lineage evolution component of size change, it was important to have size measurements for the surviving species from both before and after the boundary. The change in mean size due to size-biased extinction, #ex, is equal to S1 – T1, where S1 is the mean size of Changhsingian survivors (as measured in the Changhsingian), and T1 is the mean size of all Changhsingian species (survivors and victims). The change in size due to within-lineage evolution, #lin, is equal to S2 –

S1, where S2 is the mean size of the survivors as measured in the Induan. The change in mean size due to size-biased origination, #or, is equal to T2 – S2, where T2 is the mean size of all Induan species (survivors plus originators). The overall change in mean clade size (T2 – T1) is thus partitioned into a size-biased extinction component

#ex, a within-lineage evolution component #lin, and a size-biased origination component #or (i.e., T2 – T1 = #ex + #lin + #or). We emphasize that we are not calculating metrics of victim or originator size, nor comparing the mean size of victims or originators to other species in the interval. Instead, #ex, #lin, and #or are estimates of the effect that size-biased extinction and origination, and within-lineage evolution, have on the observed size change.

Figure 2.4 shows the size distributions of Permian/Triassic boundary victims, survivors, and originators, as well as the contribution of the three components of size

58 change to the Early Triassic size reduction (Fig. 2.4, bottom two rows). Only calcitic brachiopods, foraminiferans, conodonts, and bivalves had enough species survive into the earliest Triassic (that were measured both in the Changhsingian and the Induan) to evaluate the component of within-lineage size change. Either within-lineage size evolution did not play a large role in the other marine groups, or its signal is masked by surviving species changing taxonomic name across the boundary. The bivalves had little overall change in mean size across the boundary, and so the three components of size change balance each other out (#ex + #lin + #or is near zero). For the clades that show mean size decrease across the boundary, large species preferentially going extinct (size-biased extinction) appears to be an important factor for size reduction in brachiopods. However, foraminiferans and conodonts both show strong within- lineage size decrease in the extinction survivors. In fact, most of the Early Triassic size reduction in these two clades resulted from within-lineage evolution toward smaller sizes, rather than size-selective extinction or origination. Across the marine clades studied, it is clear that multiple modes of size change contributed to Early

Triassic size reduction.

One potential explanation for these different modes of size evolution between clades is uneven taxonomic practice. Implicit in this analysis is the assumption that taxonomic species assignments capture true phylogenetic relationships. However, if some clades have proportionally more pseudo-extinction, it would artificially increase the numbers of victims and originators, and should increase the magnitude of the size- biased extinction and origination components of size change. There is no particular reason to assume these eight marine clades are differentially susceptible to pseudo-

59 extinction, except perhaps that clades used for biostratigraphy might be subject to taxonomic over-splitting. Nevertheless, some of the clades which are used for biostratigraphy in the Early Triassic (conodonts and foraminiferans) show a large component of within-lineage size evolution across the Permian/Triassic boundary, contrary to the expectations of the pseudo-extinction scenario. If taxonomic practices differed greatly between clades we might expect the same among- or within-lineage components of size change to dominate through time in each clade, but instead, the relative magnitude of the three components varies through time in many clades (Fig.

2.4). Although our data set undoubtedly includes some pseudo-extinction and polyphyly, the partitioned size trends do not follow the patterns expected for taxonomic artifacts, suggesting they reflect a real evolutionary signal.

Timing and mode of size recovery

Most marine clades show size reduction across the Permian/Triassic boundary, but how long does this effect last? Some marine groups, such as the calcitic brachiopods did not regain pre-extinction sizes within the study interval, but most show at least some size recovery (Fig. 2.1). To summarize the direction of size change through time, Table 2.1 charts the sign of size change in clade medians between stages. The transition from the latest Permian (Changhsingian) to earliest

Triassic (Induan) shows more significant size reduction than any other interval. Table

2.1 also suggests that size recovery was already starting in the late Early Triassic

(Olenekian), followed by significant size increases going into the Middle Triassic

(Anisian). Where we have data for the Anisian, many marine groups have already

60 returned to their pre-extinction size distributions. Thus, the pattern of Early Triassic size reduction was mostly restricted to Induan time.

Size increase during the Olenekian and Anisian also represents a combination of the three components of size change (#ex, #lin, and #or). Figure 2.4 shows the extent to which size-biased extinction, within-lineage evolution, and size-biased origination contribute to the size recovery (Fig. 2.4, top two rows). What is striking is the inconsistent magnitudes of the three components between clades during size recovery.

In some cases, size-biased origination plays a large role in overall mean size increase

(e.g., Induan/Olenekian brachiopods and conodonts), in other cases within-lineage size increase is the dominant factor (e.g., Induan/Olenekian foraminiferans and bivalves) and in others, a combination of size factors are at work (e.g., Olenekian/Anisian foraminiferans). Like Early Triassic size decrease, size recovery is accomplished through multiple modes of size change.

DISCUSSION

Size dynamics during extinction and recovery

Early Triassic size reduction has been described for various marine organisms, but much previous work has focused on only a few invertebrate clades and localities.

We find the pattern of size decrease after the end-Permian extinction extends to multiple major marine groups on a global scale. New fossil measurements in the

Olenekian have called into question the extent and duration of post-extinction size decrease (Brayard et al. 2010). However, the fact that we find evidence for size

61 decrease from the Changhsingian to the Induan in most taxa suggests that size reduction was a real phenomenon, if perhaps shorter-lived than previously assumed.

Studies of evolution on islands indicate that size change can happen rapidly on the scale of geologic time (on the scale of thousands of years) (Lister 1989; Vartanyan et al. 1993), so the preservation of small body size distributions in the Early Triassic attests to the longevity of the phenomenon. The size decrease occurred in clades that differ greatly in body size, from decimeter-scale bivalves and gastropods to sub- millimeter-scale foraminifers. The sampling of microfossils is markedly different from macroinvertebrates, so the correspondence of patterns across these groups is unlikely to be sampling-related. In addition, we find that size reduction affected a range of ecologically and physiologically disparate clades. Evidently, the selective pressures on size ultimately resulted from either widespread environmental change or the restructuring of ecosystems on a global scale.

Not only do we find Early Triassic size reduction in several marine clades, but the size decrease is also greater than can be explained by the loss of diversity at the boundary. We might expect to see size reduction after all mass extinctions because decreasing diversity should decrease maximum body size, even if species extinction was random with respect to size. However, this sampling effect does not account for all Early Triassic reduction in maximum size, as equivalent sample sizes from each stage still show patterns of size decrease in Induan time. This analysis demonstrates that there is change in the underlying size distribution that is not just due to the changes in diversity over time. Thus, size evolution reflects additional ecological and environmental pressures beyond diversity loss.

62 Although many marine groups had unusually small size distributions in the earliest Triassic (Induan), they show signs of size recovery starting in the late Early

Triassic (Olenekian). Previous work on gastropods indicates that small size ranges persisted through the entire Early Triassic (Fraiser and Bottjer 2004; Payne 2005), but here we find that most marine clades already exhibit size increase during the late Early

Triassic. Size recovery beginning in the Olenekian is consistent with the large Early

Triassic gastropods described by Brayard et al. (2010). The size reduction phenomenon may not have lasted as long as previously thought because recent radiometric dates have shortened the Early Triassic time scale; in particular, the

Induan stage is now thought to be less than two million years in duration (Ovtcharova et al. 2006). Nevertheless, the fact that small size distributions are observed in the

Induan indicates that this phenomenon endured for at least the duration of this stage.

Early Triassic conditions must have favored small body size in order for this pattern of size reduction to be preserved. Of course, the observed magnitude of size reduction is contingent on time resolution. Examination of size trends at a finer time scale may reveal an even larger Lilliput Effect.

Clade-specific size trends

Even though size reduction is prevalent among marine clades in the Early

Triassic, how size decrease is accomplished differs between taxonomic groups. Few previous studies have explicitly decomposed size change into among-lineage and within-lineage components (Rego et al. 2012), but here we evaluate the relative importance of size-biased extinction, size-biased origination, and within-lineage size

63 evolution across time and taxa. Because of the relationship between large body size and small population size, we might assume extinction events selectively eliminate larger taxa. While some evidence points to size-selective extinction or recovery in certain taxa (Arnold et al. 1995b; Lockwood 2005), there has been no consistent relationship found between body size and extinction probability (Jablonski and Raup

1995; McRoberts and Newton 1995; Jablonski 1996; Lockwood 2005). Size reduction across the Permian/Triassic boundary resulted from at least two different modes of size change: extinction of larger species and evolution of surviving lineages toward smaller sizes. This within-lineage component of size decrease cannot be explained by the end-Permian extinction mechanism. The extinction was geologically rapid, but species that became smaller retained their small size well into the Early Triassic.

Observed rates of size evolution (e.g., Lister 1989; Vartanyan et al. 1993; Gingerich

2009) would allow for very rapid size recovery relative to our temporal resolution.

Therefore, Early Triassic environmental conditions or ecological pressures continued to favor small body size.

Although most marine clades show size decrease in the earliest Triassic, those that behave differently can shed light on the processes controlling size reduction and recovery. Ammonoids stand out as the exception to the pattern of size decrease at the

Permian/Triassic boundary. Whereas other clades decreased in median size across the boundary, ammonoids increased significantly, and they showed little change in maximum size while other groups lost all of their largest species. Most marine clades are near their smallest median sizes in the Induan, but ammonoid median size is large compared to the rest of their Permian-Triassic size history. Perhaps at a finer

64 timescale, we would see size decrease in ammonoids as well, but even if so, they certainly recovered faster than any other group studied. Ammonoids are also unique in that they showed rapid recovery in diversity after the end-Permian extinction compared with benthic groups like the gastropods and bivalves (Brayard et al. 2009).

The appearance of larger ammonoid species is likely related to this rapid recovery.

When comparing the skeletal physiology, life habit, motility, trophic level, and other traits of our eight marine clades, the ammonoids are distinguished by their nektonic habitat. The other nektonic clade in our dataset, the conodonts, decrease in median size at the Permian/Triassic boundary but show similarly large size changes in nearly all other stages as well. Neither clade decreases substantially in maximum size in the earliest Triassic. Nektonic mode of life may have afforded release from the selective pressures driving size reduction.

Controls on size evolution

In general, evolutionary size change may result from changes in the abiotic or biotic environment. Previous work focuses on three possible selective pressures responsible for the small size of Early Triassic marine organisms: (1) physical environmental constraints (e.g., hypoxia) (Fraiser and Bottjer 2004; Twitchett 2007;

Song et al. 2011), (2) low food availability (Twitchett 2001; He et al. 2010), and (3) low predation or competition pressure (Payne 2005). The end-Permian and Early

Triassic geologic record is rife with evidence of potential environmental constraints on maximum size. The interval is characterized by persistent or reoccurring toxic ocean waters, including shallow marine anoxia, hypercapnia, sulfidic conditions, or a

65 combination of toxins (Hallam 1991; Isozaki 1997; Wignall and Twitchett 2002; Grice et al. 2005; Kump et al. 2005; Knoll et al. 2007). In modern oceans, the body size of marine organisms decreases as oxygen concentration decreases (Levin 2003; Gooday et al. 2009), so we expect to see a similar pattern in ancient environments. If hypoxia was a problem for end-Permian and Early Triassic marine communities, seafloor waters would have less chance of mixing with atmospheric oxygen and benthic clades might have been particularly susceptible. On the other hand, free movement within the water column may have afforded ammonoids the opportunity to escape unfavorable environmental conditions at different water depths or in localized geographic areas. In addition to their nektonic habitat, ammonoids may have had low sensitivity to hypoxia like some of their extant relatives (for example, vampire squid and nautilus) (Seibel et al. 1999; Marshall and Jacobs 2009). The ability to escape or thrive in low oxygen conditions may have been important for the evolution of large size in the Early Triassic.

Furthermore, the magnitude of size decrease in a marine clade may relate to their susceptibility to changes in ocean chemistry. Knoll et al. (2007) found that groups with poorly buffered respiratory physiology and proportionally massive calcareous skeletons suffered greatly elevated extinction rates at the end-Permian.

They argue that hypercapnic stress from elevated pCO2 best explains this extinction selectivity. Similarly, the clades with the least potential for physiological buffering, calcitic brachiopods and foraminiferans, show the largest decreases in both median and maximum size across the extinction horizon. In contrast, the clades with the smallest change in maximum size (ammonoids, conodonts, and phosphatic

66 brachiopods) are probably the most physiologically well-buffered groups (Knoll et al.

2007).

Another possible cause of Early Triassic size reduction is food shortage due to primary productivity decline (Twitchett 2001; He et al. 2010). If the Early Triassic was a time of decreased export productivity, we would expect to find reduction of the carbon isotope gradient between shallow and deep water, as is observed after the end-

Cretaceous mass extinction (Arthur et al. 1987; D’Hondt et al. 1998). Instead, there is evidence for a large !13C gradient with water depth, consistent with high primary productivity and anoxic and sulfidic conditions in the water column (Meyer et al.

2011). Geochemical models suggest that prolonged ocean anoxia, such as proposed during this time, requires high rates of primary production (Meyer et al. 2008; Ozaki et al. 2011). Increased bacterial productivity after the end-Permian extinction (Xie et al. 2005) may have lowered the quality of food resources for marine animals (Payne and Finnegan 2006). However, the primary productivity decline scenario does not appear to be consistent with evidence for extensive hypoxia during the Early Triassic.

Finally, the correlation between size reduction and mass extinctions suggests there may be a direct link between biodiversity and selective pressures on size. There is evidence from a few clades for size decrease at other extinction events, including the end- (Borths 2008; Holland and Copper 2008; Huang et al. 2010),

Frasnian/ (Renaud and Girard 1999; Balinski 2002), end-Triassic (Végh-

Neubrandt 1982), Pliensbachian/Toarcian (Morten and Twitchett 2009), and end-

Cretaceous (Arnold et al. 1995; Smith and Jeffery 1998; Lockwood 2005). The loss of taxonomic diversity may favor small size by reducing predation pressure and

67 competition among survivors. Reduced defensive ornamentation and rates of shell crushing and drilling indicate decreased predation pressure in the Early Triassic (Boyd and Newell 1972; Valentine 1973; Kowalewski et al. 1998). Therefore, to the extent that large size represents a refuge from predation (e.g., Paine 1976; Harper et al.

2009), there would be less selection against small individuals after a major extinction event. In addition, the low diversity of Early Triassic communities would have limited competitive interactions, and thus the competitive displacement of size (Brown and

Wilson 1956; Hutchinson 1959). Further supporting the link between diversity and size, the clades that exhibit more rapid diversification in the Early Triassic

(ammonoids and conodonts) (Orchard 2007; Brayard et al. 2009) also show little change in maximum size across the Permian-Triassic boundary.

The size evolution patterns in our eight marine clades are consistent with both scenarios of physical environmental stress and reduced competition or predation pressure. However, given the differences in how size change is accomplished among taxonomic groups, it may be inappropriate to look for a single mechanistic cause for the Lilliput Effect. Size-biased extinction was likely linked to the end-Permian extinction mechanism, whereas within-lineage evolution towards smaller size reflects the abiotic and/or biotic environment of the Early Triassic. The relative importance of among-lineage and within-lineage processes of size change varies from clade to clade during the size recovery as well. In addition, though most higher taxa exhibit Early

Triassic size reduction, the magnitude of size decrease differs between clades.

Although the end-Permian mass extinction was almost certainly the ultimate trigger for Early Triassic size reduction, these different patterns and modes of size change

68 among clades indicate the proximal causes may be more complex. Some clades may respond more strongly to selection pressures from competition and predation, while others are more sensitive to dissolved oxygen concentration, pCO2, pH, carbonate saturation, or a combination of factors. All of these proximal causes were likely at work in the Early Triassic, and it may prove difficult to isolate which were acting on which groups of organisms. Our understanding of clade-specific controls on size evolution should improve with the comparison of size dynamics across multiple clades through time.

CONCLUSIONS

Quantifying patterns of size evolution in eight well-fossilized marine clades across the end-Permian extinction and recovery reveals changes in the size distribution of these taxa on a global scale as well as unexpected differences in size dynamics between clades. Size reduction after the end-Permian extinction is a real phenomenon for most higher taxa, but does not last through the whole Early Triassic: unusually small size distributions in the earliest Triassic (Induan) are followed by size recovery in the late Early Triassic and Middle Triassic. Interestingly, the decrease in maximum species size at the extinction horizon is greater than expected from the loss of diversity. Calculating the relative contributions of among- and within-lineage components of size change shows that in some clades, Early Triassic size reduction results from size-selective extinction, whereas in other clades, the surviving species evolve toward smaller size. This within-lineage component of size reduction suggests

69 that mass extinctions not only influence size evolution by selecting against larger organisms; in their aftermath, mass extinctions also create environmental or ecological pressures that particularly favor small size. Though the relative importance of environmental and biological selective pressures favoring small size remains unclear, the different size behavior of ammonoids suggests a couple possible interpretations.

High evolutionary rates and rapid diversity recovery in Early Triassic ammonoids may have enhanced size displacement through increased competition and predation pressure. Alternatively, nektonic habitat or greater physiological buffering capacity may have allowed this clade to attain both Early Triassic size increase and rapid diversification in contrast to size decrease and slow recovery in benthic clades.

Although the ultimate cause of the Early Triassic size reduction is the end-Permian environmental and biotic crisis, different patterns and modes of size decrease among clades point to clade-specific controls on size change. More systematic study of size evolution in multiple clades at other major extinction events will allow evaluation of the taxonomic and temporal extent of the Lilliput Effect as well as the proximal causes of size reduction in different groups of organisms.

ACKNOWLEDGMENTS

The authors thank A. Bachan, S. Finnegan, P. Harnik, N. Heim, A. Jost, C. Keating-

Bitonti, B. Kelley, K. Lau, and K. Meyer for comments and discussion, and N.

Nogales Lopez and K. Vanderboll for data collection. This work was supported by the

U.S. National Science Foundation, the Shell Foundation, and Stanford University.

70 REFERENCES

Arnold, A. J., D. C. Kelly, and W. C. Parker. 1995. Causality and Cope’s rule: evidence from the planktonic foraminifera. Journal of Paleontology 69:203-210.

Arnold, A. J., W. C. Parker, and S. P. Hansard. 1995b. Aspects of the post-Cretaceous recovery of Cenozoic planktic foraminifera. Marine Micropaleontology 26:319-327.

Arthur, M. A., J. C. Zachos, and D. S. Jones. 1987. Primary productivity and the Cretaceous/Tertiary boundary event in the oceans. Cretaceous Research 8:43-54.

Balinski, A. 2002. -Famennian brachiopod extinction and recovery in southern Poland. Acta Palaeontologica Polonica 47(2):289-305.

Borths, M. 2008. in Lilliput: morphological change in class Crinoidea across the Ordovician- boundary. B.S. The Ohio State University, Colombus, Oh.

Boyd, D. W., and N. D. Newell. 1972. Taphonomy and diagenesis of a Permian fossil assemblage from Wyoming. Journal of Paleontology 46:1-14.

Brayard, A., G. Escarguel, H. Buchner, C. Monnet, T. Brühwiler, N. Goudemand, T. Galfetti, and J. Guex. 2009. Good genes and good luck: ammonoid diversity and the end-Permian mass extinction. Science 325:1118-1121.

Brayard, A., A. Nützel, A. Kaim, G. Escarguel, M. Hautmann, D. A. Stephen, K. G. Bylund, J. Jenks, and H. Bucher. 2011. Gastropod evidence against the Early Triassic Lilliput effect: REPLY. Geology 39:e233.

Brayard, A., A. Nützel, D. A. Stephen, K. G. Bylund, J. Jenks, and H. Bucher. 2010. Gastropod evidence against the Early Triassic Lilliput effect. Geology 38:147-150.

71

Brown, J. H. 1995. Macroecology. University of Chicago Press, Chicago.

Brown, W. L., and E. O. Wilson. 1956. Character displacement. Systematic Zoology 5:49-64.

Calder, W. A. 1984. Size, function, and life history. Harvard University Press, Cambridge, Mass.

Cooper, R. A., P. A. Maxwell, J. S. Crampton, A. G. Beu, C. M. Jones, and B. A. Marshall. 2006. Completeness of the fossil record: estimating losses due to small body size. Geology 34:241-244.

D’Hondt, S., P. Donaghay, J. C. Zachos, D. Luttenburg, and M. Lindinger. 1998. Organic carbon fluxes and ecological recovery from the Cretaceous-Tertiary mass extinction. Science 282:276-279.

Dommergues, J., S. Montuire, and P. Neige. 2002. Size patterns through time: the case of the ammonite radiation. Paleobiology 28:423-434.

Fraiser, M. L., and D. J. Bottjer. 2004. The non-actualistic Early Triassic gastropod fauna: a case study of the Lower Triassic Sinbad Limestone Member. Palaios 19:259- 275.

Gabbott, S. E., R. J. Aldridge, and J. N. Theron. 1995. A giant conodont with preserved muscle tissue from the Upper Ordovician of South Africa. Nature 374:800- 803.

Gingerich, P. D. 2009. Rates of evolution. Annual Review of Ecology, Evolution, and Systematics 40:657-675.

72

Gingerich, P. D., H. Smith, and K. Rosenberg. 1982. Allometric scaling in the dentition of primates and prediction of body weight from tooth size in fossils. American Journal of Physical Anthropology 58:81-100.

Gooday, A. J., L. A. Levin, A. Aranda da Silva, B. J. Bett, G. L. Cowie, D. Dissard, J. D. Gage, D. J. Hughes, R. Jeffreys, P. A. Lamont, K. E. Larkin, S. J. Murty, S. Schumacher, C. Whitcraft, and C. Woulds. 2009. Faunal responses to oxygen gradients on the Pakistan margin: a comparison of foraminiferans, macrofauna and megafauna. Deep-Sea Research II 56:488-502.

Grice, K., C. Q. Cao, G. D. Love, M. E. Bottcher, R. J. Twitchett, E. Grosjean, R. E. Summons, S. C. Turgeon, W. Dunning, and Y. G. Jin. 2005. Photic zone euxinia during the Permian-Triassic superanoxic event. Science 307:706-709.

Hallam, A. 1991. Why was there a delayed radiation after the end-Paleozoic extinction? Historical Biology 5:257-262.

Harper, E. M., L. S. Peck, and K. R. Hendry. 2009. Patterns of shell repair in articulate brachiopods indicate size constitutes a refuge from predation. Marine Biology 156:1993-2000.

Harries, P. J., and P. O. Knorr. 2009. What does the ‘Lilliput Effect’ mean? Palaeogeography, Palaeoclimatology, Palaeoecology 284:4-10.

He, W.-H., G. R. Shi, Q.-L. Feng, M. J. Campi, S.-Z. Gu, J.-J. Bu, Y.-Q. Peng, and Y.- Y. Meng. 2007. Brachiopod miniaturization and its possible causes during the Permian-Triassic crisis in deep water environments, South China. Palaeogeography, Palaeoclimatology, Palaeoecology 252:145-163.

73 He, W.-H., R. J. Twitchett, Y. Zhang, G. R. Shi, Q.-L. Feng, J.-X. Yu, S.-B. Wu, and X.-F. Peng. 2010. Controls on body size during the Late Permian mass extinction event. Geobiology 8:391-402.

Holland, C. H., and P. Copper. 2008. Ordovician and Silurian from Anticosti Island: traject across the Ordovician-Silurian (O-S) mass extinction boundary. Canadian Journal of Earth Sciences 45:1015-1038.

Huang, B., D. A. T. Harper, R. Zhan, and J. Rong. 2010. Can the Lilliput Effect be detected in the brachiopod faunas of South China following the terminal Ordovician mass extinction? Palaeogeography, Palaeoclimatology, Palaeoecology 285:277-286.

Hutchinson, G. E. 1959. Homage to Santa-Rosalia or why are there so many kinds of animals. American Naturalist 93:145-159.

Isozaki, Y. 1997. Permo-Triassic boundary superanoxia and stratified superocean: records from lost deep sea. Science 276:235-238.

Jablonski, D. 1996. Body size and macroevolution. Pp. 256-289 in D. Jablonski, D. H. Erwin, and J. H. Lipps, eds. Evolutionary paleobiology. University of Chicago Press, Chicago.

Jablonski, D. 1997. Body-size evolution in Cretaceous mollusks and the status of Cope’s rule. Nature 385:250–252.

Jablonski, D., and D. M. Raup. 1995. Selectivity of end-Cretaceous marine bivalve extinctions. Science 268:389-391.

74 Knoll, A. H., R. K. Bambach, J. L. Payne, S. Pruss, and W. W. Fischer. 2007. Paleophysiology and end-Permian mass extinction. Earth and Planetary Science Letters 256:295-313.

Kosnik, M. A., D. Jablonski, R. Lockwood, and P. M. Novack-Gottshall. 2006. Quantifying molluscan body size in evolutionary and ecological analyses: maximizing the return on data-collection efforts. Palaios 21(6):588-597.

Kowalewski, M., A. Dulai, and F. T. Fürsich. 1998. A fossil record full of holes: the Phanerozoic history of drilling predation. Geology 26:1091-1094.

Krause, R. A., J. A. Stempien, M. Kowalewski, and A. I. Miller. 2007. Body size estimates from the literature: utility and potential for macroevolutionary studies. Palaios 22:60-73.

Krejsa, R. J., P. Bringas Jr., and H. C. Slavkin. 1990. A neontological interpretation of conodont elements based on agnathan cyclostome tooth structure, function, and development. Lethaia 23:359-378.

Kump, L. R., A. Pavlov, and M. A. Arthur. 2005. Massive release of hydrogen sulfide to the surface ocean and atmosphere during intervals of oceanic anoxia. Geology 33:397-400.

Levin, L. A. 2003. Oxygen minimum zone benthos: adaptation and community response to hypoxia. Oceanography and Marine Biology 41:1-34.

Lister, A. M. 1989. Rapid dwarfing of red deer on Jersey in the Last Interglacial. Nature 342:539-542.

75 Lockwood, R. 2005. Body size, extinction events, and the early Cenozoic record of veneroid bivalves: a new role for recoveries? Paleobiology 31:578–590.

Luo, G.-M., X.-L. Lai, H.-S. Jiang, and K.-X. Zhang. 2006. Size variation of the end Permian conodont at Meishan Section, Changxing, Zhejiang and its significance. Science in China Series D: Earth Sciences 49:337-347.

Luo, G.-M., X.-L. Lai, G. R. Shi, H.-S. Jiang, H.-F. Yin, S.-C. Xie, J.-N. Tong, K.-X. Zhang, W.-H. He, and P. B. Wignall. 2008. Size variation of conodont elements of the -Isarcicella clade during the Permian-Triassic transition in South China and its implication for mass extinction. Palaeogeography, Palaeoclimatology, Palaeoecology 264:176-187.

Marshall, C. R., and D. K. Jacobs. 2009. Flourishing after the end-Permian mass extinction. Science 325:1079-1080.

McGhee, G. R., P. M. Sheehan, D. J. Bottjer, and M. L. Droser. 2004. Ecological ranking of Phanerozoic biodiversity crises: ecological and taxonomic severities are decoupled. Palaeogeography, Palaeoclimatology, Palaeoecology 211:289-297.

McRoberts, C. A., and C. R. Newton. 1995. Selective extinction among end-Triassic European bivalves. Geology 23:102-104.

Metcalfe, B., R. J. Twitchett, and N. Price-Lloyd. 2011. Changes in size and growth rate of ‘Lilliput’ animals in the earliest Triassic. Palaeogeography, Palaeoclimatology, Palaeoecology 308:171-180.

Meyer, K. M., L. R. Kump, and A. Ridgwell. 2008. Biogeochemical controls on photic-zone euxinia during the end-Permian mass extinction. Geology 36:747-750.

76 Meyer, K. M., M. Yu, A. B. Jost, B. M. Kelley, and J. L. Payne. 2011. !13C evidence that high primary productivity delayed recovery from end-Permian mass extinction. Earth and Planetary Science Letters 302:378-384.

Morten, S. D., and R. J. Twitchett. 2009. Fluctuations in the body size of marine invertebrates through the Pliensbachian-Toarcian extinction event: extinction, dwarfing and the Lilliput effect. Palaeogeography, Palaeoclimatology, Palaeoecology 284:1030-1032.

Niklas, K. J. 1994. The scaling of plant and animal body mass, length, and diameter. Evolution 48:44–54.

Novack-Gottshall, P. M. 2008. Using simple body-size metrics to estimate fossil body volume: empirical validation using diverse Paleozoic invertebrates. Palaios 23:163- 173.

Orchard, M. J. 2007. Conodont diversity and evolution through the latest Permian and Early Triassic upheavals. Palaeogeography, Palaeoclimatology, Palaeoecology 252:93-117.

Ovtcharova, M., H. Bucher, U. Schalteger, T. Galfetti, A. Brayard, and J. Guex. 2006. New Early to Middle Triassic U-Pb ages from South China: calibration with ammonoid biochronozones and implications for the timing of the Triassic biotic recovery. Earth and Planetary Science Letters 243:463-475.

Ozaki, K., S. Tajima, and E. Tajika. 2011. Conditions required for oceanic anoxia/euxinia: constraints from a one-dimensional ocean biogeochemical cycle model. Earth and Planetary Science Letters 304:270-279.

77 Paine, R. T. 1976. Size-limited predation: an observational and experimental approach with the Mytilus: Pisaster interaction. Ecology 57:858-873.

Payne, J. L. 2005. Evolutionary dynamics of gastropod size across the end-Permian extinction and through the Triassic recovery interval. Paleobiology 31:269-290.

Payne, J. L., and M. E. Clapham. 2012. End-Permian mass extinction in the oceans: an ancient analog for the 21st century? Annual Reviews of Earth and Planetary Science 40:89-111.

Payne, J. L., and S. Finnegan. 2006. Controls on marine animal biomass through geologic time. Geobiology 4:1-10.

Payne, J. L., D. J. Lehrmann, J.-Y. Wei, M. J. Orchard, D. P. Schrag, and A. H. Knoll. 2004. Large perturbations of the carbon cycle during recovery from the end-Permian extinction. Science 305:506-509.

Payne, J. L., A. G. Boyer, J. H. Brown, S. Finnegan, M. Kowalewski, R. A. Krause, Jr., S. K. Lyons, C. R. McClain, D. W. McShea, P. M. Novack-Gottshall, F. A. Smith, J. A. Stempien, and S. C. Wang. 2009. Two-phase increase in the maximum size of life over 3.5 billion years reflects biological innovation and environmental opportunity. Proceedings of the National Academy of Sciences USA 106:24-27.

Payne, J. L., M. Summers, B. L. Rego, D. Altiner, J.-Y. Wei, M.-Y. Yu, and D. J. Lehrmann. 2011. Early and Middle Triassic trends in diversity, evenness, and size of foraminifers on a carbonate platform in south China: implications for tempo and mode of biotic recovery from the end-Permian mass extinction. Paleobiology 37:409-425.

Peters, R. H. 1983. The ecological implications of body size. Cambridge University Press, New York.

78

Pruss, S. B., and D. J. Bottjer. 2004. Early Triassic trace fossils of the Western United States and their implications for prolonged environmental stress from the end-Permian mass extinction. Palaios 19:551-564.

Randall, J. E. 1973. Size of the great white shark (Carcharodon). Science 181:169- 170.

Raup, D. M. 1979. Size of the Permo-Triassic bottleneck and its evolutionary implications. Science 206:217-218.

Rego, B. L., S. C. Wang, D. Altiner, and J. L. Payne. 2012. Within- and among-genus components of size evolution during mass extinction, recovery, and background intervals: a case study of Late Permian through Late Triassic foraminifera. Paleobiology 38:627-643.

Renaud, S., and C. Girard. 1999. Strategies of survival during extreme environmental perturbations: evolution of conodonts in response to the Kellwasser Crisis (Upper ). Palaeogeography, Palaeoclimatology, Palaeoecology 146:19-32.

Schmidt-Nielsen, K. 1984. Scaling: why is animal size so important? Cambridge University Press, New York.

Schubert, J. K., and D. J. Bottjer. 1995. Aftermath of the Permian-Triassic mass extinction event: paleoecology of Lower Triassic carbonates in the western USA. Palaeogeography, Palaeoclimatology, Palaeoecology 116:1-39.

Seibel, B. A., F. Chausson, F. H. Lallier, F. Zal, and J. J. Childress. 1999. Vampire blood: respiratory physiology of the vampire squid (Cephalopoda: Vampyromorpha) in relation to the oxygen minimum layer. Experimental Biology Online 4(1):1-10.

79

Sessa, J. A., M. E. Patzkowsky, and T. J. Bralower. 2009. The impact of lithification on the diversity, size distribution, and recovery dynamics of marine invertebrate assemblages. Geology 37:1115-118.

Smith, A. B., and C. H. Jeffery. 1998. Selectivity of extinction among sea urchins at the end of the Cretaceous period. Nature 392:69-71.

Song, H.-J., J.-N. Tong, and Z. Q. Chen. 2011. Evolutionary dynamics of the Permian- Triassic foraminifer size: evidence for Lilliput effect in the end-Permian mass extinction and its aftermath. Palaeogeography, Palaeoclimatology, Palaeoecology 308:98-110.

Stanley, S. M. 1973. An explanation for Cope’s Rule. Evolution 27:1-26.

Stanley, S. M. 1986. Population size, extinction, and speciation: the fission effect in Neogene . Paleobiology 12:89-110.

Twitchett, R. J. 1999. Palaeoenvironments and faunal recovery after the end-Permian mass extinction. Palaeogeography, Palaeoclimatology, Palaeoecology 154:27-37.

Twitchett, R. J. 2001. Incompleteness of the Permian-Triassic fossil record: a consequence of productivity decline? Geological Journal 36:341-353.

Twitchett, R. J. 2007. The Lilliput effect in the aftermath of the end-Permian extinction event. Palaeogeography, Palaeoclimatology, Palaeoecology 252:132-144.

Twitchett, R. J., and C. G. Barras. 2004. Trace fossils in the aftermath of mass extiniction events. In D. McIlroy, ed. The application of ichnology to

80 palaeoenvironmental and stratigraphic analysis. Geological Society of London, Special Publication 228:397-418.

Urbanek, A. 1993. Biotic crises in the history of Upper Silurian graptoloids: a palaeobiological model. Historical Biology 7:29-50.

Valentine, J. W. 1973. Evolutionary paleoecology of the marine biosphere. Prentice Hall, Englewood, N.J.

Vartanyan, S. L., V. E. Garutt, and A. B. Sher. 1993. Holocene dwarf mammoths from Wrangel Island in the Siberian Arctic. Nature 362:337-340.

Végh-Neubrandt, E. 1982. Triassische Megalodontaceae. Akadémiai Kiadó, Budapest.

Wignall, P. B., and R. J. Twitchett. 2002. Extent, duration, and nature of the Permian- Triassic superanoxic event. In C. Koeberl and K. G. MacLeod, eds. Catastrophic events and mass extinctions: impacts and beyond. Geological Society of America Special Paper 356:395-413.

Xie, S. C., R. D. Pancost, H. F. Jin, H. M. Wang, and R. P. Evershed. 2005. Two episodes of microbial change coupled with Permo/Triassic faunal mass extinction. Nature 434:494-497.

81 FIGURE CAPTIONS

FIGURE 2.1. Species-level size data for the eight marine clades from the Late

Permian through the Late Triassic (x-axis stage abbreviations: Wu = Wuchiapingian,

Ch = Changhsingian, In = Induan, Ol = Olenekian, An = Anisian, La = Ladinian, Ca =

Carnian, No = , Rh = Rhaetian). The gray bars highlight the Permian-Triassic transition (Changhsingian and Induan stages). Note that the eight plots have different scale ranges on the y-axes. Each boxplot displays the median, 25th percentile, and 75th percentile, with whiskers extending to the 5th and 95th percentiles.

FIGURE 2.2. The median size of each clade through time (stage abbreviations are the same as in Fig. 2.1). Here and in subsequent analyses, we compare clades with a focus on relative changes in size rather than absolute value. In order to compare size trends between clades of vastly different sizes, we normalized size measurements to each clade’s mean size by subtracting the clade mean size. The mean size of a clade was calculated by equally weighting each stage mean. This method was chosen instead of the average of all species measurements so that stages with more species did not have an unequal pull on the clade mean size, but either method yields the same relative size changes between clades.

FIGURE 2.3. (A) The maximum size for each clade through time (stage abbreviations are the same as in Fig. 2.1). As in Fig. 2.2, sizes are normalized to each clade’s mean size in order to compare relative size change among clades. (B) The

82 median of resampled maximum size values for each clade through time; each stage was subsampled 10,000 times with replacement to match the smallest number of specimens per stage for that clade.

FIGURE 2.4. Relative magnitude of the three components of size change (size- biased extinction, within-lineage evolution, and size-biased origination) from the Late

Permian through the Middle Triassic (stage abbreviations are the same as in Fig. 2.1).

Bottom row: An example of the source data for the first row of bar graphs above; for each clade, each set of four dotplots show the size distribution of extinction victims in the Changhsingian (red), survivors (boundary crossers) as measured in the

Changhsingian (blue), survivors as measured in the succeeding stage (blue), and new originators in the succeeding stage (purple). Horizontal gray lines denote the mean of each distribution. Top three rows: For each stage boundary and clade, bars denote magnitude of size change accounted for by size-biased extinction (red), within-lineage evolution (blue), and size-biased origination (purple), calculated as described in text.

Not all clades had enough species survive from one stage into the next (that were measured in both stages) to evaluate the component of within-lineage size change and thus the relative magnitude of the three components.

83 TABLE CAPTION

TABLE 2.1. Change in clade median size (in log mm) across stage boundaries, the number of specimens (species) in the stage before the boundary (n1) and after the boundary (n2), and the significance level of a Mann-Whitney U, two-tailed test (p).

84

level size data. - FIGURE 2.1. Species

85

FIGURE 2.2. Median clade size.

86

FIGURE 2.3. Raw and resampled maximum clade size.

87

FIGURE 2.4. The three components of size change.

88

boundaries.

TABLE 2.1. Change in clade median size across stage

89 CHAPTER 3: BODY SIZE EVOLUTION IN CONODONTS FROM

THE CAMBRIAN THROUGH THE TRIASSIC

Ellen K. Schaal1, Daniel J. Morgan1, and Jonathan L. Payne1

1Department of Geological & Environmental Sciences, Stanford University, Stanford, California 94305, U.S.A.

E-mail: [email protected].

Keywords: conodonts, body size, Lilliput Effect, Permian-Triassic, extinction, recovery

ABSTRACT

The size of an organism exercises tremendous control over its physiology, life history, and ecology, yet the factors that influence body size evolution remain poorly understood. One major limitation is the lack of appropriate datasets spanning long intervals of evolutionary time. Here, we document size trends in conodonts (tooth-like microfossils from marine ) because they evolved rapidly and are known to change size during intervals of environmental change. By measuring photographs from the Catalogue of Conodonts (Ziegler 1982), we compiled a database of conodont

P1 element measurements for 575 species and subspecies from the Cambrian through

Triassic periods. Because tooth size correlates with body size in conodont animals and their extant relatives, conodont element length can serve as a proxy for the size of the conodont animal. We find that mean and maximum size across species increased

90 during the early Paleozoic, peaked during the Devonian, and then generally decreased until conodonts went extinct at the end of the Triassic. Permian-Triassic conodont collections from south China show similar size distributions to the Catalogue of

Conodonts during that time interval but indicate that global literature-based dataset is biased toward the largest specimens of each species. We used regression analyses to compare conodont mean size trends to potential environmental and ecological predictors, such as changing atmospheric pO2 and fish diversity. Random walk was the best supported evolutionary model for the complete time series, suggesting that if environmental and ecological factors were important for size change, their effect was not constant over the entire evolutionary history of conodonts.

91 INTRODUCTION

Aquatic ecosystem function is structured around body size (Kerr and Dickie

2011). Because so many physiological, life history, and ecological traits of organisms are intimately linked with body size (Peters 1983; Calder 1984; Schmidt-Nielsen

1984; Brown 1995), size changes in a lineage often reflect profound changes in how species interact with each other and their environment. Therefore, identifying evolutionary trends in body size will help shed light on the changing ecological role of a lineage and the nature of environmental or ecological selection pressures driving size evolution. The controls on body size evolution, especially the extent to which they remain constant across time and taxa, remain poorly understood. Ecological interactions may drive size evolution in terrestrial mammals (Alroy 1998; Clauset and

Erwin 2008), whereas climate change may be more important for some marine groups, including diatoms, dinoflagellates, and ostracods during the Cenozoic (Finkel et al.

2005, 2007; Hunt and Roy 2006). In contrast to externally driven trends, size change may also represent more passive trends, such as an unbounded random walk leading to increased size variance within a clade (Gould 1988; McShea 1994). Systematic comparison of these different potential modes of size evolution is needed to determine which one is dominant for any given clade and time interval.

One important limitation to our understanding of size evolution is the lack of quantitative size datasets spanning long intervals of evolutionary time. Studies of size in marine invertebrates have typically focused on specific extinctions or radiations, or are restricted to a single geologic period (e.g., Jablonski 1997; Roy et al. 2000;

92 Dommergues et al. 2002; Lockwood 2005; Payne 2005; Twitchett 2007; Holland and

Copper 2008; Huang et al. 2010). Datasets spanning the whole evolutionary history of a clade are rare, but some of the most extensive compilations include North American terrestrial mammals (Alroy 1998), Phanerozoic bivalves, brachiopods, and gastropods

(Kosnik et al. 2011), Cenozoic diatoms and dinoflagellates (Finkel et al. 2005, 2007), and post-Silurian foraminifera (Payne et al. 2012b). Although studies of fish size in the recent are important for conservation efforts (Kerr and Dickie 2011), there has been little work on deep time size trends in marine vertebrates besides overall maximum size estimates (Dahl et al., 2010).

In this study we examine size trends in conodonts, a fast-evolving group of marine jawless vertebrates that ranged from the Cambrian to the Late Triassic

(Sansom et al. 1992). The few studies of conodont size suggest they change size in response to environmental perturbation, but the only records come from the Late

Devonian (Renaud and Girard 1999), the Permian/Triassic boundary (Luo et al. 2006,

2008), and the Early Triassic Smithian/Spathian boundary (Chen et al. 2013). There is no long-term context for the evolutionary history of conodont size around these mass extinction events.

Although conodont elements have been known for over 150 years, our understanding of the conodont animal is relatively recent. Rare soft-body fossils reveal that conodonts were eel-like animals with large eyes, a notochord, chevron- shaped muscles, and tail fin with fin rays (Briggs et al. 1983). They were soft-bodied except for the phosphatic, tooth-like elements of their feeding apparatuses. The feeding apparatus contained a bilaterally symmetrical array of typically 15 elements

93 for grasping and processing food, which may have functioned similarly to a ’s

(Goudemand et al. 2011). Conodont feeding strategies are still debated, but at least some conodonts were macrophagous (predators or scavengers; Purnell 1995). Now that conodont ecology is better understood, we can identify their potential competitors and predators.

In many ways, conodonts are an ideal group in which to examine evolutionary trends in body size. They are diverse and abundant in fossil assemblages from the

Ordovician through the Triassic, and their importance for biostratigraphy has resulted in a well documented fossil record (Teichart 1981; Ziegler 1982; Briggs et al. 1983).

Different species vary in size at least over an order of magnitude (Gabbott et al. 1995).

Few size studies quantitatively test both ecological, environmental, stasis, consistent directional change, and random walk models of size evolution (notable exceptions are

Hunt et al. 2010 and Payne et al. 2012b). Here we observe conodont size trends on hundred million year timescales and test alternative models of size evolution.

DATA AND METHODS

Data collection

Because tooth size correlates with body mass in chordates over many orders of magnitude (Gingerich et al. 1982), it is commonly used to predict body size in fossils.

There are several lines of evidence that support the use of this metric for conodont animals. First, tooth size and body length are well correlated in hagfish and lampreys, the closest extant relatives of the conodonts (Krejsa et al. 1990). Second, because of

94 the P1 element’s position within the conodont feeding apparatus (Fig. 3.1; Goudemand et al. 2011), the sizes of these elements should be related to the animal’s throat and trunk diameter. Third, the few conodont body fossils known support this correlation

(Aldridge et al. 1993; Purnell 1994). Thus, we use conodont P1 elements as a proxy for the size of the conodont animal.

We compiled a dataset of 575 species sizes from the Cambrian through the

Triassic from Ziegler’s five volume Catalogue of Conodonts (1982). We measured fossil specimens from scaled figures using digital calipers and determined the geologic age of each species and subspecies included in the catalogue. We standardized all chronological information to the stages listed in the Ogg et al. (2008) geologic time scale. We used the length of the basal part of the P1 element (from the anterior to the posterior end) as our size metric, consistent with other studies of conodont size (Luo et al. 2006; Luo et al. 2008; Chen et al. 2013). Taxonomic standardization followed

Ziegler (1982), Teichart (Treatise on Invertebrate Paleontology, 1981), and Orchard

(2007).

Size data were also measured from Permian-Triassic conodont specimens collected from south China. We took 384 high-resolution stratigraphic samples from

Upper Permian to Middle Triassic carbonates of the Great Bank of Guizhou (see

Chapter 1 for geologic setting). After dissolving the limestone samples, we recovered over 8,600 conodont elements, 520 of which were unbroken P1 elements useful for size measurements. Bulk sample population sizes were used for comparison with monograph-derived size data.

95 Potential covariates of size

There are many hypothesized environmental and ecological influences on organism size. In this study, we considered atmospheric pO2, pCO2, sea level, conodont diversity, and the diversity of potential competitors and predators, as these factors have been shown to predict body size patterns in other clades. Atmospheric pO2 may represent a taxonomically inclusive control on size evolution because oxygen is necessary for all aerobic organisms and oxygen transport can limit organism size

(reviewed in Payne et al. 2011). For example, the body size of modern marine organisms decreases as oxygen concentration decreases (Levin 2003; Gooday et al.

2009), so we expect to see similar size behavior in ancient environments. In fact, oxygen may be an important constraint on the maximum possible size of life (Payne et al. 2009, Dahl et al. 2010) and for the size dynamics of fusulinid foraminifers (Payne et al. 2012a). Atmospheric pCO2 may be another broad influence on organism size through its control on climate. Many different clades show an inverse relationship between size and temperature, a phenomenon known as Bergmann’s Rule (Ashton et al. 2000). The typical explanation for this pattern for homeotherms is that surface area to volume ratio decreases with size, so large forms are better able to thermoregulate, but this does not apply to small ectotherms such as conodont animals. Another explanation for Bergmann’s Rule is that metabolic rates are depressed at lower temperatures, and so organisms become oxygen or food limited at larger sizes. For example, climate change has been proposed to explain temporal trends in ostracod size

(Hunt and Roy 2006; Hunt et al. 2010). Habitat area can influence maximum size, at least in terrestrial vertebrates (Burness et al. 2001). Here we use global sea level as a

96 proxy for shallow-marine shelf habitat, as rising sea level tends to flood a greater area of the continental shelf. We might expect maximum size to vary with taxonomic diversity due to sampling bias (sampling more taxa will tend to increase the sample extreme value) or due to the typically log-normal distribution of body size within clades (Stanley 1973; see Gould 1988 for an example with planktonic foraminifera).

Ecological competition may influence size distributions through competitive displacement of size (Brown and Wilson 1956; Hutchinson 1959). Predation pressure can also cause size displacement. In some cases, large size may represent a refuge from predation (e.g., Paine 1976; Harper et al. 2009), though very small size relative to a predator could also serve as a refuge.

Statistical methods

We used linear regression to compare Cambrian to Triassic condont mean size trends to potential environmental predictors (sea level, atmospheric pO2 and pCO2) and to potential ecological predictors (conodont, cephalopod, and fish genera diversity). Mean sea level values for each stage were obtained from the Exxon sea level curve (http://hydro.geosc.psu.edu/Sed_html/exxon.sea; accessed July 1, 2011).

Estimates of pO2 and pCO2 for each stage came from Berner’s GEOCARBSULF model (Berner 2006). Diversity curves for cephalopods, fish, and conodonts came from Sepkoski’s compendium of marine genera (2002), as made available online from

FossilPlot 2.0 (Tapanila and Ames 2009).

We then compared statistical support across these six environmental and ecological predictors, as well as three standard evolutionary models for size change:

97 random walk, stasis, and consistent directional trend. Each of these models implies a different underlying process of size evolution. Random walk is expected when there is no net selective pressure on size (McShea 1994). Under stasis, size distributions stay constant because size is optimized relative to whatever selective pressures are in operation. A directional or driven trend implies consistent selective pressure in a particular direction. Cope’s Rule, the tendency of lineages to evolve toward larger body size through time, is an example of a directional trend, though a similar pattern can also be produced as a passive increase in size variance after origination at small size (Stanley 1973). The model comparison followed Hunt’s methodology (2006) for fitting ancestor-descendant size changes using the ‘paleoTS’ package for R (version

0.4–4; Hunt 2011; R version 2.10.1; The R Foundation for Statisical Computing

2009). Model strength was evaluated using Akaike weights.

RESULTS

Conodont size through time

Figure 3.2 illustrates the species-level size history of conodonts throughout their entire evolutionary history. Both minimum and maximum species size increased from the early Paleozoic to the Devonian. Minimum size exhibited greater variability thereafter, whereas maximum size decreased until the end-Triassic, when conodonts went extinct. Mean size across species follows the same general pattern of Ordovician to Devonian size increase and Devonian to Triassic size decrease (Fig. 3.3). The

98 large-scale size increase trend appears more rapid than the large-scale decrease, happening over roughly 100 My as opposed to 200 My.

Collection-based size data from south China shows element size distributions that overlap with the literature-derived data, but also includes much smaller specimens than are found in Ziegler’s Catalogue of Conodonts (1982; Fig. 3.4). This is consistent with previous studies of monograph-derived size data, which have been shown to be a reasonable size proxy for bulk sample populations but tend to record the larger specimens from a collection (Kosnik et al. 2006; Krause et al. 2007).

Regression analysis

None of the potential environmental or ecological covariates show a strong correlation with conodont mean size (Fig. 3.5). The coefficient of determination (R2) is only significantly different from zero for fish diversity (Table 3.1), but fish diversity only explains 15% of the variation in conodont mean size. Table 3.1 lists the statistics associated with the linear regression analysis.

Model comparison

When we compare evolutionary models, the best-supported is an unbiased random walk (Table 3.2). Random walk receives 60.5% of the Akaike weight support across the nine models considered (random walk, directional trend, stasis, sea level forcing, oxygen forcing, carbon dioxide forcing, and conodont, cephalopod, and fish diversity forcing). This analysis was conducted using first differences to compensate for potential time scale autocorrelation.

99

DISCUSSION

Conodont size distributions did not stay constant over the course of their evolutionary history. The early Paleozoic size increase trend and post-Devonian size decrease trend span half a log unit in mean species length (Fig. 3.3). This shift represents a substantial change in body volume that would have been accompanied by ecological and life history changes, such as an expanded size range of food and increased individual longevity (Newell 1949).

Investigating the potential factors responsible for this observed size trend, we found that random walk was the best supported evolutionary model for the complete time series. Conodont size trends could behave as a random walk because there was no selective pressure on body size (McShea 1994). Alternatively, external forcings on size may have existed but were not consistent enough in direction or through time to yield a directional trend or a correlation with a particular size predictor. This scenario is much more likely given the biological importance of size and the response of conodont size seen during times of mass extinction and major environmental change

(Renaud and Girard 1999; Luo et al. 2008; Chen et al. 2013). It is also possible that conodont size is influenced by some environmental or ecological predictor that we were not able to test, such as the abundance of conodont prey (the nature of which is not well understood).

Even though conodont size evolution is best modeled by random walk, the early Paleozoic size increase is consistent with some definitions of Cope’s Rule. For

100 some authors, Cope’s Rule denotes the empirical observation of size increase in a lineage over time; for others, it implies a theoretical explanation for the pattern: selection driving the evolution of a lineage towards intrinsic advantages of larger size

(Kingsolver and Pfennig 2004). Explanations for why large body size might constitute an evolutionary advantage and thus produce driven trends toward larger size include: increased heat retention per unit volume (although this probably does not apply to conodonts), expanded size range of food, improved predation or escape of predators, increased mating success, increased individual longevity, and resistance to environmental extremes (Newell 1949, Stanley 1973). Stanley reinterpreted Cope’s

Rule as describing evolution starting from small ancestral size instead of toward large size (1973). The Cope’s Rule pattern can be a product of either a driven trend or a passive trend, such as an increase in size variance when there is lower bound on size

(McShea 1994). Ordovician to Devonian conodonts show mean and maximum size increase trends consistent with the empirical interpretation of Cope’s Rule (Fig. 3.2 and 3.3). Even though this interval failed our relatively conservative test for a driven trend, the increase in minimum conodont size over time is suggestive of a driven trend

(Fig. 3.2; Jablonski 1997).

If the early Paleozoic conodont size record is an example of Cope’s Rule, the remainder of the record is contrary to expectation. One would expect mean and maximum conodont size to continue to grow, or to reach a plateau if there was an optimal large size or an upper bound on size. This size decrease is consistent with random walk behavior. Alternatively, the apparent random walk could be the result of changing influences on size through time. For example, there was a rapid radiation of

101 bony fish in the Devonian, coincident with the time conodont mean size stopped increasing (Fig. 3.6; Sepkoski 2002). Although conodont size may not correlate with fish diversity through time, the rapid radiation of fish could still be responsible for the turning point in conodont size evolution.

One of the most surprising observations from our new dataset is that over the time scale of this study, conodont size change during intervals of mass extinction and rapid environmental change appears small compared to long-term trends. The Lilliput

Effect, the phenomenon of size decrease associated with extinction events, has been observed in many animal groups and may be common to major biotic crises (Harries and Knorr 2009). Some size reduction occurred in conodonts across the

Frasnian/Famennian boundary (Renaud and Girard 1999), the end-Permian extinction

(Chapter 2; Luo et al. 2008), and the Smithian/Spathian boundary event in the Early

Triassic (Chen et al. 2013). However, little change in conodont mean size occurred across any of the major mass extinctions in our dataset (end-Ordovician, Frasnian-

Famennian, or end-Permian; Fig. 3.3). This could be an issue of time scale resolution; when binned at the stage level, size reduction seen in high-resolution collections is obscured. For example, when we bin our size data from south China at the stage level, there is no visible change in median size across the Permian-Triassic boundary (Fig.

3.4). However, even the size changes reported in high-resolution studies of mass extinctions are small relative to the overall differences in conodont size between the

Cambrian and the Triassic. For example, the change in conodont mean size was approximately 0.2 log10 mm at the Frasnian/Famennian boundary, 0.15 log10 mm at the Permian-Triassic boundary, and 0.3 log10 mm at the Smithian/Spathian boundary

102 (Renaud and Girard 1999; Luo et al. 2006, 2008; Chen et al. 2013). The observation that, at the time scale of our dataset, there is no major size reduction at mass extinctions also has implications for the nature of the Lilliput Effect in conodonts. In other marine clades, such as foraminifera, gastropods, and calcitic brachiopods, the

Lilliput Effect lasts long enough to be easily observed at the stage-level (Chapter 2).

Perhaps conodont size is actually not as responsive to major environmental and ecological change as compared to many marine invertebrates, or they may simply be faster to recover post-extinction size distributions because they are a rapidly evolving group. The Lilliput Effect may be transient in conodonts, but long-term patterns of size change are large in scale.

CONCLUSIONS

Quantifying Cambrian to Triassic patterns of size evolution in conodonts reveals a long-term pattern of size increase and decrease. Mean and maximum size across species generally increased during the early Paleozoic, peaked during the

Devonian, and decreased until conodonts went extinct at the end-Triassic. When we compared statistical support across potential environmental and ecological predictors and other models of size evolution, the best-supported was an unbiased random walk.

If environmental and ecological factors were important for size change, their effect was not consistent over the entire evolutionary history of conodonts. The early

Paleozoic pattern of origination at relatively small size followed by subsequent size increase is an empirical example of Cope’s Rule. At the time scale of our study,

103 conodont size changes during intervals of rapid environmental change (such as mass extinction events) appear small compared to long-term trends.

ACKNOWLEDGMENTS

The authors thank Noel Heim for help in writing statistical codes, and the

Stanford Paleobiology Research Group for comments and discussion. We also thank

Yu Meiyi (Guizhou University), Dan Lehrmann (Trinity University, Texas), Fu

Hongbin, Li Xiaowei, Wen Xuefeng, Xiao Wei, and Xiao Long for help in the field.

This work was supported by NSF and Stanford University.

104 REFERENCES

Aldridge, R. J., D. E. G. Briggs, M. P. Smith, E. N. K. Clarkson, and N. D. L. Clark. 1993. The anatomy of conodonts. Philosophical Transactions of the Royal Society, London, Series B 340:405-421.

Alroy, J. 1998. Cope’s rule and the dynamics of body mass evolution in North American fossil mammals. Science 280:731-34.

Ashton, K.G., M. C. Tracy, and A. de Queiroz. 2000. Is Bergmann’s Rule valid for mammals? American Naturalist 156:390-415.

Berner, R. A. 2006. GEOCARBSULF: a combined model for Phanerozoic atmospheric O2 and CO2. Geochimica et Cosmochimica Acta 70:5653-5664.

Briggs, D. E. G., E. N. K. Clarkson, and R. J. Aldridge. 1983. The conodont animal. Lethaia 16:1-14.

Brown, J. H. 1995. Macroecology. University of Chicago Press, Chicago.

Brown, W. L., and E. O. Wilson. 1956. Character displacement. Systematic Zoology 5:49-64.

Burness, G. P., J. Diamond, and T. Flannery. 2001. Dinosaurs, dragons, and dwarfs: the evolution of maximal body size. Proceedings of the National Academy of Sciences, USA 98:14518:14523.

Calder, W. A. 1984. Size, function, and life history. Harvard University Press, Cambridge, Mass.

105 Chen, Y., R. Twitchett, H. Jiang, S. Richoz, X. Lai, C. Yan, Y. Sun, X. Liu, and L. Wang. 2013. Size variation of conodonts during the Smithian-Spathian (Early Triassic) global warming event. Geology 41:823-826.

Clauset, A., and D. H. Erwin. 2008. The evolution and distribution of species body size. Science 321:399-401.

Dahl, T. W., E. U. Hammarlund, A. D. Anbar, D. P. G. Bond, B. C. Gill, G. W. Gordon, A. H. Knoll, A. T. Nielsen, N. H. Schovsbo, and D. E. Canfield. 2010. Devonian rise in atmospheric oxygen correlated to the radiations of terrestrial plants and large predatory fish. Proceedings of the National Academy of Sciences, USA 107:17911-17915.

Dommergues, J., S. Montuire, and P. Neige. 2002. Size patterns through time: the case of the Early Jurassic ammonite radiation. Paleobiology 28:423-434.

Finkel, Z. V., M. E. Katz, J. D. Wright, O. M. E. Schofield, and P. G. Falkowski. 2005. Climatically driven macroevolutionary patterns in the size of marine diatoms of the Cenozoic. Proceedings of the National Academy of Sciences, USA 102:8927- 8932.

Finkel, Z. V., J. Sebbo, S. Feist-Burkhardt, A. J. Irwin, M. E. Katz, O. M. E. Schofield, J. R. Young, and P. G. Falkowski. 2007. A universal driver of macroevolutionary change in the size of marine phytoplankton over the Cenozoic. Proceedings of the National Academy of Sciences, USA 104:20416-20420.

Gabbott, S. E., R. J. Aldridge, and J. N. Theron. 1995. A giant conodont with preserved muscle tissue from the Upper Ordovician of South Africa. Nature 374:800- 803.

106 Gingerich, P. D., H. Smith, and K. Rosenberg. 1982. Allometric scaling in the dentition of primates and prediction of body weight from tooth size in fossils. American Journal of Physical Anthropology 58:81-100.

Gooday, A. J., L. A. Levin, A. Aranda da Silva, B. J. Bett, G. L. Cowie, D. Dissard, J. D. Gage, D. J. Hughes, R. Jeffreys, P. A. Lamont, K. E. Larkin, S. J. Murty, S. Schumacher, C. Whitcraft, and C. Woulds. 2009. Faunal responses to oxygen gradients on the Pakistan margin: a comparison of foraminiferans, macrofauna and megafauna. Deep-Sea Research II 56:488-502.

Goudemand, N., M. J. Orchard, S. Urdy, H. Bucher, and P. Tafforeau. 2011. Synchrotron-aided reconstruction of the conodont feeding apparatus and implications for the mouth of the first vertebrates. Proceedings of the National Academy of Sciences, USA 108:8720-8724.

Gould, S. J. 1988. Trends as changes in variance: a new slant on progress and directionality in evolution. Journal of Paleontology 62:319-329.

Harper, E. M., L. S. Peck, and K. R. Hendry. 2009. Patterns of shell repair in articulate brachiopods indicate size constitutes a refuge from predation. Marine Biology 156:1993-2000.

Harries, P. J., and P. O. Knorr. 2009. What does the ‘Lilliput Effect’ mean? Palaeogeography, Palaeoclimatology, Palaeoecology 284:4-10.

Holland, C. H., and P. Copper. 2008. Ordovician and Silurian nautiloid cephalopods from Anticosti Island: traject across the Ordovician-Silurian (O-S) mass extinction boundary. Canadian Journal of Earth Sciences 45:1015-1038.

107 Huang, B., D. A. T. Harper, R. Zhan, and J. Rong. 2010. Can the Lilliput Effect be detected in the brachiopod faunas of South China following the terminal Ordovician mass extinction? Palaeogeography, Palaeoclimatology, Palaeoecology 285:277-286.

Hunt, G. 2006. Fitting and comparing models of phyletic evolution: random walks and beyond. Paleobiology 32:578-601.

Hunt, G., 2012. Package paleo TS: analyze paleontological time series. Available at http://CRAN.R-project.org/web/packages/paleoTS/index.html. Accessed July 5, 2012.

Hunt, G., and K. Roy. 2006. Climate change, body size evolution, and Cope’s rule in deep-sea ostracods. Proceedings of the National Academy of Sciences, USA 103:1347-1352.

Hunt, G., S. A. Wicaksono, J. E. Brown, and K. G. Macleod. 2010. Climate-driven body-size trends in the ostracod fauna of the deep Indian Ocean. Palaeontology 53:1255-1268.

Hutchinson, G. E. 1959. Homage to Santa-Rosalia or why are there so many kinds of animals. American Naturalist 93:145-159.

Jablonski, D. 1997. Body-size evolution in Cretaceous mollusks and the status of Cope’s rule. Nature 385:250-252.

Kerr, S. R., and L. M. Dickie. 2001. The biomass spectrum: a predator-prey theory of aquatic production. Columbia University Press, New York.

Kingsolver, J. G., and D. W. Pfennig. 2004. Individual-level selection as a cause of Cope’s rule of phyletic size increase. Evolution 58:1608-1612.

108 Kosnik, M. A., J. Alroy, A. K. Behrensmeyer, F. T. Fürsich, R. A. Gustaldo, S. M. Kidwell, M. Kowalewski, R. E. Plotnick, R. R. Rogers, and P. J. Wagner. 2011. Changes in shell durability of common marine taxa through the Phanerozoic: evidence for biological rather than taphonomic drivers. Paleobiology 37:303-331.

Kosnik, M. A., D. Jablonski, R. Lockwood, and P. M. Novack-Gottshall. 2006. Quantifying molluscan body size in evolutionary and ecological analyses: maximizing the return on data-collection efforts. Palaios 21:588-597.

Krause, R. A., J. A. Stempien, M. Kowalewski, and A. I. Miller. 2007. Body size estimates from the literature: utility and potential for macroevolutionary studies. Palaios 22:60-73.

Krejsa, R. J., P. Bringas Jr., and H. C. Slavkin. 1990. A neontological interpretation of conodont elements based on agnathan cyclostome tooth structure, function, and development. Lethaia 23:359-378.

Lehrmann, D. J., J. L. Payne, D. Pei, P. Enos, B. Ellwood, M. J. Orchard, J. Zhang, and J. Wei. 2007. Record of the end-Permian extinction and Triassic biotic recovery in the Chongzuo-Pingguo Platform, southern Nanpanjiang Basin, Guangxi, south China. Palaeogeography, Palaeoclimatology, Palaeoecology 252:200-217.

Levin, L. A. 2003. Oxygen minimum zone benthos: adaptation and community response to hypoxia. Oceanography and Marine Biology 41:1-34.

Lockwood, R. 2005. Body size, extinction events, and the early Cenozoic record of veneroid bivalves: a new role for recoveries? Paleobiology 31:578-590.

109 Luo, G.-M., X.-L. Lai, H.-S. Jiang, and K.-X. Zhang. 2006. Size variation of the end Permian conodont Neogondolella at Meishan Section, Changxing, Zhejiang and its significance. Science in China Series D: Earth Sciences 49:337-347.

Luo, G., X. Lai, G. R. Shi, H. Jiang, H. Yin, S. Xie, J. Tong, K. Zhang, W. He, and P. Wignall. 2008. Size variation of conodont elements of the Hindeodus-Isarcicella clade during the Permian-Triassic transition in South China and its implication for mass extinction. Paleogeography, Paleoclimatology, Paleoecology 264:176-187.

McShea, D. W. 1994. Mechanisms of large-scale evolutionary trends. Evolution 48:1747-1763.

Newell, N. D. 1949. Phyletic size increase, an important trend illustrated by fossil invertebrates. Evolution 3:103-124.

Ogg, J. G., G. Ogg, and F. M. Gradstein. 2008. The concise geologic time scale. Cambridge University Press, Cambridge, U.K.

Orchard, M. J. 2007. Conodont diversity and evolution through the latest Permian and Early Triassic upheavals. Palaeogeography, Palaeoclimatology, Palaeoecology 252:93-117.

Paine, R. T. 1976. Size-limited predation: an observational and experimental approach with the Mytilus: Pisaster interaction. Ecology 57:858-873.

Payne, J. L. 2005. Evolutionary dynamics of gastropod size across the end-Permian extinction and through the Triassic recovery interval. Paleobiology 31:269-290.

Payne, J. L., A. G. Boyer, J. H. Brown, S. Finnegan, M. Kowalewski, R. A. Krause, S. K. Lyons, C. R. McClain, D. W. McShea, P. M. Novack-Gottshall, F. A. Smith, J. A.

110 Stempien, and S. C. Wang. 2009. Two-phase increase in the maximum size of life over 3.5 billion years reflects biological innovation and environmental opportunity. Proceedings of the National Academy of Sciences, USA 106:24-27.

Payne, J. L., J. R. Groves, A. B. Jost, T. Nguyen, S. E. Moffitt, T. M. Hill, and J. M. Skotheim. 2012. Late Paleozoic fusulinoidean gigantism driven by atmospheric hyperoxia. Evolution 66:2929-2939.

Payne, J. L., A. B. Jost, S. C. Wang, and J. M. Skotheim. 2012. A shift in the long- term mode of foraminferan size evolution caused by the end-Permian mass extinction. Evolution 67:816-827.

Payne, J. L., D. J. Lehrmann, J. Wei, and A. H. Knoll. 2006. The pattern and timing of biotic recovery from the end-Permian mass extinction on the Great Bank of Guizhou, Guizhou Province, south China. Palaios 21:63-85.

Payne, J. L., C. R. McClain, A. G. Boyer, J. H. Brown, S. Finnegan, M. Kowalewski, R. A. Krause, S. K. Lyons, D. W. McShea, P. M. Novack-Gottshall, F. A. Smith, P. Spaeth, J. A. Stempien, and S. C. Wang. 2011. The evolutionary consequences of oxygenic photosynthesis: a body size perspective. Photosynthetic Research 107:37-57.

Peters, R. H. 1983. The ecological implications of body size. Cambridge University Press, New York.

Purnell, M. A. 1994. Skeletal ontogeny and feeding mechanisms in conodonts. Lethaia 27:129-138.

Purnell, M. A. 1995. Microwear on conodont elements and macrophagy in the first vertebrates. Nature 374:798-800.

111 Rego, B. L., S. C. Wang, D. Altiner, and J. L. Payne. 2012. Within- and among-genus components of size evolution during mass extinction, recovery, and background intervals: a case study of Late Permian through Late Triassic foraminifera. Paleobiology 38:627-643.

Renaud, S., and C. Girard. 1999. Strategies of survival during extreme environmental perturbations: evolution of conodonts in response to the Kellwasser Crisis (Upper Devonian). Palaeogeography, Palaeoclimatology, Palaeoecology 146:19-32.

Roy, K., D. Jablonski, and K. K. Martien. 2000. Invariant size-frequency distributions along a latitudinal gradient in marine bivalves. Proceedings of the National Academy of Sciences, USA 97:13150-13155.

Sansom, I. J., M. P. Smith, H. A. Armstrong, and M. M. Smith. 1992. Presence of the earliest hard tissues in conodonts. Science 256:1308-1311.

Schmidt-Nielsen, K. 1984. Scaling: why is animal size so important? Cambridge University Press, New York.

Schubert, J. K., and D. J. Bottjer. 1995. Aftermath of the Permian-Triassic mass extinction event: Paleoecology of Lower Triassic carbonates in the western USA. Palaeogeography, Palaeoclimatology, Palaeoecology 116:1-39.

Sepkoski, J. J., Jr. 2002. A compendium of fossil marine animal genera. Bulletins of American Paleontology 363:1-560.

Stanley, S. M. 1973. An explanation for Cope’s Rule. Evolution 27:1-26.

Tapanila, L., and D. P. Ames. 2009. FOSSILPLOT version 2 online, http://www.fossilplot.org. Accessed September 4, 2013.

112

Teichart, C. 1981. Treatise on Invertebrate Paleontology. Boulder, Colorado, Geological Society of America, Volume W: Miscellanea, Supplement 2: Conodonta.

Twitchett, R. J. 2007. The Lilliput effect in the aftermath of the end-Permian extinction event. Palaeogeography, Palaeoclimatology, Palaeoecology 252:132-144.

Ziegler, W., editor. 1973. Catalogue of Conodonts. Stuggart, Germany, Omnitypie- Gesellschaft, 5 Volumes.

113 FIGURE CAPTIONS

FIGURE 3.1. (A) Location of the P1 element in the feeding apparatus and (B) its orientation within the conodont’s head. Reproduced from Goudemand et al. (2011).

FIGURE 3.2. Conodont size trends throughout their entire evolutionary history. This plot shows the anterior-posterior length of the P1 element for all conodont species in our database against species duration in millions of years.

FIGURE 3.3. This plot illustrates the mean anterior-posterior length of the P1 element for all conodont species present in each stage.

FIGURE 3.4. Conodont P1 element size distributions for specimens collected in south China. Stage abbreviations: Ch = Changhsingian (latest Permian); In = Induan

(Early Triassic); Ol = Olenekian (Early Triassic); An = Anisian (Middle Triassic).

FIGURE 3.5. Results of linear regression of mean element size against six potential ecological and environmental covariates.

FIGURE 3.6. Diversity of bony fish genera from the Cambrian to the end-Triassic.

114 TABLE CAPTIONS

TABLE 3.1. Statistics from the linear regression analyses.

TABLE 3.2. This table compares support for the six potential ecological and environmental covariates and the three standard evolutionary models. The models are ranked by Akaike weight, which represents goodness of fit.

115

116

FIGURE 3.1. The conodont apparatus.

level conodont size. - RE 3.2. Species FIGU

117

FIGURE 3.3. Mean conodont size.

118

FIGURE 3.4. Conodont sizes from south China.

119

FIGURE 3.5. Regression analysis.

120

FIGURE 3.6. Fish diversity.

121

TABLE 3.1. Linear regression statistics.

122

TABLE 3.2. Model comparison.

123 CHAPTER 4: OCEANIC ANOXIA DURING THE PERMIAN-

TRIASSIC TRANSITION AND LINKS TO VOLCANISM

Ellen K. Schaal1, Katja M. Meyer1, Kimberly V. Lau1, Juan Carlos Silva-Tamayo1,

and Jonathan L. Payne1

1Department of Geological & Environmental Sciences, Stanford University, Stanford, CA 94305, U.S.A.

E-mail: [email protected].

Keywords: anoxia, euxinia, Permian-Triassic, Siberian Traps, flood basalt, framboidal pyrite, biomarkers, S isotopes, cerium anomaly, U isotopes, Mo isotopes, modeling

*In press in Volcanism and Global Environmental Change, L. Elkins-Tanton, A. Schmidt, and K. Fristad, eds., Cambridge University Press, Cambridge, 2014.

124 INTRODUCTION

One of the best-documented environmental perturbations at the Permian-

Triassic transition is the development of extensive oceanic anoxia, a prime suspect in the mass extinction of marine organisms at the end-Permian (Wignall and Hallam

1992). Ever since the eruption of the Siberian Traps flood basalt province was recognized as contemporaneous with the Permian-Triassic boundary (PTB; Renne et al. 1995), there has been ongoing research on how the Siberian Traps may have caused changes in ocean chemistry and, ultimately, mass extinction. Massive volcanism could affect ocean oxygen content through both greenhouse warming and reduced solubility

(Wignall and Twitchett 1996)! and continental weathering feedbacks on nutrient delivery, primary productivity, and oxygen demand (Meyer et al. 2008).

The development of new proxies for ocean redox chemistry over the last decade has enabled rapid increases in empirical constraints on Permian-Triassic ocean anoxia. Consequently, numerous proxy records have been produced since the last systematic review of the topic by Wignall and Twitchett (2002). Here, we review the constraints provided by each proxy (summarized in Table 4.1) and discuss insights from Earth system models and geological observations in evaluating the potential role for Siberian Traps volcanism in driving ocean anoxia.

125 LITHOLOGICAL EVIDENCE FOR ANOXIA

Bioturbation intensity and black shales

Poorly bioturbated, fine-grained sediments are typical of dysaerobic to anoxic depositional settings (reviewed in Wignall 1994). Such sediments have long been known from PTB sections, especially in the Tethys (e.g., Logan and Hills 1973), and used to implicate ocean anoxia as a cause of the end-Permian mass extinction (Hallam

1989). Numerous PTB sections from Tethys and Panthalassa exhibit lithological characteristics typically of dysoxic to anoxic settings, such as reduced intensity of bioturbation and sizes of burrows, increased abundance of framboidal pyrite, and increased prevalence of black shales (reviewed in Wignall and Twitchett 2002). In shallow water sections, the onset of these indicators is typically coincident with the main extinction interval in the fossil record (e.g., Wignall and Hallam 1992; Wignall and Twitchett 1996). However, several lines of evidence suggest variation in ocean redox chemistry was temporally and spatially complex. Changes in the lithology and chemistry of deep-marine shales from Japan and British Columbia suggest that the onset of anoxia was more gradual, beginning near the Middle-Late Permian transition, peaking in intensity near the PTB, and waning gradually through Early Triassic time

(Isozaki 1997). Variation in ichnofauna and ichnofabric across a paleo-depth gradient in northwest Canada indicates shallow water environments were typically better oxygenated than deeper water environments during earliest Triassic (Griesbachian) time (Beatty et al. 2008). Precipitation of carbonate crystal fans in outer shelf deposits of the uppermost Lower Triassic (Spathian) Virgin Limestone in the western USA

126 points toward local persistence or recurrence of anoxic conditions even several million years after the main extinction event (Woods et al. 1999).

Framboidal pyrite

The presence and size distribution of framboidal pyrite grains can be particularly informative regarding ancient ocean chemistry because exclusively small framboidal pyrite is expected when the overlying water column is euxinic (anoxic and sulphidic) and pyrite framboids form in the water column (Wilkin et al. 1996). Pyrite framboids have been widely reported from PTB sections, particularly in strata overlying the main extinction horizon (Fig. 4.1; e.g., Wignall and Hallam 1992; Bond and Wignall 2010). Small framboids occur in abundance above the main extinction horizon on shallow-marine, tropical carbonate platforms (e.g., Bond and Wignall

2010; Liao et al. 2010), in shallow-marine, tropical, mixed carbonate and clastic systems (Wignall et al. 2005), in deep-water, tropical carbonates (e.g., Shen et al.

2007), and in high-latitude clastic deposits (e.g., Nielsen and Shen 2004; Bond and

Wignall 2010; Nielsen et al. 2010). Abundant framboids occur below the mass extinction horizon at some localities, suggesting euxinic conditions developed prior to the main extinction event in some regions (e.g., Nielsen and Shen 2004). In deep water sections, the co-occurrence of small framboidal pyrite grains with redox-sensitive metal abundance patterns indicative of oxic to dysoxic bottom water conditions suggests that a euxinic oxygen minimum zone existed within a water column oxygenated at the surface by wind mixing and in deep water via large-scale circulation

(Algeo et al. 2010). The frequency of framboidal pyrite in stratigraphic sections and

127 trends toward smaller size within some sections point toward a greater prevalence of euxinic conditions above the end-Permian extinction horizon.

GEOCHEMICAL EVIDENCE FOR ANOXIA

Organic biomarkers

Biomarker studies have primarily focused on the immediate PTB, with very limited data for the Changhsingian and Griesbachian. Isorenieratane and aryl isoprenoid derivatives occur in Late Permian and PTB rocks from the Perth Basin

(Western Australia; Grice et al. 2005) and Meishan (China; Cao et al. 2009) in the

Tethys, reflecting the presence of green sulphur and indicating euxinic conditions within the photic zone (Fig. 4.1). In addition, Panthalassic sediments from the Peace River Basin (Canada; Hays et al. 2007) and Boreal Ocean sediments from

Kap Stosch (Greenland; Hays et al. 2012) also contain biomarker evidence for photic zone euxinia (PZE) during Late Permian time.

Following the extinction, evidence for PZE persists into Griesbachian strata in all three of the major ocean basins. Again, isorenieratane occurs in the Perth Basin

(Grice et al. 2005), at the GSSP at Meishan (Cao et al. 2009), in Greenland (Hays et al. 2012), and in British Columbia (Hays et al. 2007). In the Peace River Basin and at

Meishan, aromatic biomarkers persist into Dienerian strata, where PZE indicators wane and then disappear. The most common interpretation of isorenieratane and its aryl isoprenoid derivatives is that of water column euxinia, but anoxygenic phototrophs can also produce these biomarkers within microbial mats underlying an

128 oxic water column (Casford 2011; Meyer et al. 2011), leaving open the possibility that some of these biomarker records reflect benthic conditions.

Sulphur isotopes

Sulphur isotopes are sensitive to sulphate reduction and the proportion of pyrite burial, thus linking them to euxinic ocean conditions. During sulphate reduction, the light isotope (32S) is preferentially incorporated into sulphide unless the system is sulphate limited (Habicht et al. 2002). Therefore, as pyrite forms in euxinic water columns, and sulphur is preferentially buried as pyrite rather than sulphate, isotopically light sulphur is removed from the oceans (Wignall and Hallam 1992). The first sulphur isotope records across the Permian-Triassic transition were from marine evaporites, which show a positive shift in !34S values from +12‰ to +28‰ between the end-Permian and the late Early Triassic (e.g., Cortecci et al. 1981), suggesting a prolonged interval of extensive anoxia and pyrite formation.

More recent and higher resolution !34S records from pyrite and carbonate- associated sulphate (CAS) tend to show rapid short-term variation, with adjacent samples differing by many per mil (e.g., Riccardi et al. 2006; Algeo et al. 2008;

Nielsen et al. 2010). Such large changes over such a short timescale are difficult to explain by changing the isotopic composition of the whole ocean. Instead, they may reflect a vertically stratified ocean with isotopically distinct sulphur reservoirs in shallow and deep water; for such an ocean, variation in !34S records would reflect the movement of water masses (e.g., upwelling; Kajiwara et al. 1994; Newton et al. 2004;

Algeo et al. 2008). A potential problem with this mechanism is that any !34S gradient

129 generated by sulphate reduction in the deep ocean would not be preserved during upwelling and mixing of isotopically light sulphide and isotopically heavy sulphate from deep waters (Riccardi et al. 2006). Alternatively, the excursions could represent rapid changes in the proportion of pyrite to sulphate burial in an ocean with low sulphate concentrations (Luo et al. 2010). Because these two distinct interpretations of

!34S variation have inherent differences in the extent of anoxia they imply (local upwelling versus global redox shifts), it is at present unclear whether sulphur isotope records tell us about local or global ocean oxygen conditions.

Cerium and REEs

The concentration of cerium relative to other rare earth elements (REEs) is redox sensitive (reviewed in German et al. 1990). A positive cerium anomaly

(Ce/Ce*) recorded in carbonate sediments is interpreted to reflect suboxic-anoxic conditions in the local water column (Alibo and Nozaki 1999).

There is spatial variation in Ce/Ce* throughout the Changhsingian and

Griesbachian (Fig. 4.1). Records from Panthalassa have been interpreted as a shift from oxic conditions in the Middle Permian to suboxic/anoxic conditions during the

Changhsingian (Kato et al. 2002). In the Tethys, some sections indicate anoxic conditions at the extinction horizon (Kakuwa and Matsumoto 2006; Algeo et al.

2007), whereas others indicate oxygenated conditions (e.g., Dolenec et al. 2001; Fio et al. 2010; Brand et al. 2012). These PTB records could either reflect spatially heterogeneous bottom water redox conditions or suggest that Ce/Ce* records have been misinterpreted; Loope et al. (2013) argue that in some sections, the discrepancy

130 between geochemical evidence for anoxia and very fossiliferous strata indicates that the Ce/Ce* records have been compromised by silicilastic influence or dolomitization.

Following the extinction, Ce/Ce* measured in conodont apatite from south China suggests multiple pulses of anoxia occurring from the PTB to the earliest Dienerian, the basal Smithian to the earliest Spathian, and in the mid-Spathian (Song et al. 2012).

Uranium

The marine uranium cycle offers the potential to constrain the global extent of seafloor anoxia, as the uranium concentration and the 238U/235U isotope ratio are each sensitive to redox conditions at the sediment-water interface (Stirling et al. 2008;

Weyer et al. 2008). Changes in uranium concentrations and isotope ratios may represent global conditions because the residence time of uranium in the modern ocean (3.2-5.6"105 yr) is much longer than ocean mixing time (Dunk et al. 2002).

The majority of Permian-Triassic uranium data are confined to the extinction horizon. Uranium concentrations decrease abruptly at the extinction horizon in shallow-marine carbonates in Saudi Arabia (Ehrenberg et al. 2008), Iran (Tavakoli and

Rahimpour-Bonab 2012), and south China (Brennecka et al. 2011; Song et al. 2012), indicating a global drawdown of uranium concentrations in seawater caused by ocean anoxia (Fig. 4.1). The only sections that show an increase in uranium concentration are localities where deposition switches to black shales and other dysaerobic facies

(e.g., British Columbia and Italy), where uranium would be concentrated due to local anoxia (Wignall and Twitchett 2002). Records from clastic sections are more complicated due to the local effects of bottom water redox changes superimposed on

131 the global shift in seawater uranium concentrations (Algeo et al. 2012; Shen et al.

2012). The sole !238U record for the PTB demonstrates a rapid negative isotopic shift coincident with the extinction horizon, also consistent with a global increase in seafloor anoxia (Brennecka et al. 2011).

Studies that extend beyond the extinction horizon indicate that anoxia continued, at least episodically, though much of Early Triassic time. Uranium concentrations in carbonates suggest that anoxic conditions were prevalent throughout the Griesbachian into the Dienerian (Ehrenberg et al. 2008). Conodont Th/U data from south China point toward multiple peaks in anoxia, in the Griesbachian, Smithian- earliest Spathian, and mid-Spathian, after which the ocean became oxygenated through the Middle Triassic (Song et al. 2012).

Molybdenum

The Mo isotope fractionations between seawater and modern marine sediments deposited under different redox conditions allows using ancient sediments to track the evolution of the Mo isotope composition of ancient oceans, to quantify the partitioning of Mo isotopes by oxic, suboxic/anoxic, and euxinic sinks in ancient oceans, and consequently, to quantify oceanic oxygen levels (Siebert et al. 2003; Neubert et al.

2008; Dhal et al. 2010).

For most of the late Paleozoic, seawater !98/95Mo values remained at ~+2.0‰, which is slightly lower than those of the modern seawater and implies a similar oxygen content (Dahl et al. 2010). At the end-Permian mass extinction horizon, seawater !98/95Mo values decreased to ~0‰ (Voegelin et al. 2009; Silva-Tamayo et al.

132 2013; Zhou et al. 2012; Proemse et al. 2013). This decrease, which is recorded by successions located along the Tethys and the Panthalassic Ocean, has been interpreted as the global expansion of oceanic euxinia during the main extinction event (Fig. 4.1).

Low !98/95Mo values (+1.5‰) characterize the Early Triassic oceans and suggest the return to anoxic conditions (Silva-Tamayo et al. 2013).

SUMMARY: PATTERN OF ANOXIA

High-resolution records and novel paleoredox proxies have sharpened and altered our picture of oceanic anoxia across the Permian-Triassic transition. Rather than being prolonged and persistent, anoxia appears to have waxed and waned in several discrete eposiodes during Early Triassic time (Wignall and Twitchett 2002;

Song et al. 2012). Biomarkers for green sulphur bacteria in PTB sediments have confirmed the existence of euxinic conditions in the photic zone (Grice et al. 2005;

Hays et al. 2007). Uranium and molybdenum proxies are opening opportunities to quantify the extent of anoxia globally from data in local sections (Brennecka et al.

2011; Proemse et al. 2013).

Taken together, redox proxy data provide evidence of a clear trend toward rapid deoxygenation across the PTB (Fig. 4.2). New proxies that represent globally averaged redox conditions tend to contradict the idea that widespread end-Permian anoxia began early in the Late Permian (Isozaki 1997). Uranium and molybdenum records indicate generally oxic ocean conditions right up to the main extinction horizon and a rapid expansion of anoxia at that time. Pyrite framboids, biomarkers,

133 and cerium anomaly records require some localized deoxygenation in the

Changhsingian, especially in deeper-water settings in Panthalassa, the Boreal Ocean, and the Perth Basin (Fig. 4.1). In the Tethys region, typically fossiliferous

Changhsingian strata suggest that any dysoxic conditions were not extreme enough to restrict animal life. By the PTB however, the only remaining paleoredox records indicating oxic conditions come from shallow-marine sections, where the surface waters may have been oxygenated by wind mixing despite the expansion of oxygen minimum zones onto the continental shelves.

After the PTB, paleoredox constraints indicate intermittent oxic and anoxic conditions throughout the Early Triassic moving toward more oxic conditions in the

Middle Triassic. Lithologic observations, cerium anomalies, and uranium concentrations together point toward recurring intervals of widespread anoxia in the

Early Triassic: the most widely-recognized at the PTB through the Griesbachian, another at the Smithian/Spathian boundary event, and another in the Spathian.

Apparent disagreements among proxies about the redox state of Permian-

Triassic oceans likely result from differences in sensitivity across proxies as well as spatial heterogeneity in marine redox conditions (Fig. 4.2). For example, even though globally averaged proxies support a well-ventilated Late Permian ocean, the Peace

River Basin (British Columbia) could have experienced upwelling, photic zone euxinia, and preservation of isorenieratane due to local controls on circulation patterns. In addition, variation in redox conditions on geologically short time scales could create disagreements among proxies. For example, seasonal or other short term anoxic pulses might leave biomarker evidence of euxinia within beds that also contain

134 animal fossils. Most local proxies agree with widespread anoxia at the PTB, if not the specific timing of anoxic pulses in the Early Triassic. Though the !34S evaporite record seems to indicate persistent anoxia throughout the Early Triassic (Fig. 4.2), this is likely a consequence of low temporal resolution of this proxy, rather than a contradiction of other, more punctuated records. Conflicts among the proxies recording a globally averaged paleoredox signal can be resolved due to differing sensitivities to the degree of deoxygenation; Mo is more sensitive to euxinia while U is sensitive to anoxia, explaining the widespread episodes of Early Triassic anoxia evident in U records but not in Mo records.

Paleoredox proxies that record a globally averaged signal point toward a major expansion of anoxic waters at the end-Permian extinction horizon, but these records have not yet been developed much beyond the PTB interval (Fig. 4.2). With primarily records of local geochemical conditions below the boundary, the baseline redox state of Permian oceans remains poorly constrained. Likewise, while there is evidence for reoccurring widespread anoxia later in the Early Triassic, we do not yet know if these episodes were as extensive or persistent as that at the PTB.

VOLCANISM AND ANOXIA

The potential for massive volcanism to drive ocean anoxia is well established

(reviewed in Meyer and Kump 2008). Because oxygen solubility is temperature dependent, the release of volcanic CO2 and resulting greenhouse warming decrease oxygen supply to ocean water. In addition, global warming enhances the hydrologic

135 cycle, continental weathering, and nutrient delivery to the oceans (e.g., phosphate), which in turn, stimulates biological production and increases oxygen demand. The development of anoxic conditions creates a positive feedback, liberating more phosphate from sediments and increasing nutrient fluxes (Van Cappellen and Ingall

1994).

Numerical Earth system modeling has been used to investigate the factors that led to widespread ocean anoxia during the Permian and Triassic. While ocean stagnation has been long linked to anoxia in the paleoceanographic literature, most modeling studies have shown that end-Permian stagnation was physically unlikely. In an early review of modeling studies, Winguth and Maier-Reimer (2005) concluded that the end-Permian oceans were likely well-ventilated and that anoxia was more likely a result of changes in carbon cycling than the physical mixing of the oceans. A fully coupled, high-resolution global climate simulation of end-Permian conditions also showed reduced, but not absent, overturning circulation (a ~25% increase in the ideal age of water at 3000 m) and that marine biotic changes were likely influenced by rapid increases in atmospheric pCO2 (Kiehl and Shields 2005).

Many numerical models require elevated nutrient contents of the ocean to generate anoxic conditions. In multiple studies, anoxia and euxinia are more widespread in the Paleo- than the Panthalassic due to the nutrient trapping circulation of the Tethys (Meyer et al. 2008; Winguth and Winguth 2012).

Simulations using Earth system models of intermediate complexity that also included a marine sulphur cycle required at least a tripling of phosphate (the limiting nutrient over long timescales; Tyrrell 1999) to generate photic zone euxinia in the Paleo-

136 Tethys Ocean and in areas of upwelling (Fig. 4.3; Meyer et al. 2008). However, the extent of oxygen depletion and hydrogen sulphide build-up varies widely between model parameterizations. At least one model generates oxygen depletion but no extreme anoxia/euxinia even under 10" modern phosphate concentrations (Winguth and Winguth 2012). However, primary production in this model was limited by Fe supply, and euxinia would have surely resulted from a combination of high Fe and high PO4 conditions.

Siberian Traps volcanism makes an attractive trigger for PTB anoxia, because of the potential for rapid, massive CO2 release (Kamo et al. 2003) and weathering/nutrient feedbacks. There have been multiple efforts to estimate total CO2 release from the volume of erupted basalt and degassing country rocks (Svensen et al.

2009; Sobolev et al. 2011). However, we have yet to quantify the corresponding amount and duration of greenhouse warming, or the expected increase in nutrient delivery to the oceans. Using Earth system models that incorporate biogeochemical representations of the marine C, N, P, S, and other cycles, future work should test the hypothesis that Siberian Traps eruption was large enough to cause the observed deoxygenation.

Geochronology supports the link between volcanism and the pattern of anoxia at the Permian-Triassic transition. The intensification of anoxia/euxinia at the PTB suggested by both local and global paleoredox proxies is coeval with the initiation of

Siberian Traps eruption, especially the early explosive phase with phreatomagmatic pipes (Mundil et al. 2004; Svensen et al. 2009; Burgess et al. 2014). It is not clear whether records of local scale anoxia in the Late Permian represent the baseline redox

137 state of late Paleozoic oceans or enhanced deoxygenation. Another open question is how well the later Siberian Traps eruptive history matches the pulses of anoxia in the

Early Triassic. Radiometric ages for late Siberian Traps magmatism extend into the

Spathian (Kamo et al. 2003), so anoxic pulses could be driven by later eruptive phases.

However, the timing of potential Early Triassic peaks in volcanic activity remains unknown, preventing correlation with perturbations in marine geochemistry. The emerging view of Early Triassic anoxia as punctuated rather than persistent fits better with the proposed volcanic driver because the residence time of CO2 in the atmosphere is on the scale of 100-200 ka (Archer et al. 1997), making it difficult to maintain elevated rates of nutrient input for millions of years. If flood basalt volcanism was the main trigger of Permian-Triassic anoxia, one would expect a contraction of anoxic conditions soon after cessation of volcanism, as weathering draws down CO2 and the climate cools. Siberian Traps volcanism can explain the widespread anoxia and euxinia at the PTB, but its role as a potential driver for Early Triassic anoxia deserves more attention.

CONCLUSIONS

Our review of paleoredox records from the Permian-Triassic transition suggests a rapid shift from relatively well-ventilated Late Permian oceans to widespread anoxic and euxinic conditions coincident with the extinction horizon.

Redox constraints from above the PTB provide evidence that anoxia recurred episodically during Early Triassic time, particularly at the Smithian/Spathian boundary

138 and during the mid-Spathian. Numerical models support the hypothesis that a rapid increase in atmospheric pCO2 and nutrient fluxes could generate end-Permian oceanic anoxia/euxinia, and the timing and volume of Siberian Traps eruption provide a mechanism for the expansion of anoxia at the PTB. High resolution records using geochemical proxies that capture globally averaged marine redox conditions hold particular promise for constraining the baseline redox state of Permian oceans, the spatial and temporal distribution of Early Triassic anoxia, and testing the temporal correspondence between Siberian Traps volcanism and Early Triassic variation in marine redox chemistry.

ACKNOWLEDGMENTS

We thank L. Kump and K. Fristad for thoughtful reviews. This work was supported by the National Science Foundation (EAR-0807377 to J.L.P.).

139 REFERENCES

Algeo, T. J., C. M. Henderson, B. B. Ellwood, H. Rowe, E. Elswick, S. Bates, T. W. Lyons, J. C. Hower, C. Smith, B. Maynard, L. E. Hays, R. E. Summons, J. Fulton, and K. H. Freeman. 2012. Evidence for a diachronous Late Permian marine crisis from the Canadian Arctic region. Geological Society of America Bulletin 124:1424-1448.

Algeo, T. J., R. Hannigan, H. Rowe, M. E. Brookfield, A. Baud, L. Krystyn, and B. B. Ellwood. 2007. Sequencing events across the Permian–Triassic boundary, Guryul Ravine (Kashmir, India). Palaeogeography, Palaeoclimatology, Palaeoecology 252:328-346.

Algeo, T. J., Y. Shen, T. Zhang, T. W. Lyons, S. Bates, H. Rowe, and T. K. T. Nguyen. 2008. Association of 34S-depleted pyrite layers with negative carbonate !13C excursions at the Permian-Triassic boundary: evidence for upwelling of sulfidic deep-ocean water masses. Geochemistry, Geophysics, Geosystems 9:1-10.

Algeo, T. J., L. Hinnov, J. Moser, J. B. Maynard, E. Elswick, K. Kuwahara, and H. Sano. 2010. Changes in productivity and redox conditions in the Panthalassic Ocean during the latest Permian. Geology 38:187-190.

Alibo, D. S., and Y. Nozaki. 1999. Rare earth elements in seawater: particle association, shale-normalization, and Ce oxidation. Geochimica et Cosmochimica Acta 63:363-372.

Archer, D., H. Kheshgi, and E. Maier-Reimer. 1997. Multiple timescales for neutralization of fossil fuel CO2. Geophysical Research Letters 24:405-408.

140 Beatty, T. W., J. P. Zonneveld, and C. M. Henderson. 2008. Anomalously diverse Early Triassic ichnofossil assemblages in northwest Pangea: a case for a shallow- marine habitable zone. Geology 36:771-774.

Bond, D. P. G., and P. B. Wignall. 2010. Pyrite framboid study of marine Permian- Triassic boundary sections: a complex anoxic event and its relationship to contemporaneous mass extinction. Geological Society of America Bulletin 122:1265- 1279.

Brand, U., R. Posenato, R. Came, H. Affek, L. Angiolini, K. Azmy, and E. Farabegoli. 2012. The end"Permian mass extinction: a rapid volcanic CO2 and CH4"climatic catastrophe. Chemical Geology 322-323:121-144.

Brennecka, G. A., A. D. Herrmann, T. J. Algeo, and A. D. Anbar. 2011. Rapid expansion of oceanic anoxia immediately before the end-Permian mass extinction. Proceedings of the National Academy of Sciences, USA 108:17631-17634.

Burgess, S. D., S. Bowring, and S.-Z. Shen. 2014. High-precision timeline for Earth’s most severe extinction. Proceedings of the National Academy of Sciences, USA doi: 10.1073/pnas.1317692111.

Cao, C., G. D. Love, L. E. Hays, W. Wang, S. Shen, and R. E. Summons. 2009. Biogeochemical evidence for euxinic oceans and ecological disturbance presaging the end-Permian mass extinction event. Earth and Planetary Science Letters 281:188-201.

Van Cappellen, P., and E. D. Ingall. 1994. Benthic phosphorus regeneration, net primary production, and ocean anoxia: a model of the coupled marine biogeochemical cycles of carbon and phosphorus. Paleoceanography 9:677-692.

141 Casford, J. 2011. Isorenieratene; biomarker for photic layer anoxia? Abstract B21E- 0293 presented at 2011 Fall Meeting, AGU, San Francisco, Calif., 5-9 Dec.

Cortecci, G., E. Reyes, G. Berti, and P. Casati. 1981. Sulfur and oxygen isotopes in Italian marine sulfates of Permian and Triassic ages. Chemical Geology 34:65-79.

Dahl, T. W., E. U. Hammarlund, A. D. Anbar, D. P. G. Bond, B. C. Gill, G. W. Gordon, A. H. Knoll, A. T. Nielsen, N. H. Schovsbo, and D. E. Canfield. 2010. Devonian rise in atmospheric oxygen correlated to the radiations of terrestrial plants and large predatory fish. Proceedings of the National Academy of Sciences, USA 107:17911-17915.

Dolenec, T., S. Lojen, and A. Ramov". 2001. The Permian–Triassic boundary in Western Slovenia (Idrijca Valley section): magnetostratigraphy, stable isotopes, and elemental variations. Chemical Geology 175:175-190.

Dunk, R. M., R. A. Mills, and W. J. Jenkins. 2002. A reevaluation of the oceanic uranium budget for the Holocene. Chemical Geology 190:45-67.

Ehrenberg, S. N., T. A. Svånå, and P. K. Swart. 2008. Uranium depletion across the Permian–Triassic boundary in Middle East carbonates: signature of oceanic anoxia. AAPG Bulletin 92:691-707.

Fio, K., J. E. Spangenberg, I. Vlahovi#, J. Sremac, I. Veli#, and E. Mrinjek. 2010. Stable isotope and trace element stratigraphy across the Permian–Triassic transition: a redefinition of the boundary in the Velebit Mountain, Croatia. Chemical Geology 278:38-57.

German, C. R., and H. Elderfield. 1990. Application of the Ce anomaly as a paleoredox indicator: the ground rules. Paleoceanography 5:823-833.

142

Grice, K., C. Cao, G. D. Love, M. E. Böttcher, R. J. Twitchett, E. Grosjean, R. E. Summons, S. C. Turgeon, W. Dunning, and Y. Jin. 2005. Photic zone euxinia during the Permian-Triassic superanoxic event. Science 307:706-709.

Habicht, K. S., M. Gade, B. Thamdrup, P. Berg, and D. E. Canfield. 2002. Calibration of sulfate levels in the archean ocean. Science 298:2372-2374.

Hallam, A. 1989. The case for sea-level change as a dominant causal factor in mass extinction of marine invertebrates. Philosophical Transactions of the Royal Society of London, Series B: Biological Sciences 325:437-455.

Hays, L. E., T. W. Beatty, and C. M. Henderson. 2007. Evidence for photic zone euxinia through the end-Permian mass extinction in the Panthalassic Ocean (Peace River Basin, Western Canada). Palaeoworld 16:39-50.

Hays, L. E., K. Grice, C. B. Foster, and R. E. Summons. 2012. Biomarker and isotopic trends in a Permian–Triassic sedimentary section at Kap Stosch, Greenland. Organic Geochemistry 43:67-82.

Isozaki, Y. 1997. Permo-Triassic boundary superanoxia and stratified superocean: records from lost deep sea. Science 276:235-238.

Jones, C. E., and H. C. Jenkyns. 2001. Seawater strontium isotopes, oceanic anoxic events, and seafloor hydrothermal activity in the Jurassic and Cretaceous. American Journal of Science 301:112-149.

Kaiho, K. 1994. Benthic foraminiferal dissolved-oxygen index and dissolved-oxygen levels in the modern ocean. Geology 22:719-722.

143 Kajiwara, Y., S. Yamakita, K. Ishida, H. Ishiga, and A. Imai. 1994. Development of a largely anoxic stratified ocean and its temporary massive mixing at the Permian/Triassic boundary supported by the sulfur isotopic record. Palaeogeography, Palaeoclimatology, Palaeoecology 111:367-379.

Kakuwa, Y., and R. Matsumoto. 2006. Cerium negative anomaly just before the Permian and Triassic boundary event — the upward expansion of anoxia in the water column. Palaeogeography, Palaeoclimatology, Palaeoecology 229:335-344.

Kamo, S. L., G. K. Czamanske, Y. Amelin, V. A. Fedorenko, D. W. Davis, and V. R. Trofimov. 2003. Rapid eruption of Siberian flood-volcanic rocks and evidence for coincidence with the Permian–Triassic boundary and mass extinction at 251 Ma. Earth and Planetary Science Letters 214:75-91.

Kato, Y., K. Nakao, and Y. Isozaki. 2002. Geochemistry of Late Permian to Early Triassic pelagic cherts from southwest Japan: implications for an oceanic redox change. Chemical Geology 182:15-34.

Kiehl, J. T., and C. A. Shields. 2005. Climate simulation of the latest Permian: implications for mass extinction. Geology 33:757-760.

Liao, W., Y. Wang, S. Kershaw, Z. Weng, and H. Yang. 2010. Shallow-marine dysoxia across the Permian–Triassic boundary: evidence from pyrite framboids in the microbialite in South China. Sedimentary Geology 232:77-83.

Logan, A., and L. V. Hills, ed. 1973. The Permian and Triassic systems and their mutual boundary. Calgary: Canadian Society of Petroleum Geologists.

Loope, G. R., L. R. Kump, and M. A. Arthur. 2013. Shallow water redox conditions from the Permian–Triassic boundary microbialite: the rare earth element and iodine

144 geochemistry of carbonates from Turkey and South China. Chemical Geology 351:195-208.

Luo, G., L. R. Kump, Y. Wang, J. Tong, M. A. Arthur, H. Yang, J. Huang, H. Yin, and S. Xie. 2010. Isotopic evidence for an anomalously low oceanic sulfate concentration following end-Permian mass extinction. Earth and Planetary Science Letters 300:101-111.

Meyer, K. M., and L. R. Kump. 2008. Oceanic euxinia in Earth history: causes and consequences. Annual Review of Earth and Planetary Sciences 36:251-288.

Meyer, K. M., L. R. Kump, and A. Ridgwell. 2008. Biogeochemical controls on photic-zone euxinia during the end-Permian mass extinction. Geology 36:747-750.

Meyer, K. M., J. L. Macalady, J. M. Fulton, L. R. Kump, I. Schaperdoth, and K. H. Freeman. 2011. Carotenoid biomarkers as an imperfect reflection of the anoxygenic phototrophic community in meromictic Fayetteville Green Lake. Geobiology 9:321- 329.

Mundil, R., K. R. Ludwig, I. Metcalfe, and P. R. Renne. 2004. Age and timing of the Permian mass extinctions: U/Pb dating of closed-system zircons. Science 305:1760- 1763.

Neubert, N., T. F. Nägler, and M. E. Böttcher. 2008. Sulfidity controls molybdenum isotope fractionation into euxinic sediments: evidence from the modern Black Sea. Geology 36:775-778.

Newton, R. J., E. L. Pevitt, P. B. Wignall, and S. H. Bottrell. 2004. Large shifts in the isotopic composition of seawater sulphate across the Permo–Triassic boundary in northern Italy. Earth and Planetary Science Letters 218:331-345.

145

Nielsen, J. K., and Y. Shen. 2004. Evidence for sulfidic deep water during the Late Permian in the East Greenland Basin. Geology 32:1037-1040.

Nielsen, J. K., Y. Shen, S. Piasecki, and L. Stemmerik. 2010. No abrupt change in redox condition caused the end-Permian marine ecosystem collapse in the East Greenland Basin. Earth and Planetary Science Letters 291:32-38.

Nozaki, Y. 2001. Rare earth elements and their isotopes. In Encyclopedia of Ocean Sciences 4, ed. J. H. Steele, S. A. Thorpe, and K. K. Turekian. London: Academic Press, pp. 2354–2366.

Ozaki, K., S. Tajima, and E. Tajika. 2011. Conditions required for oceanic anoxia/euxinia: constraints from a one-dimensional ocean biogeochemical cycle model. Earth and Planetary Science Letters 304:270-279.

Proemse, B. C., S. E. Grasby, M. E. Wieser, B. Mayer, and B. Beauchamp. 2013. Molybdenum isotopic evidence for oxic marine conditions during the latest Permian extinction. Geology 41:967-970.

Renne, P. R., M. T. Black, Z. Zichao, M. A. Richards, and A. R. Basu. 1995. Synchrony and causal relations between Permian-Triassic boundary crises and Siberian flood volcanism. Science 269:1413-1416.

Riccardi, A. L., M. A. Arthur, and L. R. Kump. 2006. Sulfur isotopic evidence for chemocline upward excursions during the end-Permian mass extinction. Geochimica et Cosmochimica Acta 70:5740-5752.

146 Shen, J., T. J. Algeo, L. Zhou, Q. Feng, J. Yu, and B. B. Ellwood. 2012. Volcanic perturbations of the marine environment in South China preceding the latest Permian mass extinction and their biotic effects. Geobiology 10:82-103.

Shen, W., Y. Lin, L. Xu, J. Li, Y. Wu, and Y. Sun. 2007. Pyrite framboids in the Permian–Triassic boundary section at Meishan, China: evidence for dysoxic deposition. Palaeogeography, Palaeoclimatology, Palaeoecology 253:323-331.

Siebert, C., T. F. Nägler, F. von Blanckenburg, and J. D. Kramers. 2003. Molybdenum isotope records as a potential new proxy for paleoceanography. Earth and Planetary Science Letters 211:159-171.

Silva-Tamayo, J. C., J. L. Payne, P. B. Wignall, R. J. Newton, N. Neubert, A. Brueske, A. Eisenhauer, S. Weyer, J. Fietzke, and K. Maher. 2013. Ca, Mo and U isotopes suggest Neoproterozoic-like ocean conditions during the Late Permian mass extinction. Mineralogical Magazine 77:2213.

Sobolev, S. V., A. V. Sobolev, D. V. Kuzmin, N. A. Krivolutskaya, A. G. Petrunin, N. T. Arndt, V. A. Radko, and Y. R. Vasiliev. 2011. Linking mantle plumes, large igneous provinces and environmental catastrophes. Nature 477:312-316.

Song, H., P. B. Wignall, J. Tong, D. P. G. Bond, H. Song, X. Lai, K. Zhang, H. Wang, and Y. Chen. 2012. Geochemical evidence from bio-apatite for multiple oceanic anoxic events during Permian–Triassic transition and the link with end-Permian extinction and recovery. Earth and Planetary Science Letters 353-354:12-21.

Stirling, C. H., M. B. Andersen, E.-K. Potter, and A. N. Halliday. 2007. Low- temperature isotopic fractionation of uranium. Earth and Planetary Science Letters 264:208-225.

147 Svensen, H., S. Planke, A. G. Polozov, N. Schmidbauer, F. Corfu, Y. Y. Podladchikov, and B. Jamtveit. 2009. Siberian gas venting and the end-Permian environmental crisis. Earth and Planetary Science Letters 277:490-500.

Tavakoli, V., and H. Rahimpour-Bonab. 2012. Uranium depletion across Permian– Triassic boundary in Persian Gulf and its implications for paleooceanic conditions. Palaeogeography, Palaeoclimatology, Palaeoecology 350-352:101-113.

Tyrrell, T. 1999. The relative influences of nitrogen and phosphorus on oceanic primary production. Nature 400:525-531.

Voegelin, A. R., T. F. Nägler, E. Samankassou, and I. M. Villa. 2009. Molybdenum isotopic composition of modern and carbonates. Chemical Geology 265:488-498.

Weyer, S., A. D. Anbar, A. Gerdes, G. W. Gordon, T. J. Algeo, and E. A. Boyle. 2008. Natural fractionation of 238U/235U. Geochimica et Cosmochimica Acta 72:345-359.

Wignall, P. B. 1994. Black shales. Oxford: Oxford University Press.

Wignall, P. B., and A. Hallam. 1992. Anoxia as a cause of the Permian/Triassic mass extinction: facies evidence from northern Italy and the western United States. Palaeogeography, Palaeoclimatology, Palaeoecology 93:21-46.

Wignall, P. B., and R. J. Twitchett. 1996. Oceanic anoxia and the end Permian mass extinction. Science 272:1155-1158.

Wignall, P. B., and R. J. Twitchett. 2002. Extent, duration, and nature of the Permian- Triassic superanoxic event. Geological Society of America Special Papers 356:395- 413.

148

Wignall, P. B., R. J. Newton, and M. E. Brookfield. 2005. Pyrite framboid evidence for oxygen-poor deposition during the Permian–Triassic crisis in Kashmir. Palaeogeography, Palaeoclimatology, Palaeoecology 216:183-188.

Wilkin, R. T., H. L. Barnes, and S. L. Brantley. 1996. The size distribution of framboidal pyrite in modern sediments: an indicator of redox conditions. Geochimica et Cosmochimica Acta 60:3897-3912.

Winguth, A. M. E., and E. Maier-Reimer. 2005. Causes of the marine productivity and oxygen changes associated with the Permian-Triassic boundary; a reevaluation with ocean general circulation models. Marine Geology 217:283-304.

Winguth, C., and A. M. E. Winguth. 2012. Simulating Permian-Triassic oceanic anoxia distribution: implications for species extinction and recovery. Geology 40:127- 130.

Woods, A. D., D. J. Bottjer, M. Mutti, and J. Morrison. 1999. Lower Triassic large sea-floor carbonate cements: their origin and a mechanism for the prolonged biotic recovery from the end-Permian mass extinction. Geology 27:645-648.

Zhou, L., P. B. Wignall, J. Su, Q. Feng, S. Xie, L. Zhao, and J. Huang. 2012. U/Mo ratios and !98/95Mo as local and global redox proxies during mass extinction events. Chemical Geology 324-325:99-107.

149 FIGURE CAPTIONS

Figure 4.1. Global paleogeography of the Late Permian-Early Triassic, showing the locations and ocean redox conditions indicated by proxy records discussed in the text.

Black symbols = anoxia/euxinia, grey symbols = dysoxia or intermittent anoxia, white symbols = oxic conditions. Note the global expansion of oceanic anoxia/euxinia seen in most proxy records at the PTB. Base map modified from R. Blakey

(http://cpgeosystems.com/260moll.jpg).

Figure 4.2. Summary of the prevalence of anoxia through time (by proxy). Blue = oxic oceans, grey = some evidence for anoxia/suboxia, black = strong evidence for widespread anoxia, white = no data. The !34S evaporite record is interpreted to reflect changes in the proportion of sulphur buried as pyrite under euxinic conditions. Note the abrupt change from more oxic to more anoxic oceans at the PTB, especially in globally averaged paleoredox proxies.

Figure 4.3. Ocean redox conditions based on changes in ocean circulation rate (in

Sverdrups, Sv) and marine phosphate input in a one-dimensional ocean biogeochemical model (modified after Ozaki et al. 2011). Circles represent Earth system modeling results of end-Permian euxinia from Meyer et al. (2008). Note that the decrease in ocean circulation alone is insufficient to cause ocean anoxia.

150 TABLE CAPTION

Table 4.1. Sensitivity of various proxies to paleoredox conditions. The categories for degree of deoxygenation are: suboxic (0.3–1.5 mL/L O2), dysoxic (0.1–0.3 mL/L O2), anoxic (0–0.1 mL/L O2), and euxinic (anoxic and sulphidic) (Kaiho 1994).

(*Interpreting the spatial extent of deoxygenation from uranium concentrations depends on context. Anoxic facies can record local changes in anoxia and uranium preservation, but shallow-marine carbonates may approximate global ocean changes in uranium concentration and the extent of oceanic anoxia.)

151 FIGURE 4.1. Paleogeography of redox proxies.

152

FIGURE 4.2. Anoxia through time.

153

FIGURE 4.3. Ocean redox model.

154

TABLE 4.1. Redox proxy sensitivity.

155 APPENDIX A: Strontium and carbon isotope data from Tashkent, Turkey (Chapter 1)

Sample Position !13C !18O 87Sr/86Sr 87Sr/86Sr Age (Ma) 87Sr/86Sr Name (m) (‰PDB) (‰PDB) StDev Lab TCX-0 0 253.87 5.113 -5.084 TCX-1 1 253.84 3.884 -5.818 TCX-2 2 253.82 4.977 -5.718 TCX-3 3 253.79 4.708 -5.067 0.70731 0.0009 UCSC TCX-4 4 253.77 5.269 -4.974 TCX-5 5 253.74 4.941 -5.016 TCX-6 6 253.71 4.778 -6.855 TCX-7 7 253.69 4.470 -6.036 0.70696 0.0012 UCSC TCX-8 8 253.66 4.303 -7.673 TCX-9 9 253.64 4.007 -7.041 TCX-10 10 253.61 4.829 -6.111 TCX-11 11 253.59 4.978 -5.437 0.70708 0.0009 UCSC TCX-12 12 253.56 4.825 -5.876 TCX-13 13 253.54 4.277 -5.904 TCX-14 14 253.51 4.725 -6.434 TCX-15 15 253.48 3.994 -5.707 0.70712 0.0009 UCSC TCX-16 16 253.46 4.040 -6.059 TCX-17 17 253.43 4.207 -6.654 TCX-18 18 253.41 4.243 -6.432 TCX-18.6 18.6 253.39 3.666 -6.174 0.70705 0.0008 UCSC TCX-19 A 19 253.38 4.954 -6.070 TCX-19 B 19 253.38 4.936 -6.226 TCX-20 A 20 253.36 3.895 -6.423 TCX-20 B 20 253.36 3.360 -6.493 TCX-21 21 253.33 4.490 -6.114 TCX-22 22 253.30 3.930 -6.725 0.70704 0.0008 UCSC TCX-23 A 23 253.28 4.053 -9.184 TCX-23 B 23 253.28 4.059 -9.219 TCX-24 24 253.25 4.586 -6.392 TCX-25 25 253.23 4.617 -4.579 0.70706 0.0009 UCSC TCX-25 25 253.23 4.507 -4.568 TCX-26 26 253.20 4.598 -6.752 TCX-27 27 253.18 4.310 -6.906 TCX-28 28 253.15 3.348 -6.643 TCX-29 29 253.13 4.337 -5.599 0.70708 0.0009 UCSC TCX-30 A 30 253.10 4.603 -6.129 TCX-30 B 30 253.10 4.607 -6.870 TCX-31 31 253.07 3.837 -5.378 TCX-32 32 253.05 4.783 -4.893 0.70704 0.0009 UCSC TCX-33 33 253.02 2.293 -6.698 TCX-34 34 253.00 3.321 -6.150 TCX-35 35 252.97 3.774 -5.758 TCX-36 36 252.95 3.701 -5.800 0.70704 0.0008 UCSC TCX-37 A 37 252.92 1.611 -5.939 TCX-37 B 37 252.92 1.752 -5.951 TCX-37.5 A 37.5 252.91 2.433 -7.792

156 Sample Position !13C !18O 87Sr/86Sr 87Sr/86Sr Age (Ma) 87Sr/86Sr Name (m) (‰PDB) (‰PDB) StDev Lab TCX-37.5 B 37.5 252.91 2.412 -8.016 TCX-38 38 252.90 2.500 -5.609 TCX-38.5 38.5 252.88 4.220 -5.419 0.70707 0.0007 UCSC TCX-39 39 252.87 4.075 -6.620 TCX-39.5 39.5 252.86 3.846 -6.065 TCX-40 A 40 252.84 4.087 -5.303 TCX-40 B 40 252.84 3.993 -5.272 0.70714 0.0008 UCSC TCX-40.5 40.5 252.83 4.353 -5.018 TCX-41 41 252.82 4.386 -5.537 TCX-41.5 41.5 252.81 4.476 -6.200 TCX-42 42 252.79 3.552 -6.201 0.70708 0.0009 UCSC TCX-42.5 42.5 252.78 4.234 -6.259 TCX-43 43 252.77 4.039 -5.257 TCX-43.5 43.5 252.75 2.887 -6.890 TCX-44 44 252.74 2.250 -6.462 0.70712 0.0008 UCSC TCX-44.5 44.5 252.73 3.701 -5.471 TCX-45 45 252.72 3.697 -6.134 TCX-45.5 A 45.5 252.70 1.336 -5.725 TCX-45.5 B 45.5 252.70 1.545 -5.782 TCX-46 46 252.69 3.595 -6.586 TCX-46.5 A 46.5 252.68 1.503 -6.670 TCX-46.5 B 46.5 252.68 1.507 -6.735 TCX-47 47 252.67 3.613 -5.989 TCX-47.5 47.5 252.65 2.981 -5.930 TCX-48 A 48 252.64 1.723 -7.315 TCX-48 B 48 252.64 1.724 -7.276 TK-0.03 46.83 252.67 3.529 -5.788 TK-0.75 47.55 252.65 2.921 -6.006 TK-1.05 47.85 252.64 3.759 -6.043 TK-1.5 48.3 252.63 2.389 -6.203 TK-1.85 48.65 252.62 3.579 -5.859 TK-2.05 48.85 252.62 3.641 -5.468 TK-2.15 48.95 252.62 3.184 -5.812 TK-2.25 49.05 252.61 3.232 -5.707 TK-2.35 49.15 252.61 2.482 -6.973 TK-2.45 49.25 252.61 2.174 -7.199 TK-2.53 49.33 252.61 2.177 -7.617 TK-2.6 49.4 252.60 2.270 -6.904 TK-2.7 49.5 252.60 1.560 -6.453 TK-2.75 49.55 252.60 1.467 -6.436 TK-2.9 A 49.7 252.60 -1.286 -6.081 TK-2.9 B 49.7 252.60 -1.213 -5.962 TK-3.15 49.95 252.59 0.127 -6.763 TK-3.4 50.2 252.58 0.975 -6.721 TK-3.22 50.02 252.59 1.090 -6.580 TK-3.8 50.6 252.57 -0.030 -6.714 TK-4.15 A 50.95 252.56 0.441 -6.688 TK-4.15 B 50.95 252.56 0.270 -6.828 TK-4.7 51.5 252.55 -1.338 -6.752 TK-5.5 52.3 252.55 0.203 -6.638 TK-6.25 53.05 252.54 -0.427 -6.911

157 Sample Position !13C !18O 87Sr/86Sr 87Sr/86Sr Age (Ma) 87Sr/86Sr Name (m) (‰PDB) (‰PDB) StDev Lab TK-6.7 53.5 252.54 -0.449 -7.109 TK-7.3 54.1 252.54 -0.566 -6.743 TK-8 54.8 252.54 -0.590 -7.122 TK-8.5 55.3 252.53 -0.747 -7.017 TK-10.1 56.9 252.53 -0.522 -6.935 TK-12.3 59.1 252.52 -0.409 -6.940 TK-14.3 61.1 252.51 -0.208 -7.537 TK-15.1 61.9 252.51 -0.269 -7.269 0.70708 0.0008 UCSC TK-16.1 62.9 252.50 -0.214 -7.296 TK-17 63.8 252.50 0.049 -7.120 TK-18.1 64.9 252.50 -0.893 -7.089 TK-19.3 66.1 252.49 -0.532 -7.543 TK-21.5 68.3 252.48 0.231 -7.078 TK-24.3 71.1 252.47 -0.833 -7.400 TK-25.7 72.5 252.47 -1.572 -6.725 0.707066 0.0009 UCSC TK-27.1 73.9 252.46 -0.497 -7.076 TK-28.4 A 75.2 252.45 -0.553 -6.993 TK-28.4 B 75.2 252.45 -0.619 -6.756 TK-29.3 76.1 252.45 -0.440 -6.830 TK-30.6 77.4 252.45 -0.867 -7.009 TK-34.1 80.9 252.43 -0.542 -7.250 TK-35 81.8 252.43 -0.171 -7.230 TK-36.5 83.3 252.42 0.335 -7.133 TK-38 84.8 252.42 -0.672 -7.069 TK-39 85.8 252.41 -1.183 -7.225 TK-40.1 86.9 252.41 -0.519 -7.971 TK-41 87.8 252.40 -0.356 -6.975 TK-42.5 89.3 252.40 -0.774 -6.890 TK-44 90.8 252.39 0.514 -7.389 TK-45.5 92.3 252.38 -1.245 -7.315 TK-47 93.8 252.38 -0.466 -7.696 TK-48.5 95.3 252.37 -0.586 -7.322 TK-49 95.8 252.37 -0.123 -6.671 TK-50 96.8 252.37 -0.976 -7.319 TK-51 97.8 252.36 -1.266 -7.069 0.707131 0.0007 UCSC TK-52.5 99.3 252.36 -0.322 -6.973 TK-54.5 101.3 252.35 1.005 -7.018 TK-55 A 101.8 252.35 0.676 -7.353 TK-55 B 101.8 252.35 0.779 -7.409 TK-55.5 102.3 252.34 -0.806 -6.631 TK-56 102.8 252.34 -0.299 -6.748 TK-57 103.8 252.34 0.401 -7.470 TK-57.5 A 104.3 252.34 0.634 -7.467 TK-57.5 B 104.3 252.34 1.096 -7.444 TK-58.7 105.5 252.33 2.231 -7.406 TK-59.5 106.3 252.33 1.883 -7.418 TK-61.5 108.3 252.32 0.808 -7.143 TK-62 108.8 252.31 0.264 -7.934 TK-64.5 111.3 252.30 1.603 -8.000 TK-72 118.8 252.26 1.020 -7.542 TK-76.5 123.3 252.23 -0.003 -8.185

158 Sample Position !13C !18O 87Sr/86Sr 87Sr/86Sr Age (Ma) 87Sr/86Sr Name (m) (‰PDB) (‰PDB) StDev Lab TK-78 124.8 252.22 0.707227 0.0007 UCSC TK-88 134.8 252.17 0.494 -7.435 TK-95.5 142.3 252.12 0.264 -7.417 0.7072 0.0008 UCSC TK-109 155.8 252.05 1.778 -6.651 B-125 171.8 251.96 1.285 -7.507 TK-128 174.8 251.94 1.062 -7.151 TK-129.5 176.3 251.93 1.274 -8.176 TK-131 177.8 251.92 1.160 -8.332 TK-132.5 179.3 251.92 0.492 -7.554 TK-133.5 180.3 251.91 1.505 -8.193 TK-135 181.8 251.90 1.083 -8.022 TK-136.5 183.3 251.89 0.776 -7.570 TK-139.5 186.3 251.88 0.878 -6.229 TK-139.5 186.3 251.88 0.775 -6.557 TK-141 187.8 251.87 0.189 -7.616 TK-142.5 A 189.3 251.86 1.215 -9.096 TK-142.5 B 189.3 251.86 1.091 -9.036 TK-144 190.8 251.85 1.239 -8.153 TK-147 193.8 251.83 1.452 -7.833 TK-148.5 195.3 251.83 1.429 -7.592 TK-151 197.8 251.81 1.595 -8.154 0.7073 0.0008 UCSC TK-152.5 199.3 251.80 0.471 -8.282 TK-154 200.8 251.79 1.581 -8.537 TK-162 A 208.8 251.75 1.261 -7.681 TK-162 B 208.8 251.75 1.270 -7.860 TK-163 209.8 251.74 2.227 -7.555 TK-169 215.8 251.71 0.135 -8.131 TK-176.2 223 251.67 1.313 -7.986 0.707486 0.0008 UCSC TK-183 229.8 251.63 3.160 -8.351 TK-184.5 231.3 251.62 2.847 -8.670 TK-201 A 247.8 251.53 3.318 -7.827 0.707817 0.0008 UCSC TK-201 B 247.8 251.53 3.127 -7.705 TK-202 A 248.8 251.52 2.030 -8.106 TK-202 B 248.8 251.52 1.986 -8.147 TK-204.5 A 251.3 251.51 5.525 -8.217 TK-204.5 B 251.3 251.51 5.817 -7.824 TK-207 A 253.8 251.50 6.435 -7.741 TK-207 B 253.8 251.50 6.336 -7.529 TK-209 255.8 251.47 3.582 -8.184 TK-226 272.8 251.23 2.044 -8.350 0.70786 0.0008 UCSC TK-227.8 274.6 251.20 2.132 -8.286 TK-234 280.8 251.12 0.866 -8.002 TK-238 284.8 251.06 -0.335 -8.660 TK-241 287.8 251.02 -0.647 -8.444 TK-252 298.8 250.86 -1.644 -7.864 0.707892 0.0008 UCSC TK-261 307.8 250.68 -1.484 -8.110 TK-262.5 309.3 250.66 -1.550 -8.504 TK-265.5 312.3 250.60 -1.568 -7.975 TK-268 314.8 250.55 -1.467 -8.304 TK-269.5 316.3 250.52 -1.305 -8.146 TK-271 317.8 250.49 -1.591 -8.187 0.70782 0.0009 UCSC

159 Sample Position !13C !18O 87Sr/86Sr 87Sr/86Sr Age (Ma) 87Sr/86Sr Name (m) (‰PDB) (‰PDB) StDev Lab TK-281.7 328.5 250.28 -1.439 -7.860 TK-285 331.8 250.21 -1.447 -8.424 TK-287 333.8 250.17 -1.717 -8.007 TK-289 335.8 250.13 -1.552 -8.316 TK-290 336.8 250.11 -1.526 -8.022 TK-294.2 341 250.03 -1.988 -7.427 TK-296 342.8 250.00 -1.641 -7.679 TK-297.5 344.3 249.97 -1.822 -7.953 TK-300.5 347.3 249.91 -1.353 -8.003 0.707131 0.0007 UCSC TK-303.5 350.3 249.85 -1.332 -8.067 TK-305 351.8 249.82 -0.709 -7.631 TK-306.5 353.3 249.79 -0.963 -8.260 TK-308.5 A 355.3 249.75 -0.978 -8.101 TK-308.5 B 355.3 249.75 -0.992 -8.184 TK-310 356.8 249.72 3.104 -6.515 TK-313.5 360.3 249.65 3.164 -7.086 TK-315 361.8 249.62 3.546 -6.755 TK-316.2 363 249.60 1.334 -7.369 TK-317 363.8 249.58 1.954 -7.165 TK-318.5 365.3 249.55 2.212 -6.995 TK-321 A 367.8 249.50 0.095 -7.967 TK-321 B 367.8 249.50 0.157 -7.774 TK-329 375.8 249.35 -0.040 -6.661 0.708123 0.0008 UCSC TK-349.5 396.3 249.08 -2.028 -7.063 TK-351 397.8 249.06 -1.693 -7.270 0.70824 0.0011 UCSC TK-352.8 399.6 249.04 -0.946 -7.476 TK-354.4 401.2 249.02 -0.607 -7.134 TK-362.5 409.3 248.91 0.009 -7.390 TK-364.5 411.3 248.88 0.108 -7.370 TK-366 412.8 248.86 -0.102 -6.784 TK-368 414.8 248.84 -0.025 -7.505 TK-371.5 418.3 248.79 -0.556 -7.335 TK-372.5 419.3 248.78 -0.344 -7.326 TK-374.5 421.3 248.75 -0.891 -6.727 TK-376 422.8 248.73 -0.244 -7.326 0.708081 0.001 UCSC TK-377.5 424.3 248.71 -0.412 -7.672 TK-379 425.8 248.70 0.142 -7.808 TK-381.5 428.3 248.66 -0.083 -7.423 TK-383 429.8 248.64 0.034 -6.918 TK-386 432.8 248.60 -0.399 -7.566 TK-389 A 435.8 248.56 -0.514 -7.384 0.708098 0.0008 UCSC TK-389 B 435.8 248.56 -0.446 -7.313 TK-390.5 437.3 248.55 -0.309 -7.662 TK-402 448.8 248.40 -0.852 -7.564 0.70814 0.001 UCSC TK-406 452.8 248.34 -0.176 -6.977 TK-424 470.8 248.11 -0.879 -7.531 TK-426 472.8 248.08 -0.925 -7.371 0.7081 0.0008 UCSC TK-427.5 474.3 248.06 -0.564 -7.123 TK-438 484.8 247.93 -0.801 -7.304 TK-439.5 486.3 247.91 -0.847 -7.636 TK-447.5 494.3 247.80 -1.295 -7.665

160 Sample Position !13C !18O 87Sr/86Sr 87Sr/86Sr Age (Ma) 87Sr/86Sr Name (m) (‰PDB) (‰PDB) StDev Lab TK-450.5 497.3 247.76 -2.013 -7.771 0.708208 0.001 UCSC TK-455.5 502.3 247.70 -1.403 -7.886 TK-460 506.8 247.64 -0.209 -7.712 TK-461.5 508.3 247.62 -0.580 -7.449 TK-463 509.8 247.60 0.192 -7.691 TK-464.5 511.3 247.58 0.116 -7.202 TK-466 A 512.8 247.56 0.594 -5.904 TK-466 B 512.8 247.56 0.555 -6.153 TK-467.5 514.3 247.54 0.450 -6.916 TK-469 515.8 247.52 -0.367 -7.027 TK-471.5 518.3 247.49 0.098 -4.159 TK-473.5 520.3 247.46 0.425 -3.924 TK-474.8 521.6 247.45 0.377 -3.762 0.708375 0.0008 UCSC TK-476.5 523.3 247.42 -0.414 -5.133 TK-478 A 524.8 247.40 -0.197 -6.383 TK-478 B 524.8 247.40 -0.211 -6.548 TK-479.5 526.3 247.38 -1.009 -4.130 TK-481 527.8 247.37 0.035 -4.658 TK-482.5 529.3 247.35 0.699 -4.021 TK-487.7 534.5 247.28 0.953 -2.691 TK-489.5 536.3 247.25 0.957 -2.805 TK-491.5 538.3 247.23 0.555 -2.338 TK-494 540.8 247.20 2.542 -5.616 TK-496.8 A 543.6 247.16 -0.559 -6.371 TK-496.8 B 543.6 247.16 -0.646 -6.400 TK-498.5 545.3 247.14 2.656 -5.392 TK-501 547.8 247.10 3.600 -6.149 0.70809 0.0009 UCSC TK-509 A 555.8 247.00 -0.437 -6.327 TK-509 B 555.8 247.00 -0.508 -6.462 TK-510.5 557.3 246.98 3.292 -5.271 TK-512 558.8 246.96 4.266 -5.501 TK-514.5 561.3 246.93 4.364 -5.024 TK-515.5 562.3 246.92 1.878 -6.053 TK-517.5 564.3 246.91 2.437 -5.508 TK-523.5 570.3 246.86 2.924 -3.752 TK-526.5 573.3 246.84 0.214 -3.790 0.708194 0.001 UCSC TK-531 577.8 246.80 1.058 -3.308 TK-540 586.8 246.73 -0.839 -3.067 TK-543 A 589.8 246.71 -1.134 -4.146 TK-543 B 589.8 246.71 -1.090 -4.218 TK-543 C 589.8 246.71 -1.091 -4.155 TK-546 592.8 246.69 -0.907 -3.164 0.710414 0.001 UCSC TK-562 608.8 246.57 -1.535 -3.402 TK-566 612.8 246.54 -3.005 -3.029 TK-568.3 615.1 246.52 -1.175 -2.621 TK-571 617.8 246.50 -0.209 -2.600 TK-573.2 620 246.48 -1.799 -2.667 TK-574.2 621 246.48 -1.818 -2.739 TK-578.5 625.3 246.44 -1.968 -2.463 TK-582.3 629.1 246.41 -3.509 -2.721 TK-582.3 629.1 246.41 -3.442 -2.978

161 Sample Position !13C !18O 87Sr/86Sr 87Sr/86Sr Age (Ma) 87Sr/86Sr Name (m) (‰PDB) (‰PDB) StDev Lab TK-600 A 646.8 246.28 -0.271 -3.208 0.708099 0.0008 UCSC TK-600 B 646.8 246.28 -0.465 -3.590 TK-603 649.8 246.26 0.675 -3.936 TK-604.5 651.3 246.25 1.635 -4.091 TK-606 A 652.8 246.23 1.646 -4.117 TK-606 B 652.8 246.23 1.610 -3.881 TK-607 A 653.8 246.23 -2.875 -3.813 TK-607 B 653.8 246.23 -3.066 -3.931 TK-627 673.8 246.08 0.326 -6.835 TK-628 674.8 246.07 0.753 -6.816 TK-629.5 676.3 246.06 1.477 -6.049 TK-631 677.8 246.04 0.921 -6.607 TKU-0 680 246.03 -0.145 -6.814 0.70781 0.0008 UCSC TKU-2 682 246.01 1.012 -6.227 TKU-3 683 246.01 1.410 -6.024 TKU-3.8 683.8 246.00 0.439 -5.531 0.707687 0.001 UCSC TKU-25 705 245.84 0.626 -5.261 TKU-26.4 706.4 245.83 0.838 -5.907 TKU-29 709 245.81 1.043 -6.223 0.70763 0.0008 UCSC TKU-31.2 711.2 245.79 0.874 -7.294 0.707651 0.0011 UCSC TKU-34 714 245.77 1.582 -6.659 TKU-37 717 245.75 1.375 -6.879 TKU-40 720 245.72 1.529 -6.719 TKU-42.8 722.8 245.70 1.696 -7.088 0.707643 0.0015 UCSC TKU-44 A 724 245.69 0.797 -6.917 TKU-44 B 724 245.69 0.935 -6.951 TKU-47 727 245.67 1.222 -6.937 TKU-50 730 245.65 1.388 -6.851 TKU-53 733 245.63 1.469 -6.809 0.707679 0.0009 UCSC TKU-56 736 245.60 1.406 -6.278 TKU-59 739 245.58 1.391 -6.320 0.70767 0.0007 UCSC TKU-62.8 742.8 245.55 -0.128 -5.625 TKU-63.7 743.7 245.54 0.156 -5.352 TKU-66.7 746.7 245.52 0.707681 0.0009 UCSC TKU-196 876 244.54 1.341 -6.823 0.70775 0.0009 UCSC TKU-199 879 244.52 1.500 -7.128 TKU-202 A 882 244.50 1.490 -8.477 TKU-202 B 882 244.50 1.517 -8.579 TKU-205 885 244.47 1.899 -7.265 0.707768 0.0014 UCSC TKU-207.5 887.5 244.45 1.942 -7.070 TKU-215.4 A 895.4 244.39 0.324 -7.372 TKU-215.4 B 895.4 244.39 0.304 -7.333 TKU-218.5 898.5 244.37 1.456 -7.227 TKU-222 902 244.34 1.888 -7.620 0.708335 0.0021 UCSC TKU-225 905 244.32 1.929 -6.535 TKU-226.2 906.2 244.31 2.157 -6.579 TKU-228 908 244.30 1.782 -6.652 TKU-231.9 911.9 244.27 1.817 -7.266 0.707737 0.001 UCSC TKU-238 918 244.22 1.931 -7.112 TKU-241 921 244.20 1.934 -7.192 TKU-235 915 244.25 1.746 -7.092

162 Sample Position !13C !18O 87Sr/86Sr 87Sr/86Sr Age (Ma) 87Sr/86Sr Name (m) (‰PDB) (‰PDB) StDev Lab TKU-237.1 917.1 244.23 1.589 -7.247 0.707713 0.0009 UCSC TKU-244 924 244.18 1.912 -7.245 TKU-248.2 928.2 244.15 1.842 -6.559 TKU-252.1 932.1 244.12 1.593 -7.475 TKU-255.6 935.6 244.09 1.933 -6.393 0.707793 0.0089 UCSC TKU-260.2 940.2 244.05 2.090 -7.441 TKU-302 982 243.74 1.550 -7.254 0.70772 0.0008 UCSC TKU-305 985 243.71 1.655 -7.030 TKU-311 991 243.67 1.694 -5.842 0.707915 0.0009 UCSC TKU-314.6 A 994.6 243.64 1.846 -6.855 TKU-314.6 B 994.6 243.64 1.746 -6.809 TKU-316.9 996.9 243.62 1.925 -6.525 TKU-319.4 999.4 243.61 1.754 -7.428 TKU-322.9 A 1002.9 243.58 1.734 -7.496 TKU-322.9 B 1002.9 243.58 1.852 -7.214 TKU-325 1005 243.56 1.589 -7.313 TKU-328 A 1008 243.54 1.888 -5.904 TKU-328 B 1008 243.54 1.938 -5.808 TKU-331 1011 243.52 1.932 -7.336 0.70774 0.0009 UCSC TKU-334 1014 243.49 1.983 -7.167 TKU-337 A 1017 243.47 1.580 -6.281 TKU-337 B 1017 243.47 1.622 -6.405 TKU-340 1020 243.45 1.969 -7.334 TKU-343 A 1023 243.43 1.549 -6.946 TKU-343 B 1023 243.43 1.708 -6.960 TKU-346.5 1026.5 243.40 2.107 -6.764 TKU-349.1 1029.1 243.38 1.897 -6.623 TKU-352 1032 243.36 1.762 -7.232 TKU-355 A 1035 243.34 2.315 -7.645 TKU-355 B 1035 243.34 2.305 -7.683 TKU-358 1038 243.31 1.926 -7.589 TKU-361 1041 243.29 1.887 -7.738 0.70768 0.0008 UCSC TKU-363 A 1043 243.27 2.210 -7.056 TKU-363 B 1043 243.27 2.196 -7.076 TKU-364 1044 243.27 1.775 -7.305 TKU-367 1047 243.24 1.893 -7.127 TKU-370 A 1050 243.22 1.594 -7.180 TKU-370 B 1050 243.22 1.609 -7.252 TKU-373 1053 243.20 1.663 -6.890 TKU-376 1056 243.18 1.201 -7.362 TKU-377 1057 243.17 1.480 -6.526 TKU-379.5 1059.5 243.15 1.493 -6.254 TKU-380 1060 243.15 0.919 -6.813 TKU-384.3 1064.3 243.11 1.314 -6.887 TKU-389.6 1069.6 243.07 1.604 -7.161 0.70767 0.0008 UCSC

163 APPENDIX B: Strontium and carbon isotope data from the Great Bank of Guizhou, south China (Chapter 1)

Note: Sample locations are abbreviated as follows: HTC = Hochang, LGB/LGC = Guandao, PDJ = Dajiang, PDW = Dawen, PGD = Guandao, PUG/C = Upper Guandao.

Conodont samples:

Sample Position 87Sr/86Sr 87Sr/86Sr Age (Ma) 87Sr/86Sr Name (m) StDev Lab HTC-37.0 46 252.30 0.707278 0.000080 UCSC HTC-39.0 48 252.27 0.707230 0.000071 UCSC HTC-41.5 50.5 252.24 0.707315 0.000083 UCSC HTC-43.0 52 252.22 0.707365 0.000157 UCSC

LGB-0.3 0.3 252.88 0.707302 0.000087 UCSC LGC-269.2 249.24 248.29 0.708377 0.000202 UCSC LGC-285.8 265.31 247.40 0.708348 0.000116 UCSC LGC-288.3 267.75 247.27 0.708354 0.000119 UCSC

Bulk carbonate samples:

Sample Position !13C !18O 87Sr/86Sr 87Sr/86Sr Age (Ma) 87Sr/86Sr Name (m) (‰PDB) (‰PDB) StDev Lab PDJ-001 0 252.72 3.175 -3.767 PDJ-002 1.5 252.72 3.492 -3.637 0.707216 0.001 UCSC PDJ-003 3 252.71 3.611 -4.025 PDJ-004 4 252.71 3.368 -4.015 PDJ-005 5 252.71 3.478 -3.719 PDJ-006 6 252.70 3.450 -3.590 PDJ-007 7 252.70 3.297 -3.894 PDJ-009 9 252.70 3.526 -2.677 0.70726 0.00003 UCSC PDJ-010 10 252.69 3.314 -3.775 PDJ-011 11 252.69 3.204 -3.763 PDJ-013 13 252.68 3.267 -5.227 PDJ-015 15.4 252.68 3.441 -3.852 PDJ-017 16.4 252.67 3.225 -4.778 0.707497 0.000019 Berkeley PDJ-020 18.8 252.67 3.187 -3.379 0.707179 0.0009 UCSC PDJ-020 18.8 252.67 3.225 -3.341 PDJ-021 20 252.66 3.188 -4.750 PDJ-022 21 252.66 3.180 -4.973 PDJ-023 22.2 252.66 3.298 -3.833 PDJ-025 24.3 252.65 2.895 -3.962 0.707203 0.0009 UCSC PDJ-026 25.6 252.65 3.018 -4.047 0.707163 0.000005 Berkeley PDJ-027 27 252.64 2.703 -4.709 PDJ-029 29 252.64 2.883 -3.680 PDJ-030 30 252.63 2.524 -5.147 0.707521 0.000017 Berkeley PDJ-031 31 252.63 2.665 -6.708

164 Sample Position !13C !18O 87Sr/86Sr 87Sr/86Sr Age (Ma) 87Sr/86Sr Name (m) (‰PDB) (‰PDB) StDev Lab PDJ-033 33 252.63 2.875 -3.440 0.70722 0.00003 UCSC PDJ-034 34 252.62 2.482 -5.710 PDJ-036 36 252.62 2.401 -4.928 0.707196 0.0009 UCSC PDJ-037 37 252.61 1.893 -5.188 PDJ-040 39.7 252.61 2.221 -5.305 0.70714 0.00003 UCSC PDJ-041 40.5 252.60 1.760 -5.873 PDJ-042 41.1 252.60 1.684 -8.624 PDJ DC-1 A 41.6 252.60 2.290 -2.971 PDJ DC-1 B 41.6 252.60 1.658 -3.959 PDJ DC-1 C 41.6 252.60 1.099 -3.935 0.7072 0.0009 UCSC PDJ DC-1 D 41.6 252.60 2.132 -3.012 0.707148 0.0009 UCSC PDJ-044 42.5 252.60 0.949 -4.009 0.707438 0.000084 Berkeley PDJ-045 43.9 252.59 0.247 -4.353 PDJ-046 44.5 252.59 2.068 -2.699 0.7072 0.00003 UCSC PDJ-047 45.5 252.59 1.859 -3.002 0.707212 0.0008 UCSC PDJ-048 46.3 252.59 1.280 -3.024 PDJ-049 46.7 252.59 1.242 -3.441 PDJ-050 47.3 252.58 0.367 -4.481 0.707296 0.000014 Berkeley PDJ-051 48.2 252.58 0.428 -3.707 PDJ-052 49.2 252.58 0.388 -2.995 0.707221 0.0009 UCSC PDJ-053 50 252.58 0.026 -4.222 0.707259 0.000006 Berkeley PDJ-054 50.6 252.57 -0.139 -4.710 PDJ-055 51.6 252.57 -0.030 -6.003 PDJ-056 52.4 252.57 0.092 -4.762 PDJ-057 53.5 252.57 0.303 -4.374 PDJ-058 54.2 252.56 0.541 -3.937 PDJ-059 55.1 252.56 0.211 -3.764 PDJ-060 56 252.56 0.699 -3.988 PDJ-061 56.4 252.56 0.659 -4.044 PDJ-062 56.9 252.56 1.048 -3.872 PDJ-063 57.3 252.55 0.404 -3.025 PDJ-064 57.4 252.55 1.429 -4.712 0.70733 0.00003 UCSC PDJ-065 57.8 252.55 0.927 -5.384 PDJ-066 58.7 252.55 -1.061 -5.798 PDJ-067 59.4 252.55 2.118 -5.897 PDJ-068 60.4 252.55 1.866 -5.317 0.70725 0.000006 Berkeley PDJ-069 61.1 252.54 1.315 -5.354 PDJ-070 62 252.54 0.809 -5.562 PDJ-071 62.9 252.54 1.458 -5.209 PDJ-071 62.9 252.54 1.493 -5.147 PDJ-072 63.9 252.53 1.697 -4.404 0.707276 0.000014 Berkeley PDJ-073 64.4 252.53 1.924 -4.838 PDJ-074 65.4 252.53 1.964 -4.753 PDJ-075 66 252.53 2.306 -4.465 0.707157 0.000004 Berkeley PDJ-076 66.9 252.53 2.513 -4.746 PDJ-080 70.1 252.52 2.192 -4.920 PDJ-081 70.7 252.52 0.707313 0.000018 Berkeley PDJ-089 77.6 252.49 2.148 -4.137 PDJ-090 78.5 252.49 2.287 -4.401 0.707212 0.000015 Berkeley PDJ-091 79.7 252.49 2.331 -3.107

165 Sample Position !13C !18O 87Sr/86Sr 87Sr/86Sr Age (Ma) 87Sr/86Sr Name (m) (‰PDB) (‰PDB) StDev Lab PDJ-092 80.6 252.49 2.402 -3.438 PDJ-093 81.2 252.48 2.123 -2.802 PDJ-094 82.3 252.48 2.158 -4.595 PDJ-095 83.5 252.48 2.117 -4.807 PDJ-096 84.3 252.48 2.326 -3.909 PDJ-097 85.2 252.47 2.161 -2.412 PDJ-098 86.1 252.47 2.368 -3.352 PDJ-099 86.9 252.47 2.467 -2.997 PDJ-100 87.6 252.47 2.428 -2.818 PDJ-101 88.4 252.46 2.478 -3.272 PDJ-102 89.4 252.46 2.454 -2.404 PDJ-103 89.9 252.46 2.371 -2.163 PDJ-104 91.1 252.46 2.379 -2.641 PDJ-105 92.5 252.45 2.206 -3.665 PDJ-107 93.8 252.45 2.396 -3.436 PDJ-108 95 252.44 2.469 -2.436 PDJ-109 95.8 252.44 2.345 -5.153 PDJ-110 96.5 252.44 2.285 -6.076 PDJ-110 96.5 252.44 2.304 -6.021 PDJ-111 97.4 252.44 2.442 -5.637 PDJ-112 97.9 252.44 2.139 -4.424 PDJ-113 98.9 252.43 2.120 -5.279 PDJ-114 99.6 252.43 2.039 -4.128 PDJ-115 100.4 252.43 1.963 -6.079 PDJ-115 100.4 252.43 1.951 -6.111 PDJ-116 101.2 252.43 1.889 -6.892 PDJ-117 102 252.42 1.674 -4.669 PDJ-118 103 252.42 1.801 -4.661 PDJ-119 103.8 252.42 1.846 -7.290 PDJ-120 104.3 252.42 2.247 -5.504 PDJ-121 105.3 252.41 2.587 -4.848 PDJ-122 106.7 252.41 2.263 -5.730 PDJ-123 108.1 252.41 2.206 -6.501 PDJ-124 109.9 252.40 2.283 -4.982 PDJ-124 109.9 252.40 2.303 -4.936 PDJ-125 112.2 252.39 2.747 -3.287 PDJ-126 115.4 252.38 2.235 -3.077 PDJ-127 118.2 252.38 2.821 -2.943 PDJ-128 121.4 252.37 2.694 -3.306 PDJ-129 123.7 252.36 2.304 -4.202 PDJ-130 126.5 252.35 2.115 -3.445 PDJ-131 129 252.34 2.050 -3.589 PDJ-132 131 252.34 2.823 -1.927 PDJ-133 133.7 252.33 3.029 -2.220 PDJ-134 136.1 252.32 2.388 -3.312 PDJ-135 139.8 252.31 2.705 -2.962 PDJ-136 142.8 252.30 2.628 -3.150 PDJ-137 148.2 252.29 2.941 -2.567 PDJ-138 151.4 252.28 1.778 -3.465 PDJ-139 153.3 252.27 1.988 -3.052

166 Sample Position !13C !18O 87Sr/86Sr 87Sr/86Sr Age (Ma) 87Sr/86Sr Name (m) (‰PDB) (‰PDB) StDev Lab PDJ-140 156.2 252.27 1.714 -4.431 PDJ-141 159.2 252.26 2.171 -3.400 PDJ-142 163.2 252.25 2.017 -3.656 PDJ-143 165 252.24 2.311 -3.972 PDJ-145 169.5 252.23 1.535 -3.471 PDJ-147a 171.5 252.22 2.075 -3.435 PDJ-147b 171.5 252.22 2.102 -3.601 PDJ-146 171.7 252.22 2.350 -3.236 PDJ-148 176 252.21 2.851 -3.001 PDJ-150 184 252.18 2.021 -4.089 PDJ-150 184 252.18 2.039 -4.072 PDJ-151 185.5 252.18 2.029 -3.395 PDJ-152 193.6 252.16 2.178 -3.837 PDJ-153 194.7 252.15 1.426 -4.550 PDJ-154 198.5 252.14 1.896 -2.640 PDJ-155 199.2 252.14 2.204 -3.046 PDJ-157 203.1 252.13 0.860 -3.109 PDJ-158 204.2 252.12 0.604 -4.527 PDJ-158 204.2 252.12 0.631 -4.475 PDJ-159 204.4 252.12 0.415 -4.469 PDJ-160 204.7 252.12 0.595 -4.156 PDJ-161 206.5 252.11 0.971 -6.231 PDJ-162 207.5 252.11 1.105 -4.887 PDJ-163 208.8 252.10 1.184 -5.236 PDJ-164 209.5 252.10 1.173 -4.873 PDJ-165a 210.8 252.10 1.089 -4.261 PDJ-166 211.6 252.09 0.881 -3.922 PDJ-167 212.75 252.09 0.781 -5.064 PDJ-168 215.05 252.08 0.622 -4.702 PDJ-169 215.8 252.07 0.622 -4.520 PDJ-170 217.5 252.07 0.768 -4.567 PDJ-171 218.8 252.06 1.005 -4.886 PDJ-172 220.2 252.05 0.625 -5.181 PDJ-173 221.05 252.05 0.694 -4.600 PDJ-175 222.9 252.04 -0.689 -3.549 PDJ-176 227.6 252.02 0.614 -5.261 PDJ-177 229.35 252.01 0.582 -5.339 PDJ-179 230.6 252.01 0.488 -5.499 PDJ-180 231.6 252.00 0.971 -4.951 PDJ-181 232.1 252.00 1.087 -5.103 PDJ-184 235.1 251.99 -0.195 -4.609 PDJ-186 235.7 251.99 0.550 -4.902 PDJ-187 236.2 251.98 0.431 -4.259 0.70729 0.00002 UCSC PDJ-188 236.75 251.98 0.442 -5.262 PDJ-190 237.55 251.98 -0.418 -4.365 PDJ-191 237.75 251.98 0.760 -4.414 PDJ-192 238.9 251.97 0.815 -5.069 PDJ-193 239.3 251.97 0.267 -5.349 PDJ-194 240.8 251.96 0.776 -5.319 PDJ-195 240.9 251.96 1.148 -5.023

167 Sample Position !13C !18O 87Sr/86Sr 87Sr/86Sr Age (Ma) 87Sr/86Sr Name (m) (‰PDB) (‰PDB) StDev Lab PDJ-196 242.45 251.96 0.589 -5.586 PDJ-197 243.3 251.95 0.453 -6.225 PDJ-198 244.8 251.95 0.868 -5.134 PDJ-199 245.25 251.95 1.203 -5.638 PDJ-200 250.2 251.92 1.246 -5.093 PDJ-201 251 251.92 2.155 -5.368 PDJ-202 251.4 251.92 1.224 -5.521 PDJ-203 252.2 251.92 1.017 -5.437 PDJ-204 252.9 251.91 2.460 -5.076 PDJ-205 255.4 251.90 2.613 -4.841 PDJ-206 257.5 251.89 3.027 -4.338 PDJ-209 261.7 251.87 3.261 -5.119 PDJ-210 262.2 251.87 3.102 -4.431 PDJ-211 263.9 251.86 3.078 -5.327 PDJ-212 267.8 251.85 2.248 -4.281 PDJ-213 268.6 251.84 2.396 -3.447 PDJ-214 270.6 251.83 2.000 -4.878 PDJ-215 272.6 251.83 2.470 -4.775 PDJ-216 274.1 251.82 2.540 -5.046 PDJ-217 275.3 251.81 3.114 -5.444 PDJ-218 277.2 251.81 3.159 -4.921 PDJ-219 278.5 251.80 2.551 -4.242 0.70803 0.00004 UCSC PDJ-220 279.2 251.80 2.328 -3.618 PDJ-221 279.7 251.80 2.103 -4.545 PDJ-222 280.3 251.79 2.454 -4.382 PDJ-223 281.1 251.79 2.944 -5.072 PDJ-224 282.2 251.78 2.076 -4.729 PDJ-225 283.7 251.78 2.670 -3.859 PDJ-227 285.1 251.77 0.322 -4.143 PDJ-228 285.6 251.77 3.288 -4.457 PDJ-229 286.2 251.77 3.242 -5.073 PDJ-230 286.7 251.76 3.026 -4.921 PDJ-231 287.8 251.76 3.142 -4.691 PDJ-232 288.5 251.76 3.382 -4.967 PDJ-233 290.2 251.75 3.582 -3.644 PDJ-234 291.5 251.74 3.678 -3.355 PDJ-235 292.2 251.74 3.755 -3.263 PDJ-236 293.3 251.74 3.848 -4.672 PDJ-237a 295.7 251.73 3.288 -4.368 PDJ-237 296.7 251.72 3.263 -4.071 PDJ-238 297.2 251.72 3.433 -4.531 PDJ-239 297.9 251.72 3.619 -4.075 PDJ-240 298.4 251.71 2.651 -4.272 PDJ-241 301 251.70 3.588 -4.510 PDJ-242 301.6 251.70 1.920 -3.566 PDJ-243 302.6 251.70 3.638 -4.655 PDJ-244 303.8 251.69 3.695 -4.528 PDJ-245 306.4 251.68 4.376 -4.341 PDJ-246 307.8 251.67 3.591 -4.580 PDJ-247 309.1 251.67 3.215 -4.693

168 Sample Position !13C !18O 87Sr/86Sr 87Sr/86Sr Age (Ma) 87Sr/86Sr Name (m) (‰PDB) (‰PDB) StDev Lab PDJ-248 311.5 251.66 4.456 -3.571 PDJ-249 313.3 251.65 3.380 -4.403 PDJ-250 314.3 251.64 3.158 -4.560 PDJ-251 314.7 251.64 -0.007 -3.503 PDJ-252 315.5 251.64 4.138 -4.312 PDJ-253 316.5 251.64 3.706 -4.569 PDJ-254 316.7 251.63 3.154 -3.427 PDJ-255 318.2 251.63 4.260 -4.250 PDJ-256 319.3 251.62 4.083 -4.453 PDJ-257 321.2 251.61 2.626 -5.006 PDJ-258 321.7 251.61 3.951 -4.279 PDJ-259 322.6 251.61 3.367 -4.639 PDJ-260 323.1 251.61 3.312 -4.595 PDJ-261 323.4 251.60 4.177 -4.273 PDJ-262 323.8 251.60 4.139 -4.652 PDJ-263 325.6 251.60 4.042 -5.217 PDJ-264 328.1 251.58 4.417 -5.744 PDJ-265 329.7 251.58 4.552 -4.938 PDJ-266 332.5 251.57 4.871 -4.455 PDJ-266 332.5 251.57 4.850 -4.625 PDJ-267 333.75 251.56 4.972 -5.570 PDJ-268 335.3 251.55 4.899 -5.927 PDJ-269 336.6 251.55 5.345 -6.312 PDJ-270 339.2 251.54 6.826 -4.207 PDJ-271 342.3 251.52 6.942 -4.779 PDJ-272 344.2 251.51 6.694 -4.650 PDJ-273 346.3 251.51 6.938 -4.773 0.70768 0.00003 UCSC PDJ-274 348.4 251.50 7.706 -2.879 PDJ-275 348.9 251.49 7.355 -3.140 PDJ-276 351.9 251.47 6.902 -2.493 PDJ-277 353.2 251.45 6.600 -3.246 PDJ-279 357 251.42 5.989 -2.589 PDJ-280 358.6 251.40 5.419 -3.634 PDJ-281 360.2 251.39 5.004 -3.289 PDJ-282 362.4 251.38 5.127 -3.974 PDJ-285 365.1 251.33 4.682 -3.738 PDJ-283 365.4 251.35 4.923 -4.058 PDJ-284 366.3 251.34 5.013 -2.908 PDJ-286 368.2 251.32 4.564 -3.771 PDJ-287 369.7 251.31 4.499 -3.843 PDJ-287 369.7 251.31 4.512 -3.845 PDJ-288 371.4 251.30 4.486 -3.737 PDJ-289 381.6 251.21 3.330 -4.138 PDJ-290 385.7 251.17 3.084 -4.116 PDJ-291 387.25 251.16 2.434 -2.420 PDJ-292 388.4 251.15 1.942 -3.111 PDJ-293 389.1 251.14 1.597 -3.226 PDJ-294 390.6 251.13 1.896 -3.298 PDJ-295 391.8 251.12 1.936 -3.367 PDJ-296 394.3 251.10 1.821 -3.147

169 Sample Position !13C !18O 87Sr/86Sr 87Sr/86Sr Age (Ma) 87Sr/86Sr Name (m) (‰PDB) (‰PDB) StDev Lab PDJ-297 395.6 251.09 1.169 -5.586 PDJ-299 399.5 251.05 1.704 -2.821 PDJ-300 402.4 251.03 1.073 -3.739 PDJ-301 406.7 250.99 1.427 -4.065 PDJ-302 408.2 250.98 0.536 -6.066 PDJ-303 408.8 250.97 0.377 -6.559 PDJ-304 409.7 250.97 0.661 -5.218 PDJ-305 410.6 250.96 0.277 -5.407 PDJ-306 412.2 250.94 0.173 -4.179 PDJ-307 412.35 250.94 0.495 -3.855 0.70782 0.00003 UCSC PDJ-307 412.35 250.94 0.510 -3.866 PDJ-308 413.8 250.93 0.485 -4.513 PDJ-309 414.4 250.93 -0.094 -6.381 PDJ-310 415.6 250.91 0.433 -3.045 PDJ-311 416 250.91 0.029 -5.208 PDJ-312 417.1 250.90 0.037 -5.544 PDJ-313 418.7 250.89 -0.121 -6.334 PDJ-314 419.2 250.88 -0.092 -6.794 PDJ-315 419.8 250.88 0.136 -5.121 PDJ-316 419.9 250.88 -0.076 -4.688 PDJ-317 420.6 250.87 -0.186 -4.892 PDJ-317 420.6 250.87 -0.150 -4.834 PDJ-318 421.75 250.86 0.309 -7.155 PDJ-319 423.2 250.85 0.601 -4.758 PDJ-320 423.4 250.85 0.263 -5.759 PDJ-321 424.2 250.84 -0.047 -6.305 PDJ-322 425 250.83 0.537 -3.685

PDW-001 0 252.63 2.508 -7.484 PDW-001 0 252.63 3.049 -7.512 PDW-002 0.9 252.63 2.394 -7.829 PDW-004 3.2 252.62 1.084 -7.043 PDW-005 3.7 252.62 2.187 -6.814 PDW-006 5.5 252.61 2.568 -8.395 PDW-007 7.35 252.60 0.810 -3.654 PDW-008 7.45 252.60 0.705 -4.076 PDW-009 7.6 252.60 0.489 -3.945 PDW-0010 8.5 252.60 0.540 -4.374 PDW-011 9 252.59 -0.021 -4.215 PDW-012 9.7 252.59 0.493 -4.227 PDW-013 11.5 252.58 -0.220 -3.848 PDW-014 12 252.58 -0.557 -3.411 PDW-014b 12.5 252.58 -0.304 -5.167 PDW-015 14.1 252.57 -0.289 -4.211 PDW-015b 14.1 252.57 -0.505 -3.754 PDW-016 15 252.57 -0.542 -3.890 PDW-017 16.6 252.56 -0.848 -5.026 PDW-019 17.6 252.56 -0.751 -2.914 PDW-020 18.8 252.55 -0.627 -3.468 PDW-021 20 252.55 0.425 -6.607

170 Sample Position !13C !18O 87Sr/86Sr 87Sr/86Sr Age (Ma) 87Sr/86Sr Name (m) (‰PDB) (‰PDB) StDev Lab PDW-022 20.4 252.54 -0.492 -6.585 PDW-023 21.9 252.54 0.474 -8.216 PDW-024 22.7 252.53 -0.356 -3.249 PDW-024b 23.5 252.53 -0.691 -4.691 PDW-025 23.8 252.53 0.687 -6.408 PDW-026 24.8 252.53 1.139 -7.776 PDW-027 25.4 252.52 1.004 -7.862 PDW-028 26.3 252.52 -1.331 -4.498 PDW-029 27.1 252.52 0.316 -6.548 PDW-030 27.4 252.51 -0.487 -4.534 PDW-030 27.4 252.51 -0.474 -4.472 PDW-030b 27.4 252.51 0.921 -7.059 PDW-031 27.6 252.51 2.069 -9.427 PDW-032 27.9 252.51 1.167 -5.572 PDW-033 28.8 252.51 0.487 -6.459 PDW-034 29.2 252.51 1.507 -5.660 PDW-035 30.2 252.50 2.456 -5.431 PDW-036 30.6 252.50 2.101 -5.424 PDW-037 31.5 252.50 0.861 -8.721 PDW-038 31.8 252.49 1.730 -6.954 PDW-039 32.9 252.49 1.173 -3.986 PDW-040 33.8 252.49 1.546 -5.383 PDW-041 34.7 252.48 1.453 -7.128 PDW-042 35.4 252.48 1.717 -5.183 PDW-043 35.8 252.48 1.597 -4.936 PDW-044 36.4 252.48 1.677 -4.493 PDW-045 36.85 252.47 1.800 -4.338 PDW-046 37.5 252.47 1.643 -7.259 PDW-047 38.5 252.47 1.449 -7.255 PDW-048 39.7 252.46 1.485 -8.502 PDW-049 40.7 252.46 2.165 -6.511 PDW-050 42 252.45 2.032 -4.949 PDW-051 43.4 252.44 2.056 -6.211 PDW-052 44.2 252.44 1.634 -6.521 PDW-053 45.2 252.44 0.178 -8.322 PDW-054 46.5 252.43 1.594 -4.923 PDW-055 47.6 252.43 2.026 -4.832 PDW-056 48.4 252.42 1.917 -4.034 PDW-057 48.95 252.42 1.933 -5.080 PDW-058 49.8 252.42 1.892 -5.087 PDW-059 51.9 252.41 2.145 -4.170 PDW-060 53.1 252.40 2.155 -3.558 PDW-061 54.6 252.40 2.250 -4.492 PDW-062 56 252.39 2.028 -3.959 PDW-063 59.2 252.38 1.907 -4.864 PDW-064 60.8 252.37 2.140 -3.750 PDW-065 62.3 252.36 2.335 -4.341 PDW-066 63.2 252.36 2.016 -5.011 PDW-067 64.6 252.35 2.291 -4.007 PDW-068 83.6 252.27 2.922 -2.241

171 Sample Position !13C !18O 87Sr/86Sr 87Sr/86Sr Age (Ma) 87Sr/86Sr Name (m) (‰PDB) (‰PDB) StDev Lab PDW-069 86.2 252.26 2.629 -2.696 PDW-070 87.4 252.25 1.530 -4.614 PDW-071 89.9 252.24 2.541 -2.444 PDW-072 91.8 252.24 2.536 -3.059 PDW-073 93.4 252.23 2.082 -3.589 PDW-074 95.7 252.22 2.155 -3.357 PDW-075 97.7 252.21 3.266 -9.348 PDW-076 100.2 252.20 1.768 -3.097 PDW-077 102.2 252.19 1.893 -3.484 PDW-078 105.1 252.18 1.894 -3.337 PDW-079 106.7 252.17 2.040 -4.295 PDW-081 110.9 252.15 2.374 -3.297 PDW-082 112.5 252.15 1.707 -5.802 PDW-083 113.5 252.14 2.694 -3.724 PDW-084 113.7 252.14 2.393 -3.156 PDW-085 115.4 252.13 1.716 -2.226 PDW-086 115.6 252.13 1.449 -6.541 PDW-087 116.6 252.13 0.887 -10.177 PDW-089 117.1 252.13 0.587 -7.547 PDW-090 117.9 252.12 0.358 -7.025 PDW-091 118.2 252.12 -0.086 -7.566 PDW-092 118.5 252.12 0.493 -7.196 PDW-093 120.5 252.11 1.456 -5.510 PDW-094 121.6 252.11 0.913 -6.247 PDW-095 122.2 252.10 0.917 -5.488 PDW-096 123.1 252.10 0.716 -5.576 PDW-097 126.1 252.09 -0.121 -5.837 PDW-098 126.4 252.09 0.983 -4.005 PDW-099 128.2 252.08 -1.355 -3.345 PDW-100 128.55 252.08 -1.040 -6.267 PDW-101 128.8 252.08 0.269 -5.050 PDW-102 129.05 252.08 0.437 -5.299 PDW-103 130.1 252.07 1.111 -4.300 PDW-104 130.5 252.07 0.959 -3.653 PDW-105 131.9 252.06 0.937 -5.733 PDW-106 132.8 252.06 0.842 -5.465 PDW-107 133.7 252.05 1.005 -5.298 PDW-108 134 252.05 0.912 -5.333 PDW-109 134.5 252.05 0.556 -5.843 PDW-110 134.9 252.05 0.078 -6.686 PDW-111 135.5 252.05 0.655 -5.025 PDW-112 135.7 252.05 0.391 -6.190 PDW-113 136.4 252.04 0.398 -5.386 PDW-114 137.6 252.04 -0.149 -5.426 PDW-115 138.1 252.04 0.330 -6.052 PDW-116 138.6 252.03 0.355 -5.732 PDW-116b 138.8 252.03 0.214 -6.535 PDW-117 140.3 252.03 0.086 -5.597 PDW-118 141.3 252.02 0.315 -5.311 PDW-119 141.5 252.02 0.270 -5.687

172 Sample Position !13C !18O 87Sr/86Sr 87Sr/86Sr Age (Ma) 87Sr/86Sr Name (m) (‰PDB) (‰PDB) StDev Lab PDW-120 141.6 252.02 -0.082 -7.170 PDW-121 142.5 252.02 -0.779 -6.283 PDW-122 143.75 252.01 0.750 -5.028 PDW-123 143.75 252.01 0.883 -6.323 PDW-124 144.4 252.01 -0.607 -6.466 PDW-125 145.4 252.00 -0.042 -5.539 PDW-126 145.9 252.00 0.895 -5.651 PDW-127 147.1 252.00 1.116 -5.478 PDW-128 148.5 251.99 0.306 -7.094 PDW-129 150.95 251.98 0.671 -5.154 PDW-130 152.1 251.98 0.797 -6.551 PDW-131 152.3 251.97 0.073 -5.722 PDW-132 152.5 251.97 0.666 -6.737 PDW-133 153.1 251.97 0.304 -5.837 PDW-133 153.1 251.97 0.355 -5.746 PDW-134 154.6 251.96 -0.857 -7.960 PDW-135 155.8 251.96 -0.346 -7.334 PDW-137 158.1 251.95 0.642 -6.844 PDW-138 158.4 251.95 0.349 -5.969 PDW-139 159.6 251.94 0.644 -5.980 PDW-140 160.1 251.94 0.220 -5.610 PDW-140 160.1 251.94 0.194 -5.976 PDW-141 160.8 251.94 0.931 -5.255 PDW-142 161.8 251.93 0.541 -6.249 PDW-143 163.1 251.93 0.730 -6.383 PDW-144 164.9 251.92 0.222 -6.542 PDW-145 165.2 251.92 0.671 -5.560 PDW-146 166.8 251.91 0.709 -5.322 PDW-147 167.9 251.91 1.094 -6.851 PDW-148 168.4 251.91 1.040 -7.616 PDW-149 169.2 251.90 0.654 -6.298 PDW-150 169.9 251.90 1.920 -6.409 PDW-151 172.4 251.89 1.789 -6.102 PDW-152 172.6 251.89 2.382 -5.754 PDW-153 174 251.88 1.599 -7.683 PDW-154 174.6 251.88 1.887 -6.555 PDW-155 175.95 251.87 1.585 -5.455 PDW-156 176.75 251.87 2.479 -5.289 PDW-157 177.4 251.87 1.383 -6.875 PDW-158 177.6 251.87 2.642 -5.204 PDW-159 177.9 251.86 2.301 -5.992 PDW-160 178.1 251.86 1.463 -7.169 PDW-161 178.9 251.86 2.838 -4.776 PDW-163 180.6 251.85 2.431 -6.241 PDW-165 181.6 251.85 3.898 -6.356 PDW-165 181.6 251.85 3.124 -6.243 PDW-165 181.6 251.85 2.797 -4.012 PDW-166 183.1 251.84 1.910 -5.152 PDW-167 183.8 251.84 2.183 -5.344 PDW-167 183.8 251.84 1.069 -8.179

173 Sample Position !13C !18O 87Sr/86Sr 87Sr/86Sr Age (Ma) 87Sr/86Sr Name (m) (‰PDB) (‰PDB) StDev Lab PDW-168 184.9 251.83 1.581 -8.442 PDW-169 185.2 251.83 2.031 -6.094 PDW-170 187 251.82 1.310 -5.828 PDW-171 188.1 251.82 2.162 -5.545 PDW-172 188.9 251.82 2.828 -4.665 PDW-173 189.85 251.81 1.483 -5.550 PDW-174 190.8 251.81 2.277 -5.385 PDW-175 191.3 251.81 2.273 -5.520 PDW-176 191.8 251.80 2.130 -5.059 PDW-177 192.4 251.80 2.192 -5.924 PDW-178 192.8 251.80 2.624 -6.620 PDW-179 194.5 251.79 0.928 -10.297 PDW-180 195.4 251.79 1.658 -5.761 PDW-181 196 251.79 0.397 -6.252 PDW-182 196.6 251.78 2.071 -4.942 PDW-183 198.1 251.78 0.305 -4.043 PDW-184 198.9 251.77 3.821 -6.489 PDW-185 199.8 251.77 2.572 -5.517 PDW-186 199.95 251.77 2.784 -4.636 PDW-187 200.8 251.77 2.867 -5.591 PDW-188 201.3 251.76 0.625 -2.717 PDW-189 202.2 251.76 3.320 -5.835 PDW-190 202.6 251.76 2.767 -5.401 PDW-191 205.4 251.75 3.535 -4.952 PDW-192 208.3 251.73 3.920 -5.121 PDW-193 209.9 251.73 3.354 -4.868 PDW-194 210.7 251.72 3.008 -4.787 PDW-195 211.05 251.72 3.322 -4.787 PDW-196 211.25 251.72 3.401 -6.572 PDW-197 211.8 251.72 1.227 -3.568 PDW-198 212.3 251.72 2.829 -6.062 PDW-199 213.2 251.71 3.390 -3.794 PDW-200 214.2 251.71 6.314 -3.701 PDW-201 216.6 251.70 3.199 -5.025 PDW-202 216.9 251.70 2.120 -4.946 PDW-203 218.6 251.69 3.455 -4.924 PDW-204 218.8 251.69 3.423 -5.170 PDW-205 219.7 251.68 0.616 -3.470 PDW-206 220.5 251.68 3.242 -4.575 PDW-207 221.1 251.68 4.448 -5.741 PDW-208 222.6 251.67 4.557 -5.890 PDW-209 222.9 251.67 3.650 -5.656 PDW-210 223.4 251.67 3.325 -5.964 PDW-211 224.1 251.66 3.172 -5.518 PDW-213 224.9 251.66 4.054 -5.093 PDW-214 225.8 251.66 3.513 -6.367 PDW-215 226.2 251.66 3.272 -5.364 PDW-216 226.9 251.65 3.060 -6.334 PDW-217 229.1 251.64 2.762 -5.498 PDW-218 229.5 251.64 3.285 -4.957

174 Sample Position !13C !18O 87Sr/86Sr 87Sr/86Sr Age (Ma) 87Sr/86Sr Name (m) (‰PDB) (‰PDB) StDev Lab PDW-219 230.6 251.64 -0.871 -4.181 PDW-220 231.4 251.63 3.232 -5.747 PDW-221 232.2 251.63 1.854 -6.960 PDW-222 232.5 251.63 0.246 -4.279 PDW-223 233.2 251.63 2.938 -5.476 PDW-224 233.4 251.62 1.163 -7.934 PDW-225 234 251.62 2.761 -4.788 PDW-226 235.4 251.62 2.222 -4.823 PDW-227 235.7 251.61 1.216 -4.681 PDW-228 236.5 251.61 2.592 -5.262 PDW-229 236.7 251.61 2.201 -5.383 PDW-230 237.2 251.61 2.212 -4.544 PDW-230 237.2 251.61 2.210 -4.503 PDW-231 238.5 251.60 3.980 -5.213 PDW-232 239.4 251.60 3.623 -5.583 PDW-233 240.1 251.60 2.570 -3.638 PDW-234 240.8 251.59 4.747 -4.783 PDW-236 242.7 251.58 3.505 -4.926 PDW-237 243.2 251.58 3.920 -5.971 PDW-238 244.1 251.58 4.486 -5.073 PDW-239 245.5 251.57 5.133 -5.423 PDW-240 246.8 251.57 4.693 -6.064 PDW-241 248.8 251.56 4.920 -5.891 PDW-242 249.5 251.56 4.404 -6.669 PDW-243 250.3 251.55 6.325 -3.863 PDW-244 251.8 251.55 5.545 -5.431 PDW-245 252.4 251.54 5.174 -5.904 PDW-246 252.7 251.54 6.063 -3.741 PDW-247 253.8 251.54 6.279 -5.225 PDW-248 254.6 251.53 7.174 -4.535 PDW-249 255.6 251.53 5.963 -4.621 PDW-250 256.5 251.52 7.033 -4.531 PDW-251 257.4 251.52 6.204 -4.944 PDW-252 257.6 251.52 5.654 -5.343 PDW-254 258.5 251.52 7.484 -4.619 PDW-255 260 251.51 5.916 -5.796 PDW-256 261.3 251.50 7.282 -5.151 PDW-257 262.4 251.50 7.684 -4.869 PDW-258 263.15 251.50 7.728 -4.957 PDW-259 263.8 251.49 6.499 -5.262 PDW-260 264.2 251.49 6.921 -4.319 PDW-261 264.6 251.48 7.175 -4.366 PDW-262 265.4 251.47 7.078 -4.539 PDW-263 265.9 251.47 6.847 -4.489 PDW-264 266.9 251.46 6.734 -3.699 PDW-265 267.5 251.45 6.445 -4.825 PDW-266 268.5 251.44 6.270 -4.274 PDW-267 269.2 251.44 6.441 -4.823 PDW-268 270 251.43 6.020 -5.294 PDW-269 271 251.42 5.825 -4.996

175 Sample Position !13C !18O 87Sr/86Sr 87Sr/86Sr Age (Ma) 87Sr/86Sr Name (m) (‰PDB) (‰PDB) StDev Lab PDW-270 271.5 251.41 5.964 -4.431 PDW-271 272.3 251.40 5.290 -4.804 PDW-272 273 251.40 5.632 -3.631 PDW-273 274 251.39 4.889 -5.206 PDW-274 274.15 251.39 4.885 -5.102 PDW-275 274.5 251.38 5.234 -4.277 PDW-276 275.6 251.37 5.068 -4.829 PDW-277 275.7 251.37 4.902 -5.251 PDW-278 276 251.37 4.978 -5.989 PDW-279 276.3 251.36 5.315 -4.287 PDW-280 276.7 251.36 5.208 -4.571 PDW-281 277.4 251.35 5.221 -4.831 PDW-282 277.9 251.35 4.795 -4.824 PDW-283 278.4 251.34 5.374 -5.120 PDW-284 279.7 251.33 4.884 -4.036 PDW-284 279.7 251.33 4.849 -4.112 PDW-285 279.8 251.33 4.054 -4.843 PDW-286 280.2 251.32 4.333 -4.738 PDW-287 281.2 251.31 4.549 -5.508 PDW-288 282.4 251.30 2.786 -6.674 PDW-289 282.9 251.30 3.459 -5.508 PDW-290 283.9 251.29 3.385 -6.807 PDW-291 284.6 251.28 3.323 -5.808 PDW-292 285.4 251.27 3.395 -5.675 PDW-293 285.55 251.27 3.539 -5.182 PDW-294 286.3 251.26 3.767 -4.658 PDW-295 287.5 251.25 3.574 -3.994 PDW-296 288.4 251.24 3.637 -4.698 PDW-297 289 251.24 3.420 -4.547 PDW-298 289.7 251.23 2.353 -5.646 PDW-299 289.9 251.23 3.164 -5.161 PDW-299 289.9 251.23 3.161 -5.120 PDW-300 290.05 251.23 3.177 -4.908 PDW-301 290.7 251.22 3.180 -4.445 PDW-302 291.5 251.21 2.186 -8.023 PDW-303 291.7 251.21 2.878 -5.758 PDW-304 292.3 251.20 2.294 -5.041 PDW-305 292.4 251.20 2.583 -6.268 PDW-306 292.5 251.20 0.010 -6.956 PDW-307 292.6 251.20 2.803 -6.287 PDW-308 292.9 251.20 2.877 -5.473 PDW-309 293.3 251.19 2.153 -5.834 PDW-310 294.2 251.18 2.915 -5.344 PDW-311 294.7 251.18 2.931 -5.598 PDW-312 296.2 251.16 2.432 -5.283 PDW-313 296.6 251.16 2.490 -5.411 PDW-315 297.6 251.15 2.253 -5.689 PDW-316 298.4 251.14 2.500 -4.477 PDW-317 298.9 251.14 2.507 -4.599 PDW-318 299.2 251.13 2.316 -4.830

176 Sample Position !13C !18O 87Sr/86Sr 87Sr/86Sr Age (Ma) 87Sr/86Sr Name (m) (‰PDB) (‰PDB) StDev Lab PDW-319 300.1 251.12 2.198 -4.222 PDW-320 301 251.12 2.166 -4.635 PDW-321 301.7 251.11 1.989 -4.377 PDW-322 302.1 251.10 1.626 -4.578 PDW-323 303.4 251.09 1.383 -4.793 PDW-324 305.3 251.07 1.278 -4.635 PDW-325 306.9 251.06 1.375 -4.659 PDW-326 307.8 251.05 1.501 -3.828 PDW-327 308.4 251.04 1.048 -4.305 PDW-328 310.4 251.02 0.229 -5.650 PDW-329 311.9 251.01 0.280 -5.380 PDW-330 312.8 251.00 0.474 -6.339 PDW-331 313.8 250.99 -0.408 -6.716 PDW-332 314.7 250.98 0.435 -5.726 PDW-333 316.3 250.96 0.068 -5.012 PDW-334 316.7 250.96 -0.177 -4.928 PDW-335 317.25 250.95 -0.073 -5.594 PDW-336 318.2 250.94 -0.151 -5.365 PDW-337 318.5 250.94 -0.642 -9.041 PDW-338 319.3 250.93 -0.661 -6.721 PDW-339 319.9 250.93 -0.796 -7.493 PDW-340 320.15 250.92 -0.902 -6.547 PDW-342 321.2 250.91 -0.128 -5.976 PDW-343 321.8 250.91 0.095 -4.622 PDW-344 322.15 250.90 -0.443 -5.241 PDW-345 323.6 250.89 -0.683 -4.751 PDW-346 323.9 250.88 -0.536 -4.772 PDW-347 324.6 250.88 -0.293 -4.760 PDW-347 324.6 250.88 2.028 -5.491 PDW-348 325.1 250.87 -0.591 -4.852 PDW-349 326.2 250.86 -1.009 -4.607 PDW-350 326.5 250.86 -0.593 -4.766 PDW-351 326.9 250.85 -0.343 -4.312 PDW-352 327.6 250.85 -0.267 -5.226 PDW-353 327.9 250.84 -0.079 -4.015 PDW-354 329 250.83 0.406 -2.586

PGD-001 0 252.88 3.759 -3.528 0.70729 0.00003 UCSC PGD-002 1.9 252.85 3.462 -3.947 PGD-003 2.9 252.84 2.991 -3.571 PGD-004 3.4 252.84 3.036 -3.779 PGD-005 4.3 252.82 3.104 -6.963 PGD-006 4.8 252.82 2.603 -5.293 0.70738 0.0009 UCSC PGD-010 45.03 252.31 1.526 -5.596 0.7074 0.00003 UCSC PGD-011 46.53 252.29 1.787 -4.840 0.70733 0.0008 UCSC PGD-012 47.03 252.28 1.613 -3.746 PGD-013 47.93 252.27 1.802 -4.937 PGD-014 48.38 252.27 2.165 -5.042 PGD-015 49.43 252.25 2.053 -5.061 PGD-016 50.23 252.24 2.039 -5.151 0.707289 0.0009 UCSC

177 Sample Position !13C !18O 87Sr/86Sr 87Sr/86Sr Age (Ma) 87Sr/86Sr Name (m) (‰PDB) (‰PDB) StDev Lab PGD-017 51.08 252.23 2.184 -5.229 PGD-018 51.83 252.22 2.144 -4.110 PGD-018 51.83 252.22 2.174 -4.052 PGD-019 52.43 252.21 2.058 -4.768 PGD-020 52.83 252.21 1.963 -4.519 PGD-021 53.73 252.20 1.892 -3.869 0.70732 0.0009 UCSC PGD-022 53.93 252.20 1.895 -4.808 PGD-023 54.33 252.19 1.771 -4.097 PGD-024 55.33 252.18 2.181 -4.988 PGD-025 55.83 252.17 1.936 -4.967 PGD-026 56.48 252.16 1.861 -3.897 0.70738 0.001 UCSC PGD-027 57.03 252.16 1.775 -3.871 PGD-028 59.83 252.12 1.776 -4.534 PGD-029 61.33 252.10 1.471 -4.723 PGD-030 62.83 252.08 1.797 -4.743 PGD-030 62.83 252.08 1.801 -4.711 PGD-031 64.93 252.06 1.450 -4.680 0.70737 0.0009 UCSC PGD-032 66.83 252.03 1.524 -4.563 PGD-033 68.13 252.02 2.545 -4.575 PGD-034 68.83 252.01 2.432 -3.516 PGD-035 70.73 251.98 1.792 -4.313 PGD-036 71.73 251.97 1.738 -4.670 0.70746 0.0008 UCSC PGD-037 73.13 251.95 1.808 -4.224 PGD-038 74.13 251.94 1.793 -4.212 PGD-039 74.63 251.93 2.116 -4.620 PGD-040 75.43 251.93 1.964 -3.960 PGD-041 75.53 251.92 2.638 -3.413 0.70787 0.001 UCSC PGD-042 75.83 251.92 2.756 -3.312 0.70776 0.00004 UCSC PGD-043 76.13 251.92 1.929 -3.553 PGD-044 77.43 251.91 2.566 -4.152 PGD-045 79.73 251.88 3.181 -2.628 PGD-046 81.03 251.87 2.430 -4.194 0.70742 0.0009 UCSC PGD-047 82.13 251.86 2.485 -4.167 PGD-049 84.43 251.84 2.408 -4.542 PGD-049 84.43 251.84 2.452 -3.737 PGD-050 86.33 251.82 2.278 -5.007 PGD-051 88.13 251.80 2.532 -4.167 0.70754 0.0008 UCSC PGD-052 89.83 251.78 2.855 -4.669 PGD-053 90.13 251.78 2.584 -7.216 PGD-054 90.93 251.77 2.594 -4.142 PGD-055 91.23 251.77 2.563 -3.974 PGD-057 96.63 251.72 3.037 -4.161 0.70749 0.0009 UCSC PGD-063 103.18 251.65 3.186 -4.761 PGD-064 104.93 251.63 3.212 -4.910 PGD-065 108.33 251.60 3.201 -4.899 PGD-066 108.33 251.60 3.045 -5.392 0.70764 0.0009 UCSC PGD-067 109.43 251.59 3.372 -4.087 PGD-068 112.08 251.56 4.088 -3.009 PGD-069 112.43 251.56 3.909 -3.095 PGD-071 114.63 251.54 2.951 -4.157 0.70744 0.0008 UCSC

178 Sample Position !13C !18O 87Sr/86Sr 87Sr/86Sr Age (Ma) 87Sr/86Sr Name (m) (‰PDB) (‰PDB) StDev Lab PGD-072 115.43 251.53 2.252 -6.395 PGD-073 116.43 251.52 3.339 -4.724 PGD-074 116.83 251.52 2.085 -5.649 PGD-075 118.33 251.50 4.293 -4.096 0.70757 0.00003 UCSC PGD-076 118.83 251.50 4.047 -5.404 0.70756 0.0008 UCSC PGD-077 121.33 251.47 5.724 -5.349 PGD-078 123.33 251.45 6.269 -5.273 PGD-078 123.33 251.45 5.295 -4.173 PGD-079 129.53 251.39 4.517 -5.576 PGD-082 140.08 251.29 -0.295 -5.665 0.70773 0.0009 UCSC PGD-083 141.98 251.27 -0.541 -4.611 PGD-084 144.03 251.25 -1.223 -5.275 PGD-085 145.63 251.23 -0.949 -5.322 PGD-086 147.98 251.21 -1.128 -4.478 0.70764 0.0006 UCSC PGD-087 148.38 251.20 -0.919 -4.900 PGD-088 149.78 251.19 -1.369 -5.042 PGD-089 150.08 251.18 -0.950 -3.984 PGD-090 150.58 251.18 -1.500 -4.640 PGD-090 150.58 251.18 -1.494 -4.659 PGD-091 150.78 251.18 -1.441 -4.244 0.70772 0.0009 UCSC PGD-093 151.98 251.16 -1.339 -2.969 PGD-094 152.48 251.16 -1.598 -4.035 PGD-095 153.78 251.15 -2.532 -6.100 PGD-096 154.38 251.14 -1.561 -4.297 0.70775 0.0008 UCSC PGD-097 155.08 251.13 -1.624 -3.758 PGD-098 156.58 251.12 -1.549 -3.550 PGD-099 157.88 251.10 -1.565 -3.321 PGD-100 158.18 251.10 -1.528 -3.247 PGD-101 159.78 251.09 -1.619 -3.586 0.70765 0.0009 UCSC PGD-102 159.88 251.08 -1.510 -3.120 0.7076 0.00003 UCSC PGD-103 160.78 251.08 -1.654 -4.534 PGD-104 160.88 251.07 -1.623 -4.702 PGD-105 161.38 251.07 -1.671 -2.960 PGD-106 161.68 251.07 -1.693 -3.349 0.70775 0.001 UCSC PGD-107 161.98 251.06 -1.667 -3.723 PGD-108 162.18 251.06 -1.704 -3.070 PGD-109 162.38 251.06 -2.042 -4.499 PGD-110 163.48 251.05 -1.755 -4.455 PGD-111 166.18 251.02 -2.221 -4.655 0.70777 0.0008 UCSC PGD-112 166.18 251.02 -2.001 -2.526 PGD-113 168.18 251.00 -2.081 -4.715 PGD-114 168.48 251.00 -2.273 -4.901 PGD-115 169.38 250.99 -2.560 -5.108 PGD-116 169.88 250.98 -2.584 -4.997 PGD-117 170.88 250.97 -2.791 -5.043 PGD-118 171.18 250.97 -2.985 -5.319 PGD-119 171.58 250.96 -2.668 -4.312 PGD-120 172.28 250.96 -2.923 -5.185 PGD-121 173.48 250.95 -2.842 -5.141 PGD-122 174.78 250.93 -2.663 -5.034

179 Sample Position !13C !18O 87Sr/86Sr 87Sr/86Sr Age (Ma) 87Sr/86Sr Name (m) (‰PDB) (‰PDB) StDev Lab PGD-123 175.98 250.92 -2.848 -4.869 PGD-124 177.38 250.91 -2.341 -2.564 0.707668 0.0009 UCSC PGD-125 178.68 250.89 -2.145 -4.460 PGD-125 178.68 250.89 -2.210 -2.573 PGD-126 181.08 250.87 -2.187 -4.792 PGD-127 181.58 250.86 -1.850 -3.673 0.70976 0.00003 UCSC PGD-128 181.78 250.86 -2.586 -5.709 PGD-129 182.38 250.85 -2.448 -5.716 PGD-130 183.38 250.84 -2.828 -6.050 PGD-131 184.18 250.84 -2.169 -2.592 PGD-132 184.48 250.83 -2.310 -5.786 0.708186 0.0029 UCSC PGD-133 186.28 250.82 -2.732 -6.169 PGD-134 187.78 250.80 -1.822 -2.593 PGD-135 195.48 250.72 1.205 -3.357 PGD-136 195.68 250.72 1.819 -2.471 PGD-137 198.78 250.69 2.205 -3.681 PGD-138 202.78 250.65 2.132 -3.737 PGD-139 205.38 250.62 2.211 -2.252 PGD-140 207.38 250.60 2.091 -2.182 PGD-141 208.78 250.52 2.040 -0.816 PGD-143 218.68 249.98 2.262 -3.966 PGD-145 229.18 249.40 0.424 -4.790 0.712426 0.009 UCSC PGD-146 230.08 249.35 -0.458 -6.411 PGD-146 230.08 249.35 -0.443 -6.416 PGD-147 231.18 249.29 -0.607 -6.098 PGD-148 232.88 249.19 -0.578 -2.806 PGD-149 233.08 249.18 -0.712 -5.645 PGD-150 233.38 249.16 -0.484 -4.946 PGD-151 234.68 249.09 -0.880 -5.563 PGD-152 234.88 249.08 -0.825 -4.238 PGD-153 235.38 249.05 -0.490 -4.414 PGD-154 235.78 249.03 -0.956 -4.101 PGD-155 236.28 249.00 -0.695 -4.630 0.709612 0.0009 UCSC PGD-156 236.78 248.98 0.089 -2.607 PGD-156 236.78 248.98 0.085 -2.580 PGD-157 237.78 248.92 -0.781 -4.810 PGD-157 237.78 248.92 -0.967 -4.477 PGD-158 238.18 248.90 -0.856 -4.453 PGD-159 238.68 248.87 -1.017 -4.686 PGD-160 239.48 248.83 -0.915 -4.521 PGD-161 240.98 248.75 -0.739 -4.014 PGD-162 241.38 248.72 -0.834 -4.041 PGD-163 242.08 248.68 -0.293 -3.121 PGD-164 242.48 248.66 -0.837 -3.794 PGD-165 242.98 248.64 -0.872 -3.823 PGD-166 243.18 248.62 -0.491 -3.506 PGD-167 243.68 248.60 -0.858 -3.980 0.708733 0.0013 UCSC PGD-168 244.78 248.54 -0.231 -3.372 PGD-169 245.08 248.52 -0.466 -3.679 PGD-170 246.08 248.46 0.581 -2.766

180 Sample Position !13C !18O 87Sr/86Sr 87Sr/86Sr Age (Ma) 87Sr/86Sr Name (m) (‰PDB) (‰PDB) StDev Lab PGD-171 247.08 248.41 -0.042 -3.053 PGD-172 247.68 248.38 -0.004 -3.598 PGD-173 248.48 248.33 0.077 -3.051 0.708194 0.0013 UCSC PGD-174 249.88 248.25 0.211 -2.761 PGD-175 251.03 248.19 0.410 -2.197 PGD-176 251.58 248.16 0.653 -2.335 PGD-177 252.28 248.11 1.385 -1.814 PGD-178 253.48 248.06 1.010 -2.249 PGD-179 253.48 248.06 1.059 -2.139 PGD-180 254.58 247.99 2.212 -0.909 PGD-181 255.38 247.95 1.199 -2.725 PGD-182 256.48 247.89 1.626 -2.565 PGD-182 256.48 247.89 1.640 -2.601 PGD-183 257.78 247.82 1.802 -2.379 PGD-184 258.18 247.80 1.440 -4.116 PGD-185 259.28 247.74 1.796 -2.206 0.708076 0.0009 UCSC PGD-186 259.58 247.72 1.888 -2.887 PGD-187 260.48 247.67 2.077 -2.250 PGD-188 261.08 247.64 2.345 -2.322 0.708082 0.001 UCSC PGD-189 261.98 247.59 2.321 -1.843 PGD-190 262.38 247.56 1.967 -2.024 PGD-191 262.88 247.54 2.114 -1.575 PGD-192 263.48 247.50 1.981 -2.047 PGD-193 264.28 247.46 2.377 -2.019 PGD-194 264.88 247.43 2.906 -1.358 PGD-195 266.38 247.34 3.069 -2.303 PGD-196 267.38 247.29 3.509 -1.826 PGD-197 268.18 247.24 3.085 -1.793 PGD-198 268.98 247.20 2.900 -1.720 PGD-199 269.98 247.17 3.393 -1.502 PGD-200 270.38 247.16 3.523 -1.854 PGD-201 271.38 247.13 3.345 -2.065 PGD-202 272.18 247.11 2.285 -1.605 0.707917 0.0032 UCSC PGD-203 272.48 247.10 3.463 -2.502 PGD-204 272.78 247.09 3.849 -1.908 PGD-205 272.98 247.08 4.016 -1.704 0.70796 0.0012 UCSC PGD-206 273.88 247.07 4.379 -2.016 PGD-207 274.98 247.03 4.338 -1.481 PGD-208 275.78 247.00 4.053 -2.205 PGD-209 276.08 246.99 4.055 -1.838 PGD-210 276.48 246.98 4.381 -1.678 PGD-211 276.88 246.97 3.808 -2.832 PGD-212 277.58 246.95 4.403 -2.726 PGD-212 277.58 246.95 4.428 -2.657 PGD-213 278.38 246.93 4.509 -2.811 PGD-214 278.78 246.92 4.382 -2.516 0.708038 0.0009 UCSC PGD-215 279.08 246.91 4.386 -1.983 PGD-215 279.08 246.91 4.372 -2.010 PGD-216 279.38 246.90 4.068 -2.593 PGD-217 279.98 246.88 4.422 -0.321 0.7088965 0.0009 UCSC

181 Sample Position !13C !18O 87Sr/86Sr 87Sr/86Sr Age (Ma) 87Sr/86Sr Name (m) (‰PDB) (‰PDB) StDev Lab PGD-217 279.98 246.88 4.015 -1.816 PGD-218 280.38 246.87 3.905 -3.252 PGD-219 281.28 246.85 3.827 -2.422 PGD-220 281.78 246.83 3.529 -1.825 PGD-221 282.38 246.81 4.101 -0.970 PGD-222 283.08 246.79 2.850 -2.892 PGD-223 283.38 246.78 3.997 -2.940 PGD-224 284.18 246.76 3.785 -2.964 0.708248 0.0009 UCSC PGD-225 284.48 246.75 3.830 -3.274 PGD-226 284.78 246.74 3.874 -3.170 PGD-227 285.18 246.73 3.745 -1.959 PGD-227 285.18 246.73 3.753 -1.928 PGD-228 285.78 246.71 3.735 -2.906 PGD-229 286.08 246.71 3.718 -1.926 PGD-230 286.28 246.70 3.960 -1.376 PGD-231 286.58 246.69 3.511 -2.414 PGD-232 287.28 246.67 3.268 -2.925 PGD-233 287.98 246.65 3.103 -3.125 PGD-234 289.38 246.61 2.674 -3.064 PGD-235 289.98 246.59 2.650 -2.002 PGD-236 291.08 246.56 2.259 -2.751 0.708209 0.0008 UCSC PGD-237 291.58 246.55 2.178 -2.234 PGD-238 292.68 246.52 2.194 -0.957 PGD-239 293.38 246.50 2.122 -3.235

PUG-001 0.4 247.95 1.432 -2.537 C-001 0.5 247.94 1.389 -3.165 C-002 0.9 247.91 1.507 -2.871 C-003 1.5 247.86 1.651 -2.701 C-004 1.8 247.84 1.790 -3.600 PUG-002 2.4 247.79 1.508 -3.318 PUG-003 4.1 247.65 1.641 -2.445 PUG-004 6.15 247.49 1.556 -2.713 C-005 6.6 247.45 1.824 -3.109 PUG-005 6.8 247.44 1.924 -2.336 C-006 7.4 247.39 2.255 -2.084 C-007 8.4 247.31 2.509 -2.268 PUG-006 10.85 247.11 3.690 -1.818 C-008 11.5 247.06 3.915 -1.965 C-009 12.3 247.00 4.028 -2.323 PUG-007 13.15 246.93 4.652 -3.293 C-010 13.6 246.92 4.389 -2.629 C-011 14.4 246.91 4.005 -3.316 PUG-008 14.9 246.90 4.352 -2.926 C-012 15.6 246.89 4.401 -4.178 C-013 16.6 246.87 4.474 -1.536 PUG-009 19.1 246.83 3.611 -3.734 PUG-010 24.5 246.73 2.055 -3.982 PUG-011 28.3 246.67 1.717 -2.802 C-014 29 246.66 2.189 -2.788

182 Sample Position !13C !18O 87Sr/86Sr 87Sr/86Sr Age (Ma) 87Sr/86Sr Name (m) (‰PDB) (‰PDB) StDev Lab C-015 29.5 246.65 2.407 -2.940 PUG-012 30.2 246.64 2.677 -3.255 C-016 30.9 246.63 2.610 -2.467 C-017 31.9 246.61 2.617 -2.683 PUG-013 32.9 246.59 2.523 -1.342 C-018 33.9 246.57 2.365 -2.359 C-019 34.7 246.56 2.208 -2.763 PUG-014 35.5 246.55 2.041 -2.139 C-020 36.3 246.53 2.018 -2.968 PUG-015 36.8 246.53 2.896 -3.119 PUG-015 36.8 246.53 2.929 -3.008 PUG-016 39.3 246.48 2.867 -3.001 0.707058 0.0008 UCSC PUG-017 43.2 246.42 2.671 -2.399 PUG-018 45.2 246.38 1.916 -3.063 PUG-019 47.2 246.35 2.245 -1.569 PUG-020 49.5 246.31 2.106 -1.314 PUG-021 51.3 246.28 1.953 -0.709 PUG-022 52.95 246.25 1.752 -2.023 PUG-024 58.6 246.15 1.721 -1.295 PUG-025 61.2 246.11 1.482 -2.620 PUG-026 63.4 246.07 1.980 -2.091 PUG-027 65.4 246.04 2.071 -1.691 PUG-028 66.05 246.03 2.005 -1.808 PUG-029 66.2 246.02 1.958 -1.322 PUG-030 68.6 245.98 1.989 -1.132 PUG-031 72.2 245.92 2.157 -2.110 PUG-032 76 245.86 1.921 -2.130 PUG-032 76 245.86 1.966 -2.119 PUG-033 77.4 245.83 2.069 -2.031 PUG-034 82.2 245.75 1.989 -1.971 PUG-035 84.35 245.72 1.855 -1.782 PUG-036 86.1 245.69 1.704 -4.430 0.708268 0.0008 UCSC PUG-037 88.1 245.65 1.919 -1.819 PUG-038 90.1 245.62 1.690 -2.814 PUG-038 90.1 245.62 1.720 -2.766 PUG-039 92.6 245.57 1.625 -1.250 PUG-040 95 245.53 1.638 -2.483 PUG-041 97.4 245.49 1.677 -2.293 PUG-042 100.1 245.45 1.439 -2.390 PUG-043 102.4 245.41 1.471 -1.013 PUG-044 103.6 245.39 1.586 -0.425 PUG-045 106 245.35 1.519 -1.279 PUG-046 107.55 245.32 1.663 -1.283 PUG-047 112.05 245.24 1.462 -2.753 PUG-048 116.6 245.17 1.505 -2.156 PUG-049 120.3 245.10 1.556 -2.215 PUG-049 120.3 245.10 1.563 -2.156 PUG-050 123.4 245.05 1.653 -1.628 PUG-051 125.7 245.01 1.707 -1.993 PUG-052 166.1 244.32 1.812 -3.431

183 Sample Position !13C !18O 87Sr/86Sr 87Sr/86Sr Age (Ma) 87Sr/86Sr Name (m) (‰PDB) (‰PDB) StDev Lab PUG-053 168.1 244.29 1.629 -3.291 PUG-054 171.1 244.24 1.464 -3.574 PUG-055 172.5 244.21 1.578 -3.425 PUG-056 174.8 244.17 1.765 -2.245 PUG-057 177.4 244.13 1.726 -2.374 PUG-058 179.8 244.09 1.612 -3.497 PUG-059 181.9 244.05 2.030 -2.839 PUG-060 184 244.02 2.392 -2.601 PUG-061 186.4 243.98 2.308 -2.029 PUG-061 186.4 243.98 2.277 -2.060 PUG-062 188.65 243.94 2.124 -2.827 PUG-063 191.2 243.89 1.877 -1.652 PUG-063 191.2 243.89 1.871 -1.671 PUG-064 193.8 243.85 1.903 -3.301 PUG-064 193.8 243.85 1.948 -3.225 PUG-065 198.2 243.72 1.900 -3.551 PUG-066 203.7 243.56 1.816 -2.696 PUG-067 206.3 243.49 1.729 -3.152 PUG-068 208.3 243.43 1.543 -2.600 PUG-069 211.9 243.32 1.643 -1.994 PUG-070 214.5 243.25 1.820 -1.329 PUG-071 229 242.83 1.558 -5.220 PUG-072 231.8 242.74 1.914 -2.080 PUG-073 232.65 242.72 1.877 -1.925 PUG-074 234.8 242.66 1.931 -1.836 PUG-075 237.4 242.58 1.969 -1.965 PUG-076 239.6 242.52 1.946 -1.534 PUG-077 242.4 242.44 1.731 -2.600 PUG-078 245.65 242.34 1.582 -2.742 PUG-079 250.3 242.21 1.683 -1.459 PUG-080 252.4 242.15 1.769 -2.305 PUG-081 254.4 242.09 1.630 -5.320 PUG-082 256.4 242.03 1.846 -2.815 PUG-083 258.5 241.97 1.814 -3.208 PUG-084 260.5 241.91 1.937 -1.432 PUG-085 262.5 241.85 1.480 -1.762 PUG-086 264.8 241.79 1.740 -1.574 0.70772 0.0011 UCSC PUG-087 267.2 241.72 1.686 -1.628 PUG-088 269.1 241.66 1.794 -1.261 PUG-089 271.4 241.59 1.942 -1.945 PUG-090 273.4 241.54 1.851 -1.645 PUG-091 276.1 241.46 1.803 -1.855 PUG-092 278.9 241.38 1.815 -1.932 PUG-093 281.5 241.30 2.029 -1.336 PUG-094 283.65 241.24 2.055 -0.763 PUG-095 289.3 241.07 2.065 -2.001 PUG-095 289.3 241.07 2.026 -2.132 PUG-096 291.8 241.00 2.102 -1.413 PUG-097 293.8 240.82 2.298 -1.619 PUG-098 296 240.62 2.191 -1.522

184 Sample Position !13C !18O 87Sr/86Sr 87Sr/86Sr Age (Ma) 87Sr/86Sr Name (m) (‰PDB) (‰PDB) StDev Lab PUG-099 298.3 240.41 2.092 -1.666 PUG-100 299.8 240.27 2.295 -1.082 PUG-101 302.8 240.00 2.199 -0.731 PUG-102 304.7 239.82 2.234 -1.295 PUG-103 306.6 239.65 2.292 -1.146 PUG-104 309.1 239.42 2.289 -1.873 PUG-105 311.2 239.23 2.087 -0.811 PUG-106 313.7 239.00 2.093 -1.803 PUG-107 315.8 238.94 2.184 -2.301 PUG-108 318.4 238.87 2.133 -1.975 PUG-109 320.5 238.82 2.205 -1.351 PUG-110 323.2 238.74 2.249 -2.076 PUG-111 326.1 238.67 2.419 -2.398 0.7076548 0.0009 UCSC PUG-112 339.75 238.30 2.356 -3.449 PUG-112 339.75 238.30 2.399 -3.058 PUG-113 343.3 238.20 2.390 -2.994 PUG-114 345.9 238.13 2.478 -2.548 PUG-115 348.2 238.07 2.568 -2.532 PUG-116 351.65 237.98 2.446 -2.978 PUG-117 353.8 237.92 2.461 -2.860 PUG-118 355.5 237.87 2.543 -2.026 PUG-119 357.9 237.81 2.366 -2.631 PUG-119 357.9 237.81 2.363 -2.594 PUG-120 360.4 237.74 2.614 -1.758 PUG-121 362.7 237.68 2.505 -2.455 0.7076607 0.001 UCSC PUG-122 364.8 237.62 2.444 -2.904 PUG-123 367.1 237.56 2.502 -2.149 PUG-124 369.2 237.50 2.573 -1.858 PUG-125 372 237.43 2.426 -3.204 PUG-126 374.5 237.36 2.576 -1.503 PUG-127 376.8 237.30 2.363 -2.573 PUG-128 379.1 237.23 2.510 -2.232 PUG-129 381 237.18 2.662 -1.840 PUG-130 383.4 237.12 2.628 -1.620 PUG-131 385.7 237.06 2.550 -2.811 0.7077261 0.0037 UCSC PUG-132 387.8 237.00 2.533 -2.950 PUG-133 390 236.94 2.616 -2.817 PUG-134 392 236.89 2.555 -2.426 PUG-135 394.2 236.83 2.477 -3.066 PUG-136 395.7 236.79 2.604 -2.139 PUG-137 398.4 236.71 2.608 -2.559 PUG-138 403 236.59 2.821 -3.660 PUG-139 415.9 236.24 2.538 -4.050 PUG-140 429.1 235.89 2.267 -4.032 PUG-141 431.1 235.83 2.291 -3.256 0.7079272 0.0009 UCSC PUG-142 434.7 235.73 2.309 -1.073 PUG-143 437.5 235.66 2.139 -5.805 PUG-144 438.4 235.63 2.622 -5.379 PUG-145 438.45 235.63 2.386 -6.745

185 APPENDIX C: Species-level size data for eight marine clades (Chapter 2)

Size Normalized Size Clade Species Stage (log10 mm) (log10 mm) Foraminifera Abadehella iwaiensis Changhsingian 0.2222 0.4952 Foraminifera Aeolisaccus dunningtoni Changhsingian -0.3238 -0.0508 Foraminifera Agathammina psebaensis Changhsingian 0.2667 0.5398 Foraminifera Ammovertella inversus Changhsingian -0.7533 -0.4803 Foraminifera Calvezina ottomana Changhsingian -0.3263 -0.0533 Foraminifera Chalaroschwagerina vulgaris Changhsingian 0.7466 1.0196 Foraminifera Climacammina valvulinoides Changhsingian 0.6638 0.9369 Foraminifera Colaniella media Changhsingian 0.2520 0.5250 Foraminifera Cribrogenerina sumatrana Changhsingian 0.5403 0.8134 Foraminifera Cryptomorphina limonitica Changhsingian -0.4618 -0.1888 Foraminifera Cryptoseptida kanyoensis Changhsingian -0.0020 0.2710 Foraminifera Dagmarita chanakchiensis Changhsingian -0.1511 0.1220 Foraminifera Diplosphaerina inaequalis Changhsingian -0.7970 -0.5240 Foraminifera Frondina paraconica Changhsingian -0.2610 0.0121 Foraminifera Geinitzina Changhsingian 0.0176 0.2907 Foraminifera Globivalvulina Changhsingian -0.0033 0.2698 vonderschmitti Foraminifera Glomospira tenuifistula Changhsingian -0.2518 0.0212 Foraminifera Graecodiscus kotlyarae Changhsingian -0.0532 0.2199 Foraminifera Hemigordius discoides Changhsingian -0.4898 -0.2167 Foraminifera Ichthyofrondina latilimbata Changhsingian -0.4630 -0.1900 Foraminifera Langella malalabensis Changhsingian -0.0433 0.2297 Foraminifera Lasiodiscus insecta Changhsingian -0.3882 -0.1151 Foraminifera Lingulina tumida Changhsingian -0.1082 0.1648 Foraminifera Lunucammina (A) Changhsingian -0.1523 0.1208 Foraminifera Midiella karinae Changhsingian -0.1470 0.1260 Foraminifera Multidiscus (A) Changhsingian -0.1913 0.0818 Foraminifera Nankinella sp. Changhsingian 0.2077 0.4808 Foraminifera Nanlingella simplex Changhsingian -0.3960 -0.1230 Foraminifera Neodiscus grandis Changhsingian 0.1365 0.4095 Foraminifera Neoendothyra permica Changhsingian -0.0122 0.2608 Foraminifera Nodosaria longissima Changhsingian 0.0031 0.2762 Foraminifera Nodosinelloides mirabilis Changhsingian -0.0491 0.2239 Foraminifera Pachyphloia Changhsingian 0.1928 0.4659 Foraminifera Pachyphloides inflatus Changhsingian -0.4308 -0.1577 Foraminifera Paleofusulina sinensis Changhsingian -0.3889 -0.1158 Foraminifera Paraglobivalvulina piyasini Changhsingian 0.4700 0.7431 Foraminifera Partisania typica Changhsingian -0.0420 0.2310 Foraminifera Polarisella sagitta Changhsingian -0.3404 -0.0674 Foraminifera Postendothyra tenuis Changhsingian -0.2735 -0.0005 Foraminifera Protonodosaria (A) Changhsingian 0.0216 0.2946 Foraminifera Pseudocolaniella longa Changhsingian -0.2480 0.0250 Foraminifera Pseudolangella fragilis Changhsingian -0.2961 -0.0231 Foraminifera Pseudoschwagerina A Changhsingian 0.6307 0.9038 Foraminifera Rectoglandulina semiglobosa Changhsingian -0.4359 -0.1628 Foraminifera Rectostipulina quadrata Changhsingian -0.6362 -0.3632

186 Size Normalized Size Clade Species Stage (log10 mm) (log10 mm) Foraminifera Reichelina cribroseptata Changhsingian 0.1500 0.4231 Foraminifera Robuloides Changhsingian -0.0294 0.2436 Foraminifera Sengoerina argandi Changhsingian -0.5109 -0.2378 Foraminifera Staffella sp. Changhsingian 0.1299 0.4030 Foraminifera Tetrataxis (A) Changhsingian 0.2578 0.5308 Foraminifera Veervilleina bradyi Changhsingian -0.2750 -0.0020 Foraminifera Cyclogyra mahajeri Induan -0.8223 -0.5493 Foraminifera Diplosphaerina inaequalis Induan -0.9450 -0.6719 Foraminifera Frondina permica Induan -0.6120 -0.3390 Foraminifera Gandinella silensis Induan -0.7009 -0.4279 Foraminifera Gaudryina triadica Induan -0.1400 0.1330 Foraminifera Geinitzina araxensis Induan -0.6024 -0.3294 Foraminifera Globivalvulina bulloides Induan -0.7135 -0.4405 Foraminifera Glomospira regularis Induan -0.5270 -0.2540 Foraminifera Ichthyofrondina palmata Induan -0.7963 -0.5233 Foraminifera Nodosaria expolita Induan -0.6919 -0.4188 Foraminifera Nodosinelloides netschajewi Induan -0.5502 -0.2772 Foraminifera Rectocornuspira kalhori Induan -0.8252 -0.5522 Foraminifera Rectostipulina quadrata Induan -0.8468 -0.5738 Foraminifera Robuloides lens Induan -0.3003 -0.0272 Foraminifera Ammobaculites sp. Olenekian -0.1877 0.0853 Foraminifera Ammovertella liassica Olenekian -0.1904 0.0827 Foraminifera Astacolus sp. Olenekian -0.1619 0.1111 Foraminifera Bigenerina lindae Olenekian -0.3915 -0.1184 Foraminifera Calcitornella sp. Olenekian -0.0879 0.1852 Foraminifera Dentalina sp. Olenekian -0.3342 -0.0611 Foraminifera Duostomina biconvexa Olenekian -0.7242 -0.4511 Foraminifera Frondicularia parri Olenekian -0.2104 0.0626 Foraminifera Gandinella silensis Olenekian -0.6428 -0.3697 Foraminifera Gsollbergella Olenekian -0.6508 -0.3777 spiroloculiniformis Foraminifera Haplophragmoides sp. A Olenekian -0.3521 -0.0790 Foraminifera Hemigordius volutus Olenekian -0.5549 -0.2819 Foraminifera Hyperammina glabra Olenekian -0.2682 0.0048 Foraminifera Incertae sedis Olenekian -0.9446 -0.6716 Foraminifera Karaburunia rendeli Olenekian -0.7129 -0.4399 Foraminifera Krikoumbilica compressa Olenekian -0.6406 -0.3675 Foraminifera Kutsevella sp. Olenekian -0.3637 -0.0907 Foraminifera Lenticulina varians Olenekian -0.4634 -0.1904 Foraminifera Lingulina triangulata Olenekian -0.2614 0.0116 Foraminifera Marginulina eocomma Olenekian -0.6185 -0.3454 Foraminifera Nodosaria sp. Olenekian -0.1056 0.1674 Foraminifera Oberhauserella ladinica Olenekian -0.6885 -0.4154 Foraminifera Ophthalmidium sp. A Olenekian -0.8358 -0.5628 Foraminifera Palmula striata Olenekian -0.4399 -0.1668 Foraminifera Paralingulina tenera Olenekian -0.3812 -0.1082 Foraminifera Planiinvoluta carinata Olenekian -0.6864 -0.4134 Foraminifera Prodentalina terquemi Olenekian 0.0191 0.2921 Foraminifera Protonodosaria tereta Olenekian -0.7074 -0.4344 Foraminifera Pseudofrondicularia triassica Olenekian -0.3459 -0.0728 Foraminifera Quinqueloculina sp. Olenekian -0.6878 -0.4148

187 Size Normalized Size Clade Species Stage (log10 mm) (log10 mm) Foraminifera Reophax finleyi Olenekian -0.1629 0.1102 Foraminifera Tolypammina gregaria Olenekian 0.1525 0.4255 Foraminifera Trocholina planoconvexa Olenekian -0.5409 -0.2679 Foraminifera Verneuilinoides mauritii Olenekian -0.5095 -0.2364 Foraminifera Agathammina judicariensis Anisian -0.2575 0.0156 Foraminifera Ammobaculites Anisian -0.3951 -0.1221 zlambachensis Foraminifera Ammodiscoides turbinatus Anisian 0.0175 0.2906 Foraminifera Ammodiscus multivolutus Anisian -0.6467 -0.3737 Foraminifera Arenovidalina Anisian -0.4553 -0.1822 chialingchiangensis Foraminifera Aulotortus eotriasicus Anisian 0.2175 0.4905 Foraminifera Calcitornella elongata Anisian -0.2094 0.0637 Foraminifera Dentalina hoi Anisian -0.1677 0.1053 Foraminifera Duostomina biconvexa Anisian -0.7179 -0.4449 Foraminifera Earlandia tintinniformis Anisian -0.2220 0.0510 Foraminifera Earlandinita elongata Anisian 0.3312 0.6043 Foraminifera Endothyra kuepperi Anisian -0.0124 0.2606 Foraminifera Endothyranella wirzi Anisian 0.3076 0.5806 Foraminifera Endotriadella wirzi Anisian -0.0138 0.2592 Foraminifera Frondicularia lambertensis Anisian -0.4132 -0.1401 Foraminifera Gaudryina sp. Anisian -0.5358 -0.2628 Foraminifera Gaudryinella clavuliformis Anisian -0.7116 -0.4386 Foraminifera Geinitzina tcherdynzevi Anisian 0.2136 0.4866 Foraminifera Glomospira densa Anisian -0.0074 0.2656 Foraminifera Glomospirella grandis Anisian 0.2938 0.5668 Foraminifera Gsollbergella Anisian -0.6460 -0.3730 spiroloculiniformis Foraminifera Haplophragmella inflata Anisian 0.3072 0.5803 Foraminifera Krikoumbilica pileiformis Anisian -0.5227 -0.2496 Foraminifera Lamelliconus ovatus Anisian -0.4629 -0.1899 Foraminifera Lenticulina polygonata Anisian -0.4544 -0.1813 Foraminifera Lingulina alaskensis Anisian -0.2819 -0.0089 Foraminifera Marginulina sp. Anisian -0.7319 -0.4588 Foraminifera Meandrospira deformata Anisian -0.1821 0.0910 Foraminifera Meandrospiranella samueli Anisian 0.0011 0.2741 Foraminifera Multiseptida elongata Anisian 0.2824 0.5554 Foraminifera Neoendothyra reicheli Anisian 0.1878 0.4609 Foraminifera Nodosaria vadaszi Anisian -0.6552 -0.3822 Foraminifera Ophthalmidium ubeyliense Anisian -0.1814 0.0917 Foraminifera Palmula striata Anisian -0.3600 -0.0869 Foraminifera Paralingulina tenera Anisian -0.4913 -0.2183 Foraminifera Paratriasina jiangyouensis Anisian -0.2537 0.0194 Foraminifera Paulbronnimanella whittakeri Anisian -0.3869 -0.1139 Foraminifera Paulbronnimannia Anisian -0.3481 -0.0751 judicariensis Foraminifera Permodiscus pragsoides Anisian -0.1224 0.1507 Foraminifera Pilammina densa Anisian -0.0373 0.2357 Foraminifera Pilamminella semiplana Anisian -0.0231 0.2499 Foraminifera Planiinvoluta mesotriasica Anisian -0.5029 -0.2299 Foraminifera Prodentalina terquemi Anisian -0.3966 -0.1236

188 Size Normalized Size Clade Species Stage (log10 mm) (log10 mm) Foraminifera Protonodosaria tereta Anisian -0.6516 -0.3786 Foraminifera Pseudobolivina globosa Anisian -0.6177 -0.3447 Foraminifera Pseudoglandulina conica Anisian 0.4780 0.7510 Foraminifera Pseudonodosaria wisemanae Anisian -0.5953 -0.3222 Foraminifera Rectoseptoglomospiranella Anisian -0.1561 0.1170 memii Foraminifera Reophax asperus Anisian -0.2589 0.0141 Foraminifera Sigmoilina triadica Anisian -0.1207 0.1523 Foraminifera Tetrataxis nana Anisian -0.5283 -0.2553 Foraminifera Trochammina almtalensis Anisian -0.4455 -0.1724 Foraminifera Turriglomina magna Anisian -0.3847 -0.1116 Foraminifera Turrispirillina prealpina Anisian -0.4941 -0.2211 Foraminifera Turritellella mesotriasica Anisian -0.0452 0.2278 Foraminifera Valvulina azzouzi Anisian -0.1565 0.1165 Foraminifera Agathammina austroalpina Ladinian -0.7627 -0.4897 Foraminifera Ammobaculites radstadtensis Ladinian 0.0424 0.3154 Foraminifera Earlandia gracilis Ladinian -0.0835 0.1896 Foraminifera Earlandinita ladinica Ladinian 0.2841 0.5572 Foraminifera Endoteba obturata Ladinian -0.5521 -0.2791 Foraminifera Endothyra kuepperi Ladinian -0.2257 0.0474 Foraminifera Endothyranella wirtzi Ladinian -0.2878 -0.0147 Foraminifera Gaudryinella elegantissima Ladinian -0.1086 0.1645 Foraminifera Glomospira gemerica Ladinian -0.1102 0.1628 Foraminifera Haplophragmium maamouri Ladinian 0.2872 0.5603 Foraminifera Lamelliconus procerus Ladinian -0.0756 0.1974 Foraminifera Nodosaria sumatrensis Ladinian 0.2484 0.5214 rossica Foraminifera Nodosinella libera Ladinian 0.3519 0.6250 Foraminifera Paleomiliolina occulta Ladinian -0.3515 -0.0785 Foraminifera Paratriasina jiangyouensis Ladinian -0.3121 -0.0390 Foraminifera Permodiscus planidiscoides Ladinian 0.4124 0.6854 Foraminifera Pilamminella kuthani Ladinian -0.1604 0.1126 Foraminifera Spiroloculina praecursor Ladinian -0.2130 0.0600 Foraminifera Triadodiscus eomesozoicus Ladinian -0.6417 -0.3686 Foraminifera Turrispirillina prealpina Ladinian -0.4462 -0.1732 Foraminifera Agathammina austroalpina -0.3557 -0.0826 Foraminifera Agathamminoides Carnian 0.4484 0.7214 spiroloculiformis Foraminifera Ammobacularia triloba Carnian -0.0568 0.2162 Foraminifera Ammobaculites eumorphos Carnian 0.2498 0.5229 Foraminifera Ammodiscus multivolutus Carnian -0.4245 -0.1515 Foraminifera Angulodiscus gaschei Carnian 0.0192 0.2922 Foraminifera Arenovidalina amylovoluta Carnian -0.3541 -0.0810 Foraminifera Aulotortus sinuosus Carnian -0.0104 0.2627 Foraminifera Austrocolomia canaliculata Carnian -0.5118 -0.2388 Foraminifera Bispiranella ovata Carnian -0.1016 0.1715 Foraminifera Calcitornella baconica Carnian -0.2374 0.0357 Foraminifera Duostomina alta Carnian -0.1429 0.1301 Foraminifera Earlandia sp. Carnian -0.1061 0.1670 Foraminifera Earlandinita soussi Carnian 0.0013 0.2743 Foraminifera Endothyra elegans Carnian -0.1161 0.1570

189 Size Normalized Size Clade Species Stage (log10 mm) (log10 mm) Foraminifera Endothyranella robusta Carnian -0.0613 0.2117 Foraminifera Endothyranopsis crassa Carnian 0.0093 0.2824 Foraminifera Frondicularia xiphoidea Carnian -0.4085 -0.1355 Foraminifera Gaudryinella clavuliformis Carnian -0.4352 -0.1621 Foraminifera Glomospira kuthani Carnian -0.0998 0.1732 Foraminifera Glyphostomella triloculina Carnian -0.6547 -0.3816 Foraminifera Ladinosphaera ladinica Carnian -0.7137 -0.4406 Foraminifera Lamelliconus ventroplanus Carnian -0.1207 0.1524 Foraminifera Lenticulina rectangulata Carnian -0.1136 0.1595 Foraminifera Meandrospira karnica Carnian -0.9823 -0.7092 Foraminifera Mesoendothyra isjumiana Carnian -0.1077 0.1653 Foraminifera Multiseptida arcata Carnian -0.4148 -0.1417 Foraminifera Nodosaria sumatrensis Carnian -0.1404 0.1326 rossica Foraminifera Nodosinella libera Carnian 0.4252 0.6982 Foraminifera Ophthalmidium fusiformis Carnian -0.2356 0.0375 Foraminifera Ophthalmipora dolomitica Carnian -0.2584 0.0146 Foraminifera Paraophthalmidium salaji Carnian -0.1973 0.0758 Foraminifera Permodiscus pragsoides Carnian -0.0403 0.2328 Foraminifera Pilamminella gemerica Carnian -0.0191 0.2539 Foraminifera Pseudobolivina globosa Carnian -0.5085 -0.2355 Foraminifera Pseudonodosaria Carnian -0.2449 0.0281 striatoclavata Foraminifera Quinqueloculina nucleiformis Carnian -0.4048 -0.1317 Foraminifera Rakusia oberhauseri Carnian -0.4601 -0.1870 Foraminifera Reophax asperus Carnian -0.2964 -0.0233 Foraminifera Sigmoilina multicarinata Carnian -0.4862 -0.2132 Foraminifera Spiroloculina praecursor Carnian -0.3238 -0.0508 Foraminifera Tetrataxis inflata Carnian -0.3444 -0.0714 Foraminifera Textularia exigua Carnian -0.2809 -0.0078 Foraminifera Tolypammina gregaria Carnian 0.5172 0.7902 Foraminifera Triadodiscus eomesozoicus Carnian -0.3014 -0.0284 Foraminifera Trochammina almtalensis Carnian -0.2934 -0.0203 Foraminifera Turrispirillina prealpina Carnian -0.5205 -0.2474 Foraminifera Valvulina azzouzi Carnian 0.0251 0.2982 Foraminifera Agathammina parafusiformis Norian -0.3505 -0.0774 Foraminifera Agathamminoides Norian -0.3328 -0.0598 spiroloculiformis Foraminifera Ammobaculites E Norian -0.1746 0.0985 Foraminifera Ammodiscus parapriscus Norian -0.5706 -0.2976 Foraminifera Angulodiscus gaschei Norian 0.2549 0.5280 praegaschei Foraminifera Arenovidalina amylovoluta Norian -0.4381 -0.1650 Foraminifera Astacolus connudatus Norian -0.1338 0.1393 Foraminifera Auloconus permodiscoides Norian 0.0728 0.3459 Foraminifera Aulotortus broennimanni Norian 0.3895 0.6626 Foraminifera Austrocolomia marschalli Norian -0.5077 -0.2346 Foraminifera Caligella antropovi Norian -0.4061 -0.1331 Foraminifera Cribratina texana Norian 0.4062 0.6792 Foraminifera Dentalina hoi Norian -0.1837 0.0893 Foraminifera Discorbis pristinus Norian -0.4586 -0.1856

190 Size Normalized Size Clade Species Stage (log10 mm) (log10 mm) Foraminifera Duotaxis birmanica Norian -0.2471 0.0259 Foraminifera Earlandia tintinniformis Norian -0.6196 -0.3466 Foraminifera Earlandinita ladinica Norian -0.0823 0.1908 Foraminifera Endothyra elegans Norian 0.2264 0.4995 Foraminifera Endothyranella tricamerata Norian -0.0411 0.2320 Foraminifera Endotyhranopsis Crassa Norian -0.6033 -0.3302 Foraminifera Flabellammina B Norian -0.2256 0.0474 Foraminifera Frondicularia xiphoidea Norian -0.2326 0.0404 Foraminifera Galeanella tollmanni Norian -0.0568 0.2163 Foraminifera Gaudryina triadica Norian -0.0916 0.1814 Foraminifera Gaudryinella elegantissima Norian -0.3701 -0.0970 Foraminifera Glomospirella friedli Norian -0.1979 0.0751 Foraminifera Grillina grilli Norian -0.7733 -0.5003 Foraminifera Gyroidinoides A Norian -0.6141 -0.3411 Foraminifera Haplophragmella irregularis Norian 0.1173 0.3903 Foraminifera Haplophragmina kashrica Norian 0.2056 0.4787 Foraminifera Karaburunia rendeli Norian -0.1399 0.1331 Foraminifera Klubovella konensis Norian 0.2984 0.5715 Foraminifera Labyrinthina falsomirabilis Norian -0.2759 -0.0028 Foraminifera Lenticulina acutiangulata Norian -0.4874 -0.2143 Foraminifera Lingulina essayana Norian -0.6295 -0.3564 Foraminifera Miliolipora cuvillieri Norian -0.0319 0.2412 Foraminifera Nodosaria anathra Norian -0.0364 0.2367 Foraminifera Ophthalmidium triadicum Norian 0.0289 0.3019 Foraminifera Pachyphloia solida Norian -0.4262 -0.1532 Foraminifera Paleonubecularia minuta Norian -0.4692 -0.1961 Foraminifera Paraendothyra nalivkini Norian -0.5095 -0.2364 Foraminifera Permodiscus eomesozoicus Norian -0.0696 0.2034 Foraminifera Pilamminella begani Norian -0.0132 0.2599 Foraminifera Planiinvoluta irregularis Norian -0.0897 0.1833 Foraminifera Pseudobolivina globosa Norian -0.3261 -0.0530 Foraminifera Pseudonodosaria vulgata Norian -0.3479 -0.0748 multicamerata Foraminifera Quinqueloculina nucleiformis Norian -0.3497 -0.0767 Foraminifera Rakusia oberhauseri Norian 0.3925 0.6655 Foraminifera Rectoglandulina polyarthra Norian -0.2801 -0.0070 Foraminifera Reophax eominutus Norian -0.2142 0.0589 Foraminifera Robuloides orientalis Norian -0.2853 -0.0123 Foraminifera Semiinvoluta clari Norian 0.0225 0.2955 Foraminifera Sigmoilina bystrickyi Norian -0.2766 -0.0035 Foraminifera Spiroloculina praecursor Norian -0.2551 0.0180 Foraminifera Spiroplectammina spiralis Norian -0.1554 0.1176 Foraminifera Tetrataxis inflata Norian -0.2343 0.0387 Foraminifera Textularia exigua Norian -0.2987 -0.0256 Foraminifera Tolypammina gregaria Norian -0.2220 0.0511 Foraminifera Triloculina raibliana Norian -0.6648 -0.3918 Foraminifera Trochammina almtalensis Norian -0.2489 0.0242 Foraminifera Trochonella permodiscoides Norian 0.2448 0.5179 Foraminifera Turrispirillina minima Norian -0.3374 -0.0644 Foraminifera Valvulina azzouzi Norian -0.0837 0.1894 Foraminifera Agathammina parafusiformis Rhaetian -0.2427 0.0303

191 Size Normalized Size Clade Species Stage (log10 mm) (log10 mm) Foraminifera Ammobaculites Rhaetian 0.1044 0.3775 zlambachensis Foraminifera Ammodiscus rugosus Rhaetian 0.1245 0.3976 Foraminifera Ammovertella A Rhaetian -0.3940 -0.1210 Foraminifera Angulodiscus Rhaetian 0.7175 0.9905 glomospirelloides Foraminifera Arenovidalina Rhaetian -0.5547 -0.2817 chialingchiangensis Foraminifera Astacolus connudatus Rhaetian -0.2787 -0.0057 Foraminifera Aulotortus broennimanni Rhaetian 0.4462 0.7192 Foraminifera Calcitornella gebzeensis Rhaetian -0.6092 -0.3362 Foraminifera Duotaxis metula Rhaetian -0.1802 0.0929 Foraminifera Everticyclammina Rhaetian -0.2509 0.0221 praevirguliana Foraminifera Galeanella panticae Rhaetian -0.2071 0.0659 Foraminifera Gaudryina triadica Rhaetian 0.1241 0.3971 Foraminifera Glomospira sinensis Rhaetian -0.5483 -0.2752 Foraminifera Glomospirella facilis Rhaetian -0.4705 -0.1975 Foraminifera Hyperammina A Rhaetian 0.0091 0.2821 Foraminifera Lingulina alaskensis Rhaetian -0.3468 -0.0737 Foraminifera Meandrovoluta asiagoensis Rhaetian -0.5698 -0.2968 Foraminifera Ophthalmidium leischneri Rhaetian -0.1277 0.1453 Foraminifera Paleomiliolina occulta Rhaetian -0.4077 -0.1346 Foraminifera Permodiscus praetumidus Rhaetian -0.1018 0.1712 Foraminifera Planiinvoluta deflexa Rhaetian -0.2560 0.0170 Foraminifera Pseudobolivina E Rhaetian -0.3863 -0.1133 Foraminifera Recurvoides helictus Rhaetian -0.1459 0.1272 Foraminifera Reophax eominutus Rhaetian -0.1935 0.0795 Foraminifera Saccammina A Rhaetian -0.4326 -0.1595 Foraminifera Siphovalvulina variabillis Rhaetian -0.3250 -0.0519 Foraminifera Spirillina gurgitata Rhaetian -0.6411 -0.3680 Foraminifera Tetrataxis inflata Rhaetian -0.2496 0.0235 Foraminifera Tolypammina glareosa Rhaetian 0.0013 0.2744 Foraminifera Valvulina metula Rhaetian -0.2932 -0.0201 Brachiopods (calcitic) Schizopleuronia grandis Wuchiapingian 2.1065 0.8581 Brachiopods (calcitic) Araxathyris felina Wuchiapingian 1.5051 0.2568 Brachiopods (calcitic) Araxathyris kandevani Wuchiapingian 1.1847 -0.0637 Brachiopods (calcitic) Araxathyris lata Wuchiapingian 1.3010 0.0526 Brachiopods (calcitic) Araxathyris ogbinensis Wuchiapingian 1.7126 0.4643 Brachiopods (calcitic) Araxathyris protea Wuchiapingian 1.6053 0.3569 Brachiopods (calcitic) Araxathyris sinensis Wuchiapingian 1.1847 -0.0637 Brachiopods (calcitic) Cleiothyridina Wuchiapingian 1.0969 -0.1515 ambiguaeformis Brachiopods (calcitic) Cleiothyridina globulina Wuchiapingian 1.2553 0.0069 Brachiopods (calcitic) Cleiothyridina grossula Wuchiapingian 1.2304 -0.0179 Brachiopods (calcitic) Cleiothyridina kotlukovi Wuchiapingian 1.8228 0.5744 Brachiopods (calcitic) Cleiothyridina pectinifera Wuchiapingian 1.1139 -0.1344 Brachiopods (calcitic) Cleiothyridina subexpansa Wuchiapingian 1.6435 0.3951 Brachiopods (calcitic) Gruntea grunti Wuchiapingian 1.2665 0.0181 Brachiopods (calcitic) Hustedia remota Wuchiapingian 1.1461 -0.1023 Brachiopods (calcitic) Juxathyris guizhouensis Wuchiapingian 1.0755 -0.1728

192 Size Normalized Size Clade Species Stage (log10 mm) (log10 mm) Brachiopods (calcitic) Spirigerella alata Wuchiapingian 1.1461 -0.1023 Brachiopods (calcitic) Spirigerella derbyi Wuchiapingian 1.4314 0.1830 Brachiopods (calcitic) Spirigerella grandis Wuchiapingian 1.6128 0.3644 Brachiopods (calcitic) Spirigerella hybrida Wuchiapingian 1.3010 0.0526 Brachiopods (calcitic) Spirigerella minuta Wuchiapingian 1.2304 -0.0179 Brachiopods (calcitic) Spirigerella ovoidalis Wuchiapingian 1.3802 0.1318 Brachiopods (calcitic) Spirigerella praelonga Wuchiapingian 1.4472 0.1988 Brachiopods (calcitic) Spirigerella simplex Wuchiapingian 1.2304 -0.0179 Brachiopods (calcitic) Transcaucasathyris araxensis Wuchiapingian 1.2175 -0.0309 Brachiopods (calcitic) Acosarina capillosa Wuchiapingian 1.3243 0.0759 Brachiopods (calcitic) Acosarina corallina Wuchiapingian 1.4150 0.1666 Brachiopods (calcitic) Acosarina dorashamensis Wuchiapingian 1.2492 0.0008 Brachiopods (calcitic) Acosarina indica Wuchiapingian 1.3010 0.0526 Brachiopods (calcitic) Acosarina minuta Wuchiapingian 1.1761 -0.0723 Brachiopods (calcitic) Enteletes dzhagrensis Wuchiapingian 1.1303 -0.1181 Brachiopods (calcitic) Enteletes kayseri Wuchiapingian 1.2304 -0.0179 Brachiopods (calcitic) Enteletes laevissimus Wuchiapingian 1.2175 -0.0309 Brachiopods (calcitic) Enteletes lateroplicatus Wuchiapingian 1.4800 0.2316 Brachiopods (calcitic) Enteletes pentameroides Wuchiapingian 1.5911 0.3427 Brachiopods (calcitic) Enteletina latesinuatus Wuchiapingian 1.5682 0.3198 Brachiopods (calcitic) Enteletina sublaevis Wuchiapingian 1.4472 0.1988 Brachiopods (calcitic) Orthotichia derbyi Wuchiapingian 1.4150 0.1666 Brachiopods (calcitic) Orthotichia marmorea Wuchiapingian 1.5185 0.2701 Brachiopods (calcitic) Peltichia ruzhencevi Wuchiapingian 1.6990 0.4506 Brachiopods (calcitic) "Rhynchonella" morahensis Wuchiapingian 1.0414 -0.2070 Brachiopods (calcitic) Bicamella timorensis Wuchiapingian 1.5198 0.2714 Brachiopods (calcitic) Coledium globulina Wuchiapingian 0.9031 -0.3453 Brachiopods (calcitic) Cyrolexis superstes Wuchiapingian 1.2041 -0.0443 Brachiopods (calcitic) Hybostenoscisma armenica Wuchiapingian 1.3222 0.0738 Brachiopods (calcitic) Lambdarina iota Wuchiapingian 0.3010 -0.9474 Brachiopods (calcitic) Prelissorhynchia Wuchiapingian 1.0969 -0.1515 dorashamensis Brachiopods (calcitic) Pseudowellerella araxensis Wuchiapingian 0.8451 -0.4033 Brachiopods (calcitic) Rhynchopora wynnei Wuchiapingian 1.2041 -0.0443 Brachiopods (calcitic) Stenoscisma multiplicatum Wuchiapingian 1.4150 0.1666 Brachiopods (calcitic) Stenoscisma pinguis Wuchiapingian 1.4314 0.1830 Brachiopods (calcitic) Stenoscisma purdoni Wuchiapingian 1.4624 0.2140 Brachiopods (calcitic) Terebratuloidea davidsoni Wuchiapingian 1.3617 0.1133 Brachiopods (calcitic) Terebratuloidea depressa Wuchiapingian 1.3010 0.0526 Brachiopods (calcitic) Uncinunellina jabiensis Wuchiapingian 1.2788 0.0304 Brachiopods (calcitic) Uncinunellina posterus Wuchiapingian 1.1614 -0.0870 Brachiopods (calcitic) Uncinunellina theobaldi Wuchiapingian 1.3010 0.0526 Brachiopods (calcitic) Wairakiella sella Wuchiapingian 0.9638 -0.2846 Brachiopods (calcitic) Betaneospirifer ambiensis Wuchiapingian 1.8921 0.6437 Brachiopods (calcitic) Eliva timorensis Wuchiapingian 1.4456 0.1972 Brachiopods (calcitic) Jilinmartinia lopingensis Wuchiapingian 1.3365 0.0881 Brachiopods (calcitic) Latispirifer amplissimus Wuchiapingian 2.2095 0.9611 Brachiopods (calcitic) Martinia elongata Wuchiapingian 1.0607 -0.1877 Brachiopods (calcitic) Martinia warthi Wuchiapingian 1.4314 0.1830 Brachiopods (calcitic) Martiniopsis woodi Wuchiapingian 1.6990 0.4506 Brachiopods (calcitic) Neospirifer grandis Wuchiapingian 2.2325 0.9841

193 Size Normalized Size Clade Species Stage (log10 mm) (log10 mm) Brachiopods (calcitic) Neospirifer kubeiensis Wuchiapingian 2.0734 0.8250 Brachiopods (calcitic) Neospirifer moosakhailensis Wuchiapingian 1.9445 0.6961 Brachiopods (calcitic) Orbicoelia flabelliformis Wuchiapingian 0.7324 -0.5160 Brachiopods (calcitic) Ovispirifer oldhamianus Wuchiapingian 1.9031 0.6547 Brachiopods (calcitic) Permophricodothyris Wuchiapingian 1.5911 0.3427 elegantula Brachiopods (calcitic) Permophricodothyris Wuchiapingian 1.1461 -0.1023 guizhouensis Brachiopods (calcitic) Permophricodothyris indica Wuchiapingian 1.8129 0.5645 Brachiopods (calcitic) Permophricodothyris iranica Wuchiapingian 1.7924 0.5440 Brachiopods (calcitic) Permophricodothyris ovata Wuchiapingian 1.7924 0.5440 Brachiopods (calcitic) Rallacosta heshanensis Wuchiapingian 1.3598 0.1115 Brachiopods (calcitic) Spiriferella jilongensis Wuchiapingian 1.8451 0.5967 Brachiopods (calcitic) Spiriferella nepalensis Wuchiapingian 1.7482 0.4998 Brachiopods (calcitic) Spiriferella orientensis Wuchiapingian 1.7825 0.5341 Brachiopods (calcitic) Squamularia formilla Wuchiapingian 1.2900 0.0416 Brachiopods (calcitic) Tomiopsis hardmani Wuchiapingian 1.6808 0.4324 Brachiopods (calcitic) Zhejiangospirifer wynnei Wuchiapingian 1.7924 0.5440 Brachiopods (calcitic) Crenispirifer alpheus Wuchiapingian 1.2201 -0.0283 Brachiopods (calcitic) Crenispirifer dzhulfensis Wuchiapingian 1.0170 -0.2314 Brachiopods (calcitic) Lamnaespina transennata Wuchiapingian 1.1903 -0.0581 Brachiopods (calcitic) Paraspiriferina multiplicata Wuchiapingian 1.3729 0.1245 Brachiopods (calcitic) Spiriferellina cristata Wuchiapingian 1.3010 0.0526 Brachiopods (calcitic) Spiriferellina vercherei Wuchiapingian 1.4914 0.2430 Brachiopods (calcitic) Dielasma zhijinense Wuchiapingian 1.1399 -0.1085 Brachiopods (calcitic) Dielasmina plicata Wuchiapingian 1.3522 0.1038 Brachiopods (calcitic) Disphenia myoides Wuchiapingian 0.5185 -0.7299 Brachiopods (calcitic) Fletcherithyris hardmani Wuchiapingian 1.1303 -0.1181 Brachiopods (calcitic) Fredericksolasma Wuchiapingian 1.2430 -0.0053 rhomboidale Brachiopods (calcitic) Gundarolasmina acutangula Wuchiapingian 1.4314 0.1830 Brachiopods (calcitic) Hemiptychina himalayensis Wuchiapingian 1.3222 0.0738 Brachiopods (calcitic) Hemiptychina inflata Wuchiapingian 1.3802 0.1318 Brachiopods (calcitic) Notothyris depressa Wuchiapingian 0.9956 -0.2527 Brachiopods (calcitic) Notothyris djoulfensis Wuchiapingian 1.2041 -0.0443 Brachiopods (calcitic) Notothyris inflata Wuchiapingian 1.1461 -0.1023 Brachiopods (calcitic) Notothyris lenticularis Wuchiapingian 1.1761 -0.0723 Brachiopods (calcitic) Notothyris minuta Wuchiapingian 1.1303 -0.1181 Brachiopods (calcitic) Notothyris minuta Wuchiapingian 0.9542 -0.2941 Brachiopods (calcitic) Notothyris multiplicata Wuchiapingian 1.0531 -0.1953 Brachiopods (calcitic) Notothyris subvesicularis Wuchiapingian 1.1139 -0.1344 Brachiopods (calcitic) Notothyris warthi Wuchiapingian 1.1761 -0.0723 Brachiopods (calcitic) Whitspakia biplex Wuchiapingian 1.5185 0.2701 Brachiopods (calcitic) Whitspakia problematicum Wuchiapingian 1.5563 0.3079 Brachiopods (calcitic) Derbyia acutangula Wuchiapingian 1.8007 0.5523 Brachiopods (calcitic) Derbyia altestriata Wuchiapingian 1.6628 0.4144 Brachiopods (calcitic) Derbyia disalata Wuchiapingian 1.4200 0.1716 Brachiopods (calcitic) Derbyia grandis Wuchiapingian 2.0755 0.8272 Brachiopods (calcitic) Derbyia hardmani Wuchiapingian 1.8633 0.6149 Brachiopods (calcitic) Derbyia plicatella Wuchiapingian 1.7160 0.4676 Brachiopods (calcitic) Derbyia regis Wuchiapingian 1.6902 0.4418

194 Size Normalized Size Clade Species Stage (log10 mm) (log10 mm) Brachiopods (calcitic) Derbyia regularis Wuchiapingian 1.9445 0.6961 Brachiopods (calcitic) Derbyia vercherei Wuchiapingian 1.8573 0.6089 Brachiopods (calcitic) Diplanus dilatus Wuchiapingian 0.8388 -0.4095 Brachiopods (calcitic) Goniarina subulata Wuchiapingian 0.9243 -0.3241 Brachiopods (calcitic) Meekella langdaiensis Wuchiapingian 1.6830 0.4347 Brachiopods (calcitic) Ombonia antalyensis Wuchiapingian 1.2923 0.0439 Brachiopods (calcitic) Orthothetina dzhulfensis Wuchiapingian 1.6484 0.4000 Brachiopods (calcitic) Orthothetina frechi Wuchiapingian 1.2900 0.0416 Brachiopods (calcitic) Orthothetina glausi Wuchiapingian 1.5441 0.2957 Brachiopods (calcitic) Orthothetina peregrina Wuchiapingian 1.8779 0.6296 Brachiopods (calcitic) Orthothetina persica Wuchiapingian 1.7160 0.4676 Brachiopods (calcitic) Orthothetina regularis Wuchiapingian 0.9243 -0.3241 Brachiopods (calcitic) Perigeyerella minuta Wuchiapingian 1.1847 -0.0637 Brachiopods (calcitic) Schuchertella bassa Wuchiapingian 1.5775 0.3291 Brachiopods (calcitic) Schuchertella semiplanum Wuchiapingian 1.3979 0.1496 Brachiopods (calcitic) Sicelia explicata Wuchiapingian 1.7308 0.4824 Brachiopods (calcitic) Streptorhynchus luluigui Wuchiapingian 1.8209 0.5725 Brachiopods (calcitic) Streptorhynchus operculatus Wuchiapingian 1.2041 -0.0443 Brachiopods (calcitic) Streptorhynchus pendulus Wuchiapingian 1.0792 -0.1692 Brachiopods (calcitic) Tropidelasma ptomatis Wuchiapingian 1.5315 0.2831 Brachiopods (calcitic) Asperlinus asperulus Wuchiapingian 1.5051 0.2568 Brachiopods (calcitic) Aulosteges transversa Wuchiapingian 1.7042 0.4558 Brachiopods (calcitic) Biplatyconcha grandis Wuchiapingian 1.7924 0.5440 Brachiopods (calcitic) Calliomarginatia Wuchiapingian 1.7782 0.5298 himalayensis Brachiopods (calcitic) Cancrinella cancriniformis Wuchiapingian 1.3181 0.0697 Brachiopods (calcitic) Cathaysia spiriferoides Wuchiapingian 1.0934 -0.1550 Brachiopods (calcitic) Ceocypea chyrtina Wuchiapingian 0.9542 -0.2941 Brachiopods (calcitic) Ceocypea dischides Wuchiapingian 0.9777 -0.2707 Brachiopods (calcitic) Chonetella distorta Wuchiapingian 1.0755 -0.1728 Brachiopods (calcitic) Chonetella nasuta Wuchiapingian 1.1461 -0.1023 Brachiopods (calcitic) Chonetinella unisulcata Wuchiapingian 1.1461 -0.1023 Brachiopods (calcitic) Compressoproductus Wuchiapingian 1.7324 0.4840 compressa Brachiopods (calcitic) Costiferina alatus Wuchiapingian 1.8808 0.6324 Brachiopods (calcitic) Costiferina aratus Wuchiapingian 1.8129 0.5645 Brachiopods (calcitic) Costiferina indica Wuchiapingian 1.7435 0.4951 Brachiopods (calcitic) Costiferina thomasi Wuchiapingian 1.9138 0.6654 Brachiopods (calcitic) Costiferina vishnu Wuchiapingian 1.7782 0.5298 Brachiopods (calcitic) Cyndalia rudistiformis Wuchiapingian 0.6021 -0.6463 Brachiopods (calcitic) Dyoros pentagonalis Wuchiapingian 1.0792 -0.1692 Brachiopods (calcitic) Echinalosia indica Wuchiapingian 1.3802 0.1318 Brachiopods (calcitic) Echinalosia rarispina Wuchiapingian 1.3424 0.0940 Brachiopods (calcitic) Echinauris opuntia Wuchiapingian 1.1461 -0.1023 Brachiopods (calcitic) Edriosteges poyangensis Wuchiapingian 1.6532 0.4048 Brachiopods (calcitic) Epicelia episcopiensis Wuchiapingian 0.8692 -0.3792 Brachiopods (calcitic) Falafer epidulus Wuchiapingian 0.8129 -0.4355 Brachiopods (calcitic) Falafer heshanensis Wuchiapingian 0.7853 -0.4631 Brachiopods (calcitic) Falafer triminulus Wuchiapingian 0.7782 -0.4702 Brachiopods (calcitic) Haydenella kiangsiensis Wuchiapingian 1.4771 0.2287 Brachiopods (calcitic) Krotovia inflata Wuchiapingian 1.2529 0.0045

195 Size Normalized Size Clade Species Stage (log10 mm) (log10 mm) Brachiopods (calcitic) Kuvelousia weyprechti Wuchiapingian 1.6803 0.4320 Brachiopods (calcitic) Lamnimargus himalayensis Wuchiapingian 1.5051 0.2568 Brachiopods (calcitic) Leptodus hoshanensis Wuchiapingian 1.6955 0.4471 Brachiopods (calcitic) Leptodus nobilis Wuchiapingian 2.1614 0.9130 Brachiopods (calcitic) Linoproductus lineatus Wuchiapingian 1.8808 0.6324 Brachiopods (calcitic) Linoproductus tingriensis Wuchiapingian 1.4298 0.1814 Brachiopods (calcitic) Lissochonetes morahensis Wuchiapingian 1.1303 -0.1181 Brachiopods (calcitic) Liveringia magnifica Wuchiapingian 1.7404 0.4920 Brachiopods (calcitic) Marginifera typica Wuchiapingian 1.4914 0.2430 Brachiopods (calcitic) Matanoleptodus punctatus Wuchiapingian 1.1553 -0.0930 Brachiopods (calcitic) Megasteges dalhousi Wuchiapingian 1.6812 0.4329 Brachiopods (calcitic) Megasteges septentrionalis Wuchiapingian 1.8388 0.5905 Brachiopods (calcitic) Neochonetes hardmani Wuchiapingian 1.1931 -0.0553 Brachiopods (calcitic) Notolosia dickinsi Wuchiapingian 1.4133 0.1649 Brachiopods (calcitic) Notolosia millyiti Wuchiapingian 1.4609 0.2125 Brachiopods (calcitic) Notolosia minuta Wuchiapingian 1.0864 -0.1620 Brachiopods (calcitic) Oldhamina decipiens Wuchiapingian 1.7404 0.4920 Brachiopods (calcitic) Orthothrix excavata Wuchiapingian 1.2041 -0.0443 Brachiopods (calcitic) Paramesolobus lissarensis Wuchiapingian 1.3636 0.1152 Brachiopods (calcitic) Permundaria magna Wuchiapingian 1.8370 0.5886 Brachiopods (calcitic) Quinquenella semiglobosa Wuchiapingian 1.0453 -0.2031 Brachiopods (calcitic) Retimarginifera xizangensis Wuchiapingian 1.2014 -0.0470 Brachiopods (calcitic) Spinomarginifera Wuchiapingian 1.1931 -0.0553 chenyaoyenensis Brachiopods (calcitic) Spinomarginifera ciliata Wuchiapingian 1.4265 0.1781 Brachiopods (calcitic) Spinomarginifera helicus Wuchiapingian 1.3802 0.1318 Brachiopods (calcitic) Spinomarginifera iranica Wuchiapingian 1.0170 -0.2314 Brachiopods (calcitic) Spinomarginifera Wuchiapingian 1.1644 -0.0840 jiaozishanensis Brachiopods (calcitic) Spinomarginifera lopingensis Wuchiapingian 1.4698 0.2214 Brachiopods (calcitic) Spinomarginifera plena Wuchiapingian 1.4425 0.1941 Brachiopods (calcitic) Spinomarginifera Wuchiapingian 1.4393 0.1909 spinosocostata Brachiopods (calcitic) Spitzbergenia gracilis Wuchiapingian 1.5832 0.3348 Brachiopods (calcitic) Spitzbergenia khinlopensis Wuchiapingian 1.5539 0.3055 Brachiopods (calcitic) Spitzbergenia loveni Wuchiapingian 1.7340 0.4856 Brachiopods (calcitic) Striapustula singletoni Wuchiapingian 1.4330 0.1846 Brachiopods (calcitic) Sulcirugaria sureshanensis Wuchiapingian 1.2430 -0.0053 Brachiopods (calcitic) Sulcirugaria tibetensis Wuchiapingian 1.1072 -0.1412 Brachiopods (calcitic) Svalbardia capitolina Wuchiapingian 1.4654 0.2170 Brachiopods (calcitic) Taeniothaerus qubuensis Wuchiapingian 1.8657 0.6173 Brachiopods (calcitic) Tethyochonetes deplanata Wuchiapingian 1.0792 -0.1692 Brachiopods (calcitic) Tornquistia forbesi Wuchiapingian 1.2380 -0.0103 Brachiopods (calcitic) Transennatia gratiosa Wuchiapingian 1.4314 0.1830 Brachiopods (calcitic) Transennatia timorensis Wuchiapingian 1.4871 0.2388 Brachiopods (calcitic) Truncatenia heshanensis Wuchiapingian 1.1614 -0.0870 Brachiopods (calcitic) Tyloplecta persica Wuchiapingian 1.6946 0.4462 Brachiopods (calcitic) Tyloplecta yangtzeensis Wuchiapingian 1.6571 0.4087 Brachiopods (calcitic) Waagenites aequicostus Wuchiapingian 0.9542 -0.2941 Brachiopods (calcitic) Waagenites dichotoma Wuchiapingian 1.2041 -0.0443 Brachiopods (calcitic) Waagenites grandicosta Wuchiapingian 1.1461 -0.1023

196 Size Normalized Size Clade Species Stage (log10 mm) (log10 mm) Brachiopods (calcitic) Waagenites semiovalis Wuchiapingian 1.2553 0.0069 Brachiopods (calcitic) Waagenites squamuliferus Wuchiapingian 1.1761 -0.0723 Brachiopods (calcitic) Waagenites trapezoidalis Wuchiapingian 1.0000 -0.2484 Brachiopods (calcitic) Waagenoconcha abichi Wuchiapingian 1.6232 0.3749 Brachiopods (calcitic) Waagenoconcha cylindricus Wuchiapingian 1.5185 0.2701 Brachiopods (calcitic) Waagenoconcha gangeticus Wuchiapingian 1.5599 0.3115 Brachiopods (calcitic) Waagenoconcha imperfecta Wuchiapingian 1.8657 0.6173 Brachiopods (calcitic) Waagenoconcha serialis Wuchiapingian 1.6128 0.3644 Brachiopods (calcitic) Waagenoconcha waageni Wuchiapingian 1.7284 0.4800 Brachiopods (calcitic) Araxathyris undulata Changhsingian 1.2672 0.0188 Brachiopods (calcitic) Cleiothyridina accoliformis Changhsingian 1.6128 0.3644 Brachiopods (calcitic) Cleiothyridina Changhsingian 1.0414 -0.2070 ambiguaeformis Brachiopods (calcitic) Cleiothyridina echidniformis Changhsingian 1.4914 0.2430 Brachiopods (calcitic) Cleiothyridina laqueata Changhsingian 0.6902 -0.5582 Brachiopods (calcitic) Cleiothyridina pijaensis Changhsingian 1.5682 0.3198 Brachiopods (calcitic) Cleiothyridina subexpansa Changhsingian 1.6335 0.3851 Brachiopods (calcitic) Comelicania merlai Changhsingian 1.7559 0.5075 Brachiopods (calcitic) Comelicothyris laterosulcata Changhsingian 1.5611 0.3127 Brachiopods (calcitic) Comelicothyris recticardinis Changhsingian 1.6435 0.3951 Brachiopods (calcitic) Composita mexicana Changhsingian 1.4330 0.1846 Brachiopods (calcitic) Gruntallina triangularis Changhsingian 1.5866 0.3382 Brachiopods (calcitic) Gruntea grunti Changhsingian 1.3731 0.1247 Brachiopods (calcitic) Hustedia grandicosta Changhsingian 0.7924 -0.4560 Brachiopods (calcitic) Hustedia orbicostata Changhsingian 0.9956 -0.2527 Brachiopods (calcitic) Janiceps bipartita Changhsingian 1.6830 0.4347 Brachiopods (calcitic) Janiceps cadorica Changhsingian 1.5079 0.2595 Brachiopods (calcitic) Janiceps papilio Changhsingian 1.5843 0.3359 Brachiopods (calcitic) Janiceps peracuta Changhsingian 1.4713 0.2229 Brachiopods (calcitic) Juxathyris bisulcata Changhsingian 1.3345 0.0861 Brachiopods (calcitic) Juxathyris guizhouensis Changhsingian 1.2279 -0.0205 Brachiopods (calcitic) Juxathyris rectimarginalis Changhsingian 0.9956 -0.2527 Brachiopods (calcitic) Juxathyris shuizhutangensis Changhsingian 1.1584 -0.0900 Brachiopods (calcitic) Rectambitus Changhsingian 1.4249 0.1765 subpentangulatus Brachiopods (calcitic) Septospirigerella felinella Changhsingian 1.1761 -0.0723 Brachiopods (calcitic) Spirigerella fusiformis Changhsingian 1.4843 0.2359 Brachiopods (calcitic) Spirigerella media Changhsingian 1.4314 0.1830 Brachiopods (calcitic) Spirigerella simplex Changhsingian 1.2122 -0.0362 Brachiopods (calcitic) Spirigerella teseroi Changhsingian 0.9243 -0.3241 Brachiopods (calcitic) Tarimathyris beipeiensis Changhsingian 1.2330 -0.0154 Brachiopods (calcitic) Tarimathyris discusella Changhsingian 1.1584 -0.0900 Brachiopods (calcitic) Tarimathyris ovaloides Changhsingian 1.1004 -0.1480 Brachiopods (calcitic) Tongzithyris extensa Changhsingian 1.7101 0.4617 Brachiopods (calcitic) Tongzithyris sichuanensis Changhsingian 1.6021 0.3537 Brachiopods (calcitic) Transcaucasathyris minor Changhsingian 0.9542 -0.2941 Brachiopods (calcitic) Acosarina antesulcata Changhsingian 1.4771 0.2287 Brachiopods (calcitic) Acosarina avushensis Changhsingian 1.3118 0.0634 Brachiopods (calcitic) Acosarina dorashamensis Changhsingian 1.2430 -0.0053 Brachiopods (calcitic) Acosarina strophiria Changhsingian 1.0607 -0.1877 Brachiopods (calcitic) Enteletella nikschitchi Changhsingian 1.4698 0.2214

197 Size Normalized Size Clade Species Stage (log10 mm) (log10 mm) Brachiopods (calcitic) Enteletes acuteplicatus Changhsingian 1.5185 0.2701 Brachiopods (calcitic) Enteletes asymmatrosis Changhsingian 1.2672 0.0188 Brachiopods (calcitic) Enteletes bisulcata Changhsingian 1.2529 0.0045 Brachiopods (calcitic) Enteletes dzhagrensis Changhsingian 1.0607 -0.1877 Brachiopods (calcitic) Enteletes hemiplicata Changhsingian 1.1790 -0.0694 Brachiopods (calcitic) Enteletes meridionalis Changhsingian 1.4116 0.1632 Brachiopods (calcitic) Orthotichia derbyi Changhsingian 1.4314 0.1830 Brachiopods (calcitic) Orthotichia parva Changhsingian 0.7782 -0.4702 Brachiopods (calcitic) Peltichia kwangtungensis Changhsingian 1.7160 0.4676 Brachiopods (calcitic) Peltichia ruzhencevi Changhsingian 1.6684 0.4200 Brachiopods (calcitic) Peltichia transversa Changhsingian 1.6395 0.3911 Brachiopods (calcitic) Rhipidomella caucasica Changhsingian 1.3243 0.0759 Brachiopods (calcitic) Rhipidomella hessensis Changhsingian 1.3927 0.1443 Brachiopods (calcitic) Rhipidomella subcircularis Changhsingian 1.1959 -0.0525 Brachiopods (calcitic) Allorhynchus hunanensis Changhsingian 1.1367 -0.1117 Brachiopods (calcitic) Anchorhynchia grandis Changhsingian 1.5599 0.3115 Brachiopods (calcitic) Anchorhynchia sarciniformis Changhsingian 1.1072 -0.1412 Brachiopods (calcitic) Camarophorinella Changhsingian 1.0414 -0.2070 huatangensis Brachiopods (calcitic) Camarophorinella leveni Changhsingian 1.0755 -0.1728 Brachiopods (calcitic) Camarophorinella Changhsingian 0.9542 -0.2941 xiangnanensis Brachiopods (calcitic) Camarophorinella Changhsingian 1.0864 -0.1620 zhongliangshanensis Brachiopods (calcitic) Chivatschella orotschensis Changhsingian 1.3424 0.0940 Brachiopods (calcitic) Cyrolexis beccojectus Changhsingian 1.0170 -0.2314 Brachiopods (calcitic) Gerassimovia abalakovi Changhsingian 1.1106 -0.1378 Brachiopods (calcitic) Gerassimovia pamirica Changhsingian 1.2742 0.0258 Brachiopods (calcitic) Glyptorhynchia lens Changhsingian 1.2201 -0.0283 Brachiopods (calcitic) Hybostenoscisma armenica Changhsingian 1.2833 0.0349 Brachiopods (calcitic) Hybostenoscisma Changhsingian 1.1987 -0.0497 bambusoides Brachiopods (calcitic) Plekonella multicostata Changhsingian 1.2148 -0.0335 Brachiopods (calcitic) Prelissorhynchia antearcus Changhsingian 0.9685 -0.2799 Brachiopods (calcitic) Prelissorhynchia monoplicata Changhsingian 0.9191 -0.3293 Brachiopods (calcitic) Prelissorhynchia pseudoutah Changhsingian 0.9638 -0.2846 Brachiopods (calcitic) Prelissorhynchia subrotunda Changhsingian 0.9294 -0.3190 Brachiopods (calcitic) Prelissorhynchia tetraplicata Changhsingian 1.0253 -0.2231 Brachiopods (calcitic) Prelissorhynchia triplicatioid Changhsingian 0.9685 -0.2799 Brachiopods (calcitic) Tautosia elegans Changhsingian 1.0682 -0.1802 Brachiopods (calcitic) Terebratuloidea depressa Changhsingian 1.2529 0.0045 Brachiopods (calcitic) Uncinunellina multicostifera Changhsingian 1.3243 0.0759 Brachiopods (calcitic) Uncinunellina tenuis Changhsingian 1.1461 -0.1023 Brachiopods (calcitic) Uncinunellina timorensis Changhsingian 1.3945 0.1461 Brachiopods (calcitic) Wellerella arthaberi Changhsingian 0.9731 -0.2753 Brachiopods (calcitic) Wellerellina chongqingensis Changhsingian 0.9731 -0.2753 Brachiopods (calcitic) Wellerellina extensa Changhsingian 0.8865 -0.3619 Brachiopods (calcitic) Wellerellina opima Changhsingian 0.9031 -0.3453 Brachiopods (calcitic) Wellerellina triplicata Changhsingian 1.0086 -0.2398 Brachiopods (calcitic) Alphaneospirifer anshunensis Changhsingian 1.5453 0.2969

198 Size Normalized Size Clade Species Stage (log10 mm) (log10 mm) Brachiopods (calcitic) Alphaneospirifer Changhsingian 1.2833 0.0349 rhombiformis Brachiopods (calcitic) Alphaneospirifer twifurcifer Changhsingian 1.5441 0.2957 Brachiopods (calcitic) Ambikella himalayanicus Changhsingian 1.5185 0.2701 Brachiopods (calcitic) Ambikella undulosina Changhsingian 1.7076 0.4592 Brachiopods (calcitic) Aperispirifer nelsonensis Changhsingian 1.9542 0.7059 Brachiopods (calcitic) Attenuatella mengi Changhsingian 0.6232 -0.6251 Brachiopods (calcitic) Attenuatella piyasini Changhsingian 0.5798 -0.6686 Brachiopods (calcitic) Betaneospirifer ambiensis Changhsingian 1.7404 0.4920 Brachiopods (calcitic) Betaneospirifer ravaniformis Changhsingian 2.0828 0.8344 Brachiopods (calcitic) Cartorhium xikouensis Changhsingian 1.2330 -0.0154 Brachiopods (calcitic) Crurithyris tschernyschewi Changhsingian 1.0531 -0.1953 Brachiopods (calcitic) Eliva depressa Changhsingian 1.2553 0.0069 Brachiopods (calcitic) Fusispirifer marcouiformis Changhsingian 2.2923 1.0439 Brachiopods (calcitic) Martinia abrupta Changhsingian 1.1644 -0.0840 Brachiopods (calcitic) Martinia martinezi Changhsingian 1.2304 -0.0179 Brachiopods (calcitic) Martinia periquadrata Changhsingian 1.4216 0.1732 Brachiopods (calcitic) Martinia rupicola Changhsingian 1.4346 0.1862 Brachiopods (calcitic) Martinia tongmuqiaoensis Changhsingian 1.2175 -0.0309 Brachiopods (calcitic) Martinia warthi Changhsingian 1.3032 0.0548 Brachiopods (calcitic) Martiniopsis inflata Changhsingian 1.6721 0.4237 Brachiopods (calcitic) Neospirifer arthurtonensis Changhsingian 1.1903 -0.0581 Brachiopods (calcitic) Neospirifer kubeiensis Changhsingian 2.0469 0.7985 Brachiopods (calcitic) Notospirifer excelsus Changhsingian 1.4983 0.2499 Brachiopods (calcitic) Notospirifer microspinosus Changhsingian 1.0414 -0.2070 Brachiopods (calcitic) Orbicoelia cordata Changhsingian 1.2553 0.0069 Brachiopods (calcitic) Orbicoelia dolomitensis Changhsingian 0.9956 -0.2527 Brachiopods (calcitic) Orbicoelia flabelliformis Changhsingian 1.0000 -0.2484 Brachiopods (calcitic) Orbicoelia pusilla Changhsingian 0.8751 -0.3733 Brachiopods (calcitic) Orbicoelia speciosa Changhsingian 1.0969 -0.1515 Brachiopods (calcitic) Permophricodothyris calori Changhsingian 1.6435 0.3951 Brachiopods (calcitic) Permophricodothyris Changhsingian 1.1614 -0.0870 guizhouensis Brachiopods (calcitic) Permophricodothyris Changhsingian 1.8222 0.5738 inaequilateralis Brachiopods (calcitic) Permophricodothyris Changhsingian 1.7782 0.5298 postgrandis Brachiopods (calcitic) Permophricodothyris Changhsingian 1.4713 0.2229 squamularoides Brachiopods (calcitic) Permophricodothyris waageni Changhsingian 1.5441 0.2957

Brachiopods (calcitic) Pondospirifer crassiconcha Changhsingian 1.8976 0.6492 Brachiopods (calcitic) Pondospirifer magnificus Changhsingian 2.1072 0.8588 Brachiopods (calcitic) Pteroplecta laminatus Changhsingian 1.7993 0.5510 Brachiopods (calcitic) Pteroplecta sulcata Changhsingian 1.8692 0.6208 Brachiopods (calcitic) Quadrospira tibetensis Changhsingian 1.9385 0.6901 Brachiopods (calcitic) Spinomartinia spinosa Changhsingian 1.7745 0.5261 Brachiopods (calcitic) Spiriferella nepalensis Changhsingian 1.8325 0.5841 Brachiopods (calcitic) Spiriferella sinica Changhsingian 1.6532 0.4048 Brachiopods (calcitic) Squamularia formilla Changhsingian 1.2672 0.0188 Brachiopods (calcitic) Squamularia formilla Changhsingian 1.0531 -0.1953

199 Size Normalized Size Clade Species Stage (log10 mm) (log10 mm) Brachiopods (calcitic) Squamularia formilla Changhsingian 1.0253 -0.2231 Brachiopods (calcitic) Tomiopsis parallela Changhsingian 1.7160 0.4676 Brachiopods (calcitic) Callispirina manangensis Changhsingian 1.6021 0.3537 Brachiopods (calcitic) Callispirina ornata Changhsingian 1.2430 -0.0053 Brachiopods (calcitic) Crenispirifer alpheus Changhsingian 1.0899 -0.1585 Brachiopods (calcitic) Eolaballa pristina Changhsingian 1.3324 0.0841 Brachiopods (calcitic) Licharewina josephinae Changhsingian 1.1038 -0.1446 Brachiopods (calcitic) Reticulariina montana Changhsingian 1.3424 0.0940 Brachiopods (calcitic) Spiriferellina vercherei Changhsingian 1.6532 0.4048 Brachiopods (calcitic) Syrella plodowskii Changhsingian 1.6021 0.3537 Brachiopods (calcitic) Dielasma sulcatum Changhsingian 1.3284 0.0800 Brachiopods (calcitic) Fredericksolasma nummulus Changhsingian 1.4393 0.1909 Brachiopods (calcitic) Fredericksolasma sublaevis Changhsingian 1.0253 -0.2231 Brachiopods (calcitic) Gefonia licharewi Changhsingian 1.1206 -0.1278 Brachiopods (calcitic) Gefonia plicata Changhsingian 1.1461 -0.1023 Brachiopods (calcitic) Gundarolasmina schucherti Changhsingian 1.2742 0.0258 Brachiopods (calcitic) Hemiptychina sparsiplicata Changhsingian 0.9638 -0.2846 Brachiopods (calcitic) Heterelasmina pygmaea Changhsingian 0.8692 -0.3792 Brachiopods (calcitic) Hoskingia dieneri Changhsingian 1.7404 0.4920 Brachiopods (calcitic) Hoskingia prolonga Changhsingian 1.3979 0.1496 Brachiopods (calcitic) Maorielasma callosum Changhsingian 1.3979 0.1496 Brachiopods (calcitic) Maorielasma campbelli Changhsingian 1.4150 0.1666 Brachiopods (calcitic) Marinurnula? chivatschense Changhsingian 1.7559 0.5075 Brachiopods (calcitic) Mimaria lepton Changhsingian 1.3345 0.0861 Brachiopods (calcitic) Notothyrina pontica Changhsingian 1.0569 -0.1915 Brachiopods (calcitic) Notothyris bifoldes Changhsingian 1.0170 -0.2314 Brachiopods (calcitic) Notothyris crassa Changhsingian 0.9243 -0.3241 Brachiopods (calcitic) Notothyris djoulfensis Changhsingian 1.0414 -0.2070 Brachiopods (calcitic) Notothyris pseudodjoulfensis Changhsingian 1.1430 -0.1054 Brachiopods (calcitic) Omanilasma husseinii Changhsingian 1.1673 -0.0811 Brachiopods (calcitic) Pseudolabaia costalliformis Changhsingian 1.4456 0.1972 Brachiopods (calcitic) Pseudolabaia difforma Changhsingian 1.4314 0.1830 Brachiopods (calcitic) Pseudolabaia exilis Changhsingian 1.2430 -0.0053 Brachiopods (calcitic) Pseudolabaia ovalis Changhsingian 1.3404 0.0921 Brachiopods (calcitic) Pseudolabaia praepinguis Changhsingian 1.3424 0.0940 Brachiopods (calcitic) Pseudolabaia tumita Changhsingian 1.5315 0.2831 Brachiopods (calcitic) Rostranteris ptychiventria Changhsingian 1.0969 -0.1515 Brachiopods (calcitic) Rostranteris simplex Changhsingian 0.7709 -0.4775 Brachiopods (calcitic) Sichuanothyris Changhsingian 1.1959 -0.0525 dapaichongensis Brachiopods (calcitic) Whitspakia biplex Changhsingian 1.5391 0.2907 Brachiopods (calcitic) Whitspakia breviplicatum Changhsingian 1.3979 0.1496 Brachiopods (calcitic) Zhongliangshania Changhsingian 1.0414 -0.2070 zhongliangshanensis Brachiopods (calcitic) Derbyia guidingensis Changhsingian 1.5729 0.3245 Brachiopods (calcitic) Derbyia hemisphaerica Changhsingian 1.7364 0.4880 Brachiopods (calcitic) Derbyia nigpi Changhsingian 1.6085 0.3601 Brachiopods (calcitic) Derbyia pannuciella Changhsingian 1.6304 0.3820 Brachiopods (calcitic) Derbyia regularis Changhsingian 1.8325 0.5841 Brachiopods (calcitic) Derbyia sulcata Changhsingian 1.6513 0.4029 Brachiopods (calcitic) Erismatina cooperi Changhsingian 1.7076 0.4592

200 Size Normalized Size Clade Species Stage (log10 mm) (log10 mm) Brachiopods (calcitic) Geyerella distorta Changhsingian 1.2648 0.0164 Brachiopods (calcitic) Kiangsiella distortus Changhsingian 1.2553 0.0069 Brachiopods (calcitic) Kiangsiella pectiniformis Changhsingian 1.6513 0.4029 Brachiopods (calcitic) Meekella deltoides Changhsingian 1.5315 0.2831 Brachiopods (calcitic) Meekella dongluoensis Changhsingian 1.7218 0.4734 Brachiopods (calcitic) Meekella kueichowensis Changhsingian 1.6812 0.4329 Brachiopods (calcitic) Meekella langdaiensis Changhsingian 1.7574 0.5090 Brachiopods (calcitic) Meekella perigeyerelloides Changhsingian 1.7388 0.4904 Brachiopods (calcitic) Meekella sanheensis Changhsingian 1.5378 0.2894 Brachiopods (calcitic) Meekella sichuanensis Changhsingian 1.7324 0.4840 Brachiopods (calcitic) Ombonia capilla Changhsingian 1.6920 0.4436 Brachiopods (calcitic) Ombonia tirolensis Changhsingian 1.2330 -0.0154 Brachiopods (calcitic) Orthotetes bisulcatus Changhsingian 1.5315 0.2831 Brachiopods (calcitic) Orthothetina ellipsoides Changhsingian 1.5798 0.3314 Brachiopods (calcitic) Orthothetina exquisita Changhsingian 1.2856 0.0372 Brachiopods (calcitic) Orthothetina ladina Changhsingian 1.4346 0.1862 Brachiopods (calcitic) Orthothetina rara Changhsingian 1.4698 0.2214 Brachiopods (calcitic) Orthothetina regularis Changhsingian 1.2765 0.0281 Brachiopods (calcitic) Orthothetina ruber Changhsingian 1.5211 0.2728 Brachiopods (calcitic) Perigeyerella altilosina Changhsingian 1.5888 0.3404 Brachiopods (calcitic) Perigeyerella costellata Changhsingian 1.6561 0.4077 Brachiopods (calcitic) Perigeyerella fastigiata Changhsingian 1.5276 0.2792 Brachiopods (calcitic) Perigeyerella guangxiensis Changhsingian 1.6138 0.3655 Brachiopods (calcitic) Schuchertella fushuiensis Changhsingian 1.6170 0.3686 Brachiopods (calcitic) Schuchertella semiplanum Changhsingian 1.5752 0.3268 Brachiopods (calcitic) Streptorhynchus ovata Changhsingian 1.5185 0.2701 Brachiopods (calcitic) Streptorhynchus pendulus Changhsingian 0.9031 -0.3453 Brachiopods (calcitic) Streptorhynchus plata Changhsingian 1.6021 0.3537 Brachiopods (calcitic) Streptorhynchus tibetanus Changhsingian 1.7853 0.5369 Brachiopods (calcitic) Tropidelasma elongata Changhsingian 1.6902 0.4418 Brachiopods (calcitic) Tropidelasma Changhsingian 1.5391 0.2907 zhongliangshanensis Brachiopods (calcitic) Anidanthus fusiformis Changhsingian 1.5315 0.2831 Brachiopods (calcitic) Anidanthus mucronata Changhsingian 1.4298 0.1814 Brachiopods (calcitic) Anidanthus sinosus Changhsingian 1.3927 0.1443 Brachiopods (calcitic) Biplatyconcha grandis Changhsingian 1.8573 0.6089 Brachiopods (calcitic) Caricula salebrosa Changhsingian 1.0043 -0.2441 Brachiopods (calcitic) Cathaysia beifengjingensis Changhsingian 1.3802 0.1318 Brachiopods (calcitic) Cathaysia caucasica Changhsingian 1.2068 -0.0416 Brachiopods (calcitic) Cathaysia sinuata Changhsingian 1.0682 -0.1802 Brachiopods (calcitic) Caucasoproductus Changhsingian 1.3945 0.1461 dichotomocostatus Brachiopods (calcitic) Chenxianoproductus Changhsingian 1.5465 0.2982 intercedens Brachiopods (calcitic) Chenxianoproductus nitens Changhsingian 1.3856 0.1372 Brachiopods (calcitic) Chonetella nasuta Changhsingian 1.2430 -0.0053 Brachiopods (calcitic) Chonetinella unisulcata Changhsingian 1.3222 0.0738 Brachiopods (calcitic) Compressoproductus Changhsingian 1.5629 0.3145 mongolicus Brachiopods (calcitic) Compressoproductus planus Changhsingian 1.4624 0.2140 Brachiopods (calcitic) Contraspina purdoni Changhsingian 1.8633 0.6149

201 Size Normalized Size Clade Species Stage (log10 mm) (log10 mm) Brachiopods (calcitic) Coolkilella khangsarensis Changhsingian 1.5051 0.2568 Brachiopods (calcitic) Coolkilella polliciformis Changhsingian 1.4472 0.1988 Brachiopods (calcitic) Costatumulus dongpanensis Changhsingian 1.6042 0.3558 Brachiopods (calcitic) Costiferina alatus Changhsingian 1.9542 0.7059 Brachiopods (calcitic) Costiferina aratus Changhsingian 1.7235 0.4751 Brachiopods (calcitic) Costiferina indica Changhsingian 1.8976 0.6492 Brachiopods (calcitic) Costiferina subcostata Changhsingian 1.7324 0.4840 Brachiopods (calcitic) Dongpanoproductus elegans Changhsingian 1.2945 0.0461 Brachiopods (calcitic) Echinalosia indica Changhsingian 1.1903 -0.0581 Brachiopods (calcitic) Echinalosia magnispina Changhsingian 1.4771 0.2287 Brachiopods (calcitic) Echinalosia perforata Changhsingian 1.3979 0.1496 Brachiopods (calcitic) Echinauriella jisuensiformis Changhsingian 1.1004 -0.1480 Brachiopods (calcitic) Echinauris opuntia Changhsingian 1.4249 0.1765 Brachiopods (calcitic) Falafer fusiensis Changhsingian 0.7243 -0.5241 Brachiopods (calcitic) Falafer hunanensis Changhsingian 0.7559 -0.4925 Brachiopods (calcitic) Fanichonetes campigia Changhsingian 1.1614 -0.0870 Brachiopods (calcitic) Filiconcha auricula Changhsingian 1.4314 0.1830 Brachiopods (calcitic) Fostericoncha gigantea Changhsingian 2.0212 0.7728 Brachiopods (calcitic) Glyptosteges? percostatus Changhsingian 1.1761 -0.0723 Brachiopods (calcitic) Haydenella kiangsiensis Changhsingian 1.3483 0.0999 Brachiopods (calcitic) Haydenella paradoxica Changhsingian 1.5682 0.3198 Brachiopods (calcitic) Huatangia sulcatifera Changhsingian 1.4393 0.1909 Brachiopods (calcitic) Incisius huatangensis Changhsingian 1.1038 -0.1446 Brachiopods (calcitic) Labaella bajarunassi Changhsingian 1.9513 0.7030 Brachiopods (calcitic) Lampangella lata Changhsingian 1.3324 0.0841 Brachiopods (calcitic) Lazarevonia arcuata Changhsingian 1.3617 0.1133 Brachiopods (calcitic) Leptodus cancriniformis Changhsingian 1.6085 0.3601 Brachiopods (calcitic) Leptodus deminutus Changhsingian 1.4200 0.1716 Brachiopods (calcitic) Leptodus huangi Changhsingian 1.6628 0.4144 Brachiopods (calcitic) Lethamia collina Changhsingian 1.2788 0.0304 Brachiopods (calcitic) Lialosia? ovata Changhsingian 1.6532 0.4048 Brachiopods (calcitic) Licharewiconcha subsinuatus Changhsingian 1.7059 0.4575 Brachiopods (calcitic) Linoproductus crassicostina Changhsingian 1.8129 0.5645 Brachiopods (calcitic) Linoproductus tingriensis Changhsingian 1.5416 0.2932 Brachiopods (calcitic) Lissochonetes bipartita Changhsingian 1.2041 -0.0443 Brachiopods (calcitic) Marginalosia kalikotei Changhsingian 1.6812 0.4329 Brachiopods (calcitic) Marginifera elongata Changhsingian 1.2480 -0.0004 Brachiopods (calcitic) Marginifera ornata Changhsingian 1.2041 -0.0443 Brachiopods (calcitic) Marginifera sexcostata Changhsingian 0.9494 -0.2990 Brachiopods (calcitic) Megasteges dalhousi Changhsingian 1.6117 0.3633 Brachiopods (calcitic) Megasteges nepalensis Changhsingian 1.8388 0.5905 Brachiopods (calcitic) Nambdoania papilionata Changhsingian 1.6628 0.4144 Brachiopods (calcitic) Neochonetes cursothornia Changhsingian 0.9685 -0.2799 Brachiopods (calcitic) Neochonetes geniculatus Changhsingian 0.8055 -0.4429 Brachiopods (calcitic) Neochonetes linshuiensis Changhsingian 1.1726 -0.0758 Brachiopods (calcitic) Neorichthofenia mabutii Changhsingian 1.3181 0.0697 Brachiopods (calcitic) Nikitinia licharewi Changhsingian 1.2648 0.0164 Brachiopods (calcitic) Nisalaria inflata Changhsingian 1.5051 0.2568 Brachiopods (calcitic) Oldhamina squamosa Changhsingian 1.9395 0.6911 Brachiopods (calcitic) Paramesolobus lissarensis Changhsingian 1.1673 -0.0811 Brachiopods (calcitic) Paryphella orbicularis Changhsingian 1.3160 0.0676

202 Size Normalized Size Clade Species Stage (log10 mm) (log10 mm) Brachiopods (calcitic) Platycancrinella grandauris Changhsingian 1.6532 0.4048 Brachiopods (calcitic) Quinquenella glabra Changhsingian 1.0607 -0.1877 Brachiopods (calcitic) Retimarginifera xizangensis Changhsingian 1.3997 0.1513 Brachiopods (calcitic) Richthofenia caucasica Changhsingian 1.6990 0.4506 Brachiopods (calcitic) Richthofenia guangdeensis Changhsingian 1.5302 0.2818 Brachiopods (calcitic) Richthofenia tilita Changhsingian 1.7466 0.4982 Brachiopods (calcitic) Rugaria nisalensis Changhsingian 1.2430 -0.0053 Brachiopods (calcitic) Saeptathaerus latus Changhsingian 1.9777 0.7293 Brachiopods (calcitic) Sarytchevinella tenuissima Changhsingian 1.4771 0.2287 Brachiopods (calcitic) Scacchinella licharewi Changhsingian 1.5378 0.2894 Brachiopods (calcitic) Scacchinella yakowlewi Changhsingian 1.4914 0.2430 Brachiopods (calcitic) Spinomarginifera Changhsingian 1.1987 -0.0497 chenyaoyenensis Brachiopods (calcitic) Spinomarginifera intercedens Changhsingian 1.1732 -0.0752 Brachiopods (calcitic) Spinomarginifera Changhsingian 1.5211 0.2728 jiaozishanensis Brachiopods (calcitic) Spinomarginifera plana Changhsingian 1.2041 -0.0443 Brachiopods (calcitic) Spinomarginifera Changhsingian 0.7634 -0.4850 semicircridge Brachiopods (calcitic) Spinomarginifera Changhsingian 1.3483 0.0999 sichuanensis Brachiopods (calcitic) Spinomarginifera Changhsingian 1.2553 0.0069 spinosocostata Brachiopods (calcitic) Spinomarginifera sulcata Changhsingian 1.0792 -0.1692 Brachiopods (calcitic) Stepanoviella paracurvata Changhsingian 1.5105 0.2622 Brachiopods (calcitic) Strophalosia gerardi Changhsingian 1.3010 0.0526 Brachiopods (calcitic) Strophalosia? vollossovitschi Changhsingian 1.5465 0.2982

Brachiopods (calcitic) Strophalosiina chenxianensis Changhsingian 1.3385 0.0901 Brachiopods (calcitic) Strophalosiina multicostata Changhsingian 1.2553 0.0069 Brachiopods (calcitic) Sulcirugaria subquadrata Changhsingian 1.1761 -0.0723 Brachiopods (calcitic) Sulcirugaria transversa Changhsingian 1.3979 0.1496 Brachiopods (calcitic) Tectarea robinsoni Changhsingian 1.2430 -0.0053 Brachiopods (calcitic) Terrakea verecundum Changhsingian 1.4624 0.2140 Brachiopods (calcitic) Tethyochonetes longtanensis Changhsingian 0.8325 -0.4159 Brachiopods (calcitic) Tethyochonetes pigmaea Changhsingian 0.7076 -0.5408 Brachiopods (calcitic) Tethyochonetes quadrata Changhsingian 0.9345 -0.3139 Brachiopods (calcitic) Tethysiella urushtensis Changhsingian 1.4048 0.1564 Brachiopods (calcitic) Transennatia pitakpaivani Changhsingian 1.1761 -0.0723 Brachiopods (calcitic) Transennatia termiorum Changhsingian 1.2625 0.0141 Brachiopods (calcitic) Tschernyschewia sinensis Changhsingian 1.4786 0.2302 Brachiopods (calcitic) Tyloplecta yangtzeensis Changhsingian 1.8388 0.5905 Brachiopods (calcitic) Waagenites aviculus Changhsingian 0.9294 -0.3190 Brachiopods (calcitic) Waagenoconcha wardlawi Changhsingian 1.8573 0.6089 Brachiopods (calcitic) Wyndhamia gijigensis Changhsingian 1.6561 0.4077 Brachiopods (calcitic) Hustedia orbicostata Induan 0.9912 -0.2572 Brachiopods (calcitic) Acosarina strophiria Induan 1.3010 0.0526 Brachiopods (calcitic) Abrekia sulcata Induan 0.8751 -0.3733 Brachiopods (calcitic) Laevorhynchia tenuis Induan 0.6532 -0.5952 Brachiopods (calcitic) Meishanorhynchia Induan 0.8976 -0.3508 meishanensis

203 Size Normalized Size Clade Species Stage (log10 mm) (log10 mm) Brachiopods (calcitic) Prelissorhynchia pseudoutah Induan 1.1673 -0.0811 Brachiopods (calcitic) Terebratuloidea davidsoni Induan 1.3598 0.1115 Brachiopods (calcitic) Martinia pentagonalis Induan 1.4362 0.1878 Brachiopods (calcitic) Orbicoelia speciosa Induan 1.1732 -0.0752 Brachiopods (calcitic) Paracrurithyris pigmaea Induan 1.2695 0.0211 Brachiopods (calcitic) Periallus woodsidensis Induan 0.8573 -0.3911 Brachiopods (calcitic) Chianella chianensis Induan 1.2900 0.0416 Brachiopods (calcitic) Haydenella buravasi Induan 1.3945 0.1461 Brachiopods (calcitic) Lampangella lata Induan 1.2810 0.0326 Brachiopods (calcitic) Paryphella orbicularis Induan 0.8921 -0.3563 Brachiopods (calcitic) Spinomarginifera Induan 1.1072 -0.1412 chenyaoyenensis Brachiopods (calcitic) Spinomarginifera Induan 1.3838 0.1354 kueichowensis Brachiopods (calcitic) Tethyochonetes liaoi Induan 1.0453 -0.2031 Brachiopods (calcitic) Tethyochonetes longtanensis Induan 1.1072 -0.1412 Brachiopods (calcitic) Tethyochonetes quadrata Induan 0.9542 -0.2941 Brachiopods (calcitic) Tethyochonetes Induan 1.1072 -0.1412 soochowensis Brachiopods (calcitic) Abrekia sulcata Olenekian 0.6628 -0.5856 Brachiopods (calcitic) Periallus woodsidensis Olenekian 1.2856 0.0372 Brachiopods (calcitic) Obnixia thaynesiana Olenekian 1.0899 -0.1585 Brachiopods (calcitic) Portneufia episulcata Olenekian 1.1790 -0.0694 Brachiopods (calcitic) Rhaetina incurvirostra Olenekian 1.4472 0.1988 Brachiopods (calcitic) Vex semisimplex Olenekian 1.2279 -0.0205 Brachiopods (calcitic) Tetractinella trigonella Anisian 1.2672 0.0188 Brachiopods (calcitic) Schwagerispira mojsisovicsi Anisian 0.9638 -0.2846 Brachiopods (calcitic) Schwagerispira schwageri Anisian 0.8513 -0.3971 Brachiopods (calcitic) Tetractinella trigonella Anisian 1.3962 0.1478 Brachiopods (calcitic) Costirhynchopsis ruttneri Anisian 1.4082 0.1599 Brachiopods (calcitic) Caucasorhynchia altaplecta Anisian 1.1673 -0.0811 Brachiopods (calcitic) Costirhynchopsis mentzeli Anisian 1.0294 -0.2190 Brachiopods (calcitic) Decurtella decurtata Anisian 1.0969 -0.1515 Brachiopods (calcitic) Holcorhynchella delicatula Anisian 0.8325 -0.4159 Brachiopods (calcitic) Piarorhynchella trinodosi Anisian 1.0334 -0.2150 Brachiopods (calcitic) Trigonirhynchella attilina Anisian 0.9542 -0.2941 Brachiopods (calcitic) Volirhynchia projectifrons Anisian 1.2253 -0.0231 Brachiopods (calcitic) Volirhynchia tommasii Anisian 1.3181 0.0697 Brachiopods (calcitic) Volirhynchia vivida Anisian 1.0607 -0.1877 Brachiopods (calcitic) Punctospirella fragilis Anisian 1.3222 0.0738 Brachiopods (calcitic) Pseudospiriferina Anisian 1.3010 0.0526 multicostata Brachiopods (calcitic) Pseudospiriferina pinguis Anisian 1.2788 0.0304 Brachiopods (calcitic) Punctospirella fragilis Anisian 1.3010 0.0526 Brachiopods (calcitic) Dinarispira avarica Anisian 1.2553 0.0069 Brachiopods (calcitic) Dinarispira dinarica Anisian 1.2788 0.0304 Brachiopods (calcitic) Koeveskallina Anisian 1.2648 0.0164 koeveskalyensis Brachiopods (calcitic) Koeveskallina paleotypus Anisian 1.4771 0.2287 Brachiopods (calcitic) Lepismatina manca Anisian 1.0000 -0.2484 Brachiopods (calcitic) Mentzelia balatonica Anisian 1.1644 -0.0840

204 Size Normalized Size Clade Species Stage (log10 mm) (log10 mm) Brachiopods (calcitic) Mentzelia mentzeli Anisian 1.5441 0.2957 Brachiopods (calcitic) Sinucosta pectinata Anisian 1.1761 -0.0723 Brachiopods (calcitic) Thecocyrtella horogensis Anisian 0.8751 -0.3733 Brachiopods (calcitic) Coenothyris oweni Anisian 1.4065 0.1582 Brachiopods (calcitic) Angustothyris angustaeformis Anisian 1.3365 0.0881

Brachiopods (calcitic) Coenothyris cuccensis Anisian 1.2553 0.0069 Brachiopods (calcitic) Coenothyris kraffti Anisian 1.4472 0.1988 Brachiopods (calcitic) Sulcatinella incrassata Anisian 1.1847 -0.0637 Conodonts Hindeodus typicalis Wuchiapingian -0.2334 0.0175 Conodonts Iranognathus erwini Wuchiapingian -0.4539 -0.2029 Conodonts Iranognathus movschovitschi Wuchiapingian -0.2210 0.0300 Conodonts Iranognathus punctatus Wuchiapingian -0.1336 0.1174 Conodonts Iranognathus sosioensis Wuchiapingian -0.1528 0.0981 Conodonts Iranognathus tarazi Wuchiapingian -0.2235 0.0274 Conodonts Merrillina divergens Wuchiapingian -0.6036 -0.3526 Conodonts nuchalina Wuchiapingian 0.0304 0.2814 Conodonts Mesogondolella Wuchiapingian -0.0938 0.1571 praexuanhanensis Conodonts Neogondolella altudaensis Wuchiapingian -0.1308 0.1202 Conodonts Neogondolella asymmetrica Wuchiapingian -0.0389 0.2121 Conodonts Neogondolella crofti Wuchiapingian -0.3511 -0.1001 Conodonts Neogondolella daxianensis Wuchiapingian -0.0503 0.2006 Conodonts Neogondolella dukouensis Wuchiapingian -0.0190 0.2320 Conodonts Neogondolella Wuchiapingian -0.0952 0.1558 guangyuanensis Conodonts Neogondolella leveni Wuchiapingian 0.0299 0.2808 Conodonts Neogondolella liangshanensis Wuchiapingian -0.0733 0.1777

Conodonts Neogondolella mediconstricta Wuchiapingian 0.0258 0.2767

Conodonts Neogondolella Wuchiapingian -0.0202 0.2307 niuzhuangensis Conodonts Neogondolella orientalis Wuchiapingian 0.0046 0.2556 Conodonts Neogondolella postbitteri Wuchiapingian -0.0564 0.1946 Conodonts Neogondolella postbitteri Wuchiapingian 0.0465 0.2975 postbitteri Conodonts Neogondolella rosenkrantzi Wuchiapingian -0.0222 0.2288 Conodonts Neogondolella tiangshanensis Wuchiapingian -0.1007 0.1503

Conodonts Neogondolella transcaucasica Wuchiapingian -0.0328 0.2181 Conodonts Hindeodus changxingensis Changhsingian -0.4304 -0.1794 Conodonts Hindeodus eurypyge Changhsingian -0.1064 0.1446 Conodonts Hindeodus inflatus Changhsingian -0.2726 -0.0216 Conodonts Hindeodus julfensis Changhsingian -0.4719 -0.2209 Conodonts Hindeodus latidentatus Changhsingian -0.2347 0.0162 Conodonts Hindeodus pisai Changhsingian -0.4086 -0.1577 Conodonts Hindeodus praeparvus Changhsingian -0.3432 -0.0923 Conodonts Hindeodus typicalis Changhsingian -0.0954 0.1555 Conodonts Iranognathus tarazi Changhsingian -0.2501 0.0009 Conodonts Merrilina ultima Changhsingian -0.4672 -0.2163

205 Size Normalized Size Clade Species Stage (log10 mm) (log10 mm) Conodonts Neogondolella abadehensis Changhsingian -0.0454 0.2055 Conodonts Neogondolella bachmanni Changhsingian -0.0173 0.2337 Conodonts Neogondolella carinata Changhsingian -0.1625 0.0884 Conodonts Neogondolella Changhsingian -0.0646 0.1864 changxingensis Conodonts Neogondolella Changhsingian -0.0465 0.2044 changxingensis changxingensis Conodonts Neogondolella Changhsingian -0.0186 0.2324 changxingensis yini Conodonts Neogondolella deflecta Changhsingian 0.1168 0.3678 Conodonts Neogondolella dongpanensis Changhsingian -0.0314 0.2196 Conodonts Neogondolella hauschkei Changhsingian -0.1064 0.1445 Conodonts Neogondolella jolfensis Changhsingian 0.0024 0.2534 Conodonts Neogondolella meishanensis Changhsingian -0.0596 0.1914 Conodonts Neogondolella meishanensis Changhsingian -0.1467 0.1043 meishanensis Conodonts Neogondolella meishanensis Changhsingian -0.0311 0.2199 zhangi Conodonts Neogondolella nodosa Changhsingian -0.0019 0.2490 Conodonts Neogondolella orchardi Changhsingian -0.1168 0.1342 Conodonts Neogondolella orientalis Changhsingian 0.0366 0.2876 Conodonts Neogondolella Changhsingian -0.0362 0.2147 parasubcarinata Conodonts Neogondolella planata Changhsingian -0.0509 0.2001 Conodonts Neogondolella postwangi Changhsingian -0.0062 0.2448 Conodonts Neogondolella Changhsingian 0.0357 0.2867 prechangxingensis Conodonts Neogondolella predeflecta Changhsingian 0.0668 0.3178 Conodonts Neogondolella Changhsingian -0.3968 -0.1458 procerocarinata Conodonts Neogondolella sosioensis Changhsingian -0.2787 -0.0278 Conodonts Neogondolella sp. aff. Changhsingian -0.2586 -0.0077 longicuspidata Conodonts Neogondolella subcarinata Changhsingian 0.0248 0.2758 Conodonts Neogondolella taylorae Changhsingian -0.1485 0.1025 Conodonts Neogondolella tulongensis Changhsingian 0.1124 0.3633 Conodonts Neogondolella wangi Changhsingian 0.0782 0.3292 Conodonts Neogondolella xiangxiensis Changhsingian -0.1070 0.1439 Conodonts Neogondolella yini Changhsingian -0.0075 0.2435 Conodonts Neogondolella zhangi Changhsingian -0.2540 -0.0030 Conodonts Neogondolella zhejiangensis Changhsingian 0.0266 0.2776 Conodonts Wardlawella movschovitschi Changhsingian -0.4084 -0.1574 Conodonts Borinella? megacuspa n. sp. Induan -0.2846 -0.0337 Conodonts Hindeodus changxingensis Induan -0.3485 -0.0975 Conodonts Hindeodus eurypyge Induan -0.2263 0.0246 Conodonts Hindeodus latidentatus Induan -0.4752 -0.2242 Conodonts Hindeodus minutus Induan -0.2897 -0.0387 Conodonts Hindeodus parvus Induan -0.0794 0.1715 Conodonts Hindeodus parvus Induan -0.4517 -0.2007 anterodentatus

206 Size Normalized Size Clade Species Stage (log10 mm) (log10 mm) Conodonts Hindeodus parvus erectus Induan -0.3557 -0.1048 Conodonts Hindeodus parvus parvus Induan -0.3547 -0.1037 Conodonts Hindeodus pisai Induan -0.5390 -0.2880 Conodonts Hindeodus postparvus Induan -0.3142 -0.0633 Conodonts Hindeodus praeparvus Induan -0.3759 -0.1250 Conodonts Hindeodus typicalis Induan -0.0541 0.1968 Conodonts Isarcicella inflata Induan -0.2804 -0.0294 Conodonts Isarcicella isarcica Induan -0.2169 0.0340 Conodonts Isarcicella isarcica staeschei Induan -0.3606 -0.1096 Conodonts Isarcicella lobata Induan -0.2964 -0.0455 Conodonts Isarcicella peculiaris Induan -0.1988 0.0521 Conodonts Isarcicella staeschei Induan -0.1553 0.0956 Conodonts Isarcicella turgida Induan -0.3569 -0.1059 Conodonts Neogondolella carinata Induan 0.1104 0.3613 Conodonts Neogondolella carinata Induan -0.1144 0.1366 subcarinata Conodonts Neogondolella cf. orchardi Induan -0.1224 0.1286 Conodonts Neogondolella Induan -0.2116 0.0394 changxingensis Conodonts Neogondolella deflecta Induan 0.0188 0.2698 Conodonts Neogondolella griesbachensis Induan -0.1848 0.0662 Conodonts Neogondolella hauschkei Induan -0.2298 0.0212 Conodonts Neogondolella kazi Induan -0.3085 -0.0576 Conodonts Neogondolella lehrmanni Induan -0.1402 0.1108 Conodonts Neogondolella meishanensis Induan -0.1313 0.1196 Conodonts Neogondolella mombergensis Induan -0.2234 0.0276

Conodonts Neogondolella orientalis Induan -0.2937 -0.0428 Conodonts Neogondolella planata Induan -0.0635 0.1875 Conodonts Neogondolella taylorae Induan -0.1319 0.1191 Conodonts Neogondolella tulongensis Induan -0.4051 -0.1541 Conodonts Neogondolella zhejiangensis Induan -0.2146 0.0364 Conodonts peculiaris Induan -0.4860 -0.2350 Conodonts Borinella chowadensis n. sp. Induan -0.1051 0.1458 Conodonts Borinella nepalensis Induan -0.0251 0.2259 Conodonts Borinella sweeti Induan -0.0375 0.2134 Conodonts Borinella? megacuspa n. sp. Induan -0.2573 -0.0063 Conodonts Neogondolella carinata Induan -0.2841 -0.0331 Conodonts Neogondolella discreta Induan -0.1621 0.0888 Conodonts Neogondolella mongeri Induan -0.1547 0.0963 Conodonts Neogondolella planata Induan -0.3634 -0.1124 Conodonts Neogondolella taylorae Induan -0.4454 -0.1945 Conodonts Neogondolella tulongensis Induan -0.0781 0.1728 Conodonts Neospathodus chaohuensis Induan -0.6503 -0.3994 Conodonts Neospathodus chii Induan -0.6485 -0.3976 Conodonts Neospathodus cristagalli Induan -0.1863 0.0646 Conodonts Neospathodus dieneri Induan -0.3357 -0.0848 Conodonts Neospathodus kummeli Induan -0.3213 -0.0704 Conodonts Neospathodus labiatus Induan 0.0075 0.2584 Conodonts Neospathodus Induan 0.0042 0.2552 novaehollandiae

207 Size Normalized Size Clade Species Stage (log10 mm) (log10 mm) Conodonts Neospathodus pakistanensis Induan -0.1779 0.0731 Conodonts Platyvillosus costatus Induan -0.3335 -0.0825 Conodonts Scythogondolella? n. sp. A. Induan -0.4211 -0.1701 Conodonts Borinella buurensis Olenekian -0.1091 0.1419 Conodonts Ctenognathus conservativa Olenekian -0.0080 0.2430 Conodonts Ctenognathus discreta Olenekian 0.1198 0.3708 Conodonts nevadensis Olenekian -0.1409 0.1101 Conodonts Ellisonia triassica Olenekian 0.0043 0.2553 Conodonts Furnishius triserratus Olenekian -0.3484 -0.0974 Conodonts Gladigondolella meeki Olenekian 0.0872 0.3382 Conodonts Gladigondolella n. sp. Paull Olenekian 0.0680 0.3190 1983 Conodonts Hibbardella subsymmetrica Olenekian -0.3553 -0.1044 Conodonts Hindeodus nevadensis Olenekian 0.1023 0.3532 Conodonts Hindeodus raridenticulata Olenekian -0.1067 0.1443 Conodonts Hindeodus triassica Olenekian -0.0749 0.1760 Conodonts Ligonodina triassica Olenekian 0.2425 0.4935 Conodonts Lonchodina aequiarcuata Olenekian -0.1796 0.0713 Conodonts Lonchodina nevadensis Olenekian 0.1464 0.3974 Conodonts Lonchodina triassica Olenekian 0.0097 0.2606 Conodonts Neogondolella eotriassica Olenekian 0.0737 0.3247 Conodonts Neogondolella milleri Olenekian 0.0012 0.2522 Conodonts Neogondolella mosheri Olenekian -0.3493 -0.0984 Conodonts Neogondolella nevadensis Olenekian -0.2069 0.0441 Conodonts Neogondolella silberlingi Olenekian -0.0771 0.1739 Conodonts Neogondolella tozeri Olenekian 0.0322 0.2832 Conodonts Neoprioniodus bicuspidatus Olenekian -0.0245 0.2265 Conodonts Neoprioniodus bransomi Olenekian -0.0481 0.2029 Conodonts Neoprioniodus unicornis Olenekian 0.0093 0.2603 Conodonts Neospathodus bicuspidatus Olenekian -0.1867 0.0643 Conodonts Neospathodus concavus Olenekian -0.4417 -0.1908 Conodonts Neospathodus dieneri Olenekian -0.2385 0.0124 Conodonts Neospathodus dieneri Sweet Olenekian -0.5645 -0.3136 Morphotype 1 Conodonts Neospathodus dieneri Sweet Olenekian -0.5665 -0.3155 Morphotype 2 Conodonts Neospathodus dieneri Sweet Olenekian -0.6259 -0.3750 Morphotype 3 Conodonts Neospathodus jhelumi Olenekian -0.4041 -0.1532 Conodonts Neospathodus nepalensis Olenekian -0.1548 0.0962 Conodonts Neospathodus pakistanensis Olenekian -0.2724 -0.0214 Conodonts Neospathodus Olenekian -0.1617 0.0893 posterolongatus Conodonts Neospathodus spitiensis Olenekian -0.0441 0.2068 Conodonts Neospathodus srivastavai sp. Olenekian -0.3972 -0.1463 nov. Conodonts Neospathodus tongi Olenekian -0.7009 -0.4499 Conodonts Neospathodus waageni Olenekian -0.0867 0.1642 Conodonts Neospathodus waageni Olenekian -0.6873 -0.4364 eowaageni

208 Size Normalized Size Clade Species Stage (log10 mm) (log10 mm) Conodonts Neospathodus waageni Olenekian -0.5431 -0.2921 waageni Conodonts Scythogondolella milleri Olenekian -0.0743 0.1767 Conodonts Scythogondolella mosheri Olenekian -0.1417 0.1093 Conodonts Columbitella? Olenekian -0.2192 0.0318 paragondolellaeformis Conodonts Icriospathodus collinsoni Olenekian -0.1398 0.1111 Conodonts Neogondolella elongata Olenekian -0.1701 0.0808 Conodonts Neogondolella jubata Olenekian -0.1256 0.1253 Conodonts Neospathodus collinsoni Olenekian -0.2582 -0.0073 Conodonts Neospathodus conservativus Olenekian -0.2025 0.0485 Conodonts Neospathodus crassatus Olenekian -0.1989 0.0520 Conodonts Neospathodus eotriangularis Olenekian -0.5935 -0.3425 Conodonts Neospathodus gondolelloides Olenekian -0.1174 0.1336 Conodonts Neospathodus homeri Olenekian -0.0771 0.1738 Conodonts Neospathodus Olenekian -0.7089 -0.4579 pingdingshanensis Conodonts Neospathodus spathi Olenekian -0.4488 -0.1978 Conodonts Neospathodus symmetricus Olenekian -0.0410 0.2100 Conodonts Neospathodus timorensis Olenekian 0.0227 0.2737 Conodonts Neospathodus triangularis Olenekian -0.2261 0.0249 Conodonts Chiosella aff. timorensis Anisian -0.0873 0.1637 Conodonts Chirodella dinodoides Anisian -0.5014 -0.2505 Conodonts Crathognathodus kochi Anisian -0.5522 -0.3013 Conodonts Cratognathodus multihamatus Anisian -0.2727 -0.0218

Conodonts Diplododella triassica Anisian -0.4026 -0.1516 Conodonts Enantiognathus ziegleri Anisian -0.0605 0.1905 Conodonts Gladigondolella tethydis Anisian 0.0138 0.2648 Conodonts Hibbardella acroforme Anisian -0.4334 -0.1824 Conodonts Hibbardella magnidentata Anisian -0.3891 -0.1381 Conodonts Hindeodella petrae-viridis Anisian -0.1249 0.1260 Conodonts Hindeodella triassica Anisian -0.4389 -0.1879 Conodonts Kamuellerella gebzeensis Anisian -0.4425 -0.1915 Conodonts Kamuellerella yurtseveri Anisian -0.4860 -0.2350 Conodonts Lonchodina latidentata Anisian -0.2825 -0.0316 Conodonts Neogondolella aff. longa Anisian -0.3171 -0.0662 Conodonts Neogondolella aff. Anisian -0.3832 -0.1323 shoshonensis Conodonts Neogondolella bakalovi Anisian -0.1862 0.0648 Conodonts Neogondolella balkanica Anisian 0.1089 0.3599 Conodonts Neogondolella Anisian 0.0410 0.2920 basisymmetrica Conodonts Neogondolella bifurcata Anisian 0.1208 0.3718 Conodonts Neogondolella bifurcata Anisian -0.3349 -0.0839 bifurcata Conodonts Neogondolella bifurcata Anisian -0.1705 0.0805 hanbulogi Conodonts Neogondolella bulgarica Anisian -0.1699 0.0811 Conodonts Neogondolella cf. cornuta Anisian 0.0289 0.2799 Conodonts Neogondolella constricta Anisian 0.0207 0.2716

209 Size Normalized Size Clade Species Stage (log10 mm) (log10 mm) Conodonts Neogondolella eotrammeri Anisian -0.3885 -0.1375 Conodonts Neogondolella excelsa Anisian -0.0632 0.1878 Conodonts Neogondolella hanbulogi Anisian -0.2431 0.0079 Conodonts Neogondolella jubata Anisian -0.4162 -0.1652 Conodonts Neogondolella liebermani Anisian -0.1749 0.0761 Conodonts Neogondolella mombergensis Anisian 0.0318 0.2828

Conodonts Neogondolella navicula Anisian 0.0632 0.3141 Conodonts Neogondolella navicula Anisian 0.1900 0.4410 navicula Conodonts Neogondolella nitiensis Anisian -0.5336 -0.2827 Conodonts Neogondolella praehungarica Anisian -0.2026 0.0484 Conodonts Neogondolella pseudolonga Anisian -0.0918 0.1591 Conodonts Neogondolella regale Anisian 0.0495 0.3004 Conodonts Neogondolella timorensis Anisian -0.2952 -0.0443 Conodonts Neogondolella timorensis Anisian -0.3787 -0.1277 timorensis Conodonts Neohindodella triassica Anisian -0.4500 -0.1990 Conodonts Neospathodus kockeli Anisian -0.4740 -0.2230 Conodonts Neospathodus timorensis Anisian -0.1650 0.0859 Conodonts Nicoraella kockeli Anisian -0.6254 -0.3745 Conodonts kockeli Anisian -0.6336 -0.3827 Conodonts Ozarkodina tortilis Anisian -0.0458 0.2052 Conodonts Parachirognathus Anisian -0.5536 -0.3026 pandodentatus Conodonts Prioniodina kochi Anisian -0.0706 0.1804 Conodonts Prioniodina mediocris Anisian -0.7170 -0.4660 Conodonts Prioniodina pectiniformis Anisian -0.3098 -0.0588 Conodonts cristigalli Anisian -0.3512 -0.1002 Conodonts Budurovignathus gr. Ladinian -0.2218 0.0292 gabriellae Conodonts Budurovignathus hungaricus Ladinian -0.2265 0.0245 Conodonts Budurovignathus mungoensis Ladinian -0.1141 0.1368

Conodonts Budurovignathus truempyi Ladinian -0.2239 0.0270 denticulata Conodonts Cypridodella scolosculptura Ladinian -0.6259 -0.3749 Conodonts Enantiognathus ziegleri Ladinian -0.4425 -0.1915 Conodonts deibeli Ladinian -0.5462 -0.2953 Conodonts Epigondolella mungoensis Ladinian -0.4502 -0.1992 Conodonts Gladigondolella arcuata Ladinian -0.1870 0.0640 Conodonts Gladigondolella tethydis Ladinian 0.2279 0.4788 Conodonts Lonchodina venusta Ladinian -0.1192 0.1318 Conodonts truempyi Ladinian -0.3043 -0.0533 Conodonts Neogondolella auriformis Ladinian -0.4581 -0.2071 Conodonts Neogondolella constricta Ladinian -0.3074 -0.0565 Conodonts Neogondolella cornuta Ladinian -0.2382 0.0127 Conodonts Neogondolella excelsa Ladinian -0.1287 0.1223 Conodonts Neogondolella excentrica Ladinian -0.0246 0.2264 Conodonts Neogondolella foliata Ladinian -0.0007 0.2502 inclinata

210 Size Normalized Size Clade Species Stage (log10 mm) (log10 mm) Conodonts Neogondolella inclinata Ladinian -0.1746 0.0763 Conodonts Neogondolella liardensis Ladinian -0.0913 0.1596 Conodonts Neogondolella lindstroemi Ladinian -0.2125 0.0385 Conodonts Neogondolella longa Ladinian 0.1817 0.4326 Conodonts Neogondolella pseudolonga Ladinian -0.1036 0.1473 Conodonts Neogondolella tadpole Ladinian -0.2473 0.0036 Conodonts Neogondolella trammeri Ladinian -0.1612 0.0898 Conodonts tethydis Ladinian -0.3585 -0.1076 Conodonts Prioniodina venusta Ladinian -0.4812 -0.2303 Conodonts Pseudofurnishius murcianus Ladinian -0.1210 0.1300 Conodonts Sephardiella mungoensis Ladinian -0.4146 -0.1636 Conodonts nodosa Carnian -0.4291 -0.1781 Conodonts Carnepigondolella orchardi Carnian -0.5505 -0.2995 Conodonts Carnepigondolella Carnian -0.4741 -0.2232 pseudodiebeli Conodonts Carnepigondolella zoae Carnian -0.5561 -0.3052 Conodonts Epigondolella carnica Carnian -0.7351 -0.4841 Conodonts Metapolygnathus communisti Carnian -0.2274 0.0236 communisti Conodonts Metapolygnathus communisti Carnian -0.4665 -0.2155 parvus Conodonts Metapolygnathus Carnian -0.2766 -0.0257 multinodosus Conodonts Metapolygnathus Carnian -0.3170 -0.0660 polygnathiformis Conodonts Metapolygnathus Carnian -0.4607 -0.2098 praecommunisti Conodonts Neogondolella auriformis Carnian -0.4544 -0.2035 Conodonts Neogondolella inclinata Carnian -0.3289 -0.0780 Conodonts Neogondolella navicula Carnian 0.1719 0.4229 navicula Conodonts Neogondolella noah Carnian -0.2125 0.0384 Conodonts Neogondolella oertlii Carnian -0.3383 -0.0874 Conodonts Neogondolella Carnian -0.0947 0.1562 polygnathiformis Conodonts Nicoraella? budaensis Carnian -0.3803 -0.1293 Conodonts Epigondolella abneptis Norian -0.0703 0.1806 Conodonts Epigondolella bidentata Norian -0.1141 0.1369 Conodonts Epigondolella humboldtensis Norian 0.0186 0.2696 Conodonts Epigondolella multidentata Norian -0.0869 0.1641 Conodonts Epigondolella postera Norian 0.0313 0.2823 Conodonts Epigondolella quadrata Norian -0.1158 0.1352 Conodonts Epigondolella rigoi Norian -0.1043 0.1467 Conodonts Epigondolella spatulata Norian -0.4882 -0.2372 Conodonts Epigondolella stefanionensis Norian -0.4096 -0.1586 Conodonts Epigondolella triangularis Norian -0.2723 -0.0214 Conodonts Epigondolella uniformis Norian -0.3826 -0.1317 Conodonts Metapolygnathus communisti Norian -0.4730 -0.2221

Conodonts posthernsteini Norian -0.9700 -0.7190 Conodonts Misikella rhateica Norian -0.4536 -0.2026

211 Size Normalized Size Clade Species Stage (log10 mm) (log10 mm) Conodonts Norigondolella cf. navicula Norian -0.5037 -0.2527 Conodonts andrusovi Norian -0.4887 -0.2377 Conodonts Chirodella dinodoides Rhaetian -0.3776 -0.1267 Conodonts Epigondolella bidentata Rhaetian -0.1660 0.0850 Conodonts Epigondolella englandi Rhaetian -0.2658 -0.0148 Conodonts Epigondolella mosheri Rhaetian -0.2657 -0.0148 Conodonts Grodella delicatula Rhaetian -0.2732 -0.0222 Conodonts Hindeodella andrusovi Rhaetian -0.2619 -0.0109 Conodonts Misikella hernsteini Rhaetian -0.5477 -0.2968 Conodonts Misikella koessenensis Rhaetian -0.8182 -0.5672 Conodonts Misikella kovacsi Rhaetian -0.6438 -0.3929 Conodonts Misikella posthernsteini Rhaetian -0.4588 -0.2078 Conodonts Misikella rhaetica Rhaetian -0.6354 -0.3845 Conodonts Misikella ultima Rhaetian -0.5122 -0.2612 Conodonts Neogondolella steinbergensis Rhaetian -0.4280 -0.1771 Conodonts Neohindeodella rhaetica Rhaetian -0.2804 -0.0294 Conodonts Norigondolella steinbergensis Rhaetian -0.2046 0.0464

Conodonts Zieglericonus rhaeticus Rhaetian -0.8201 -0.5691 Ostracods Silenites lenticularis Wuchiapingian -0.4559 -0.3088 Ostracods Polycope edithae Wuchiapingian -0.1367 0.0104 Ostracods Thaumatomma doescheri Wuchiapingian -0.1192 0.0279 Ostracods Thaumatomma elongata Wuchiapingian 0.1206 0.2677 Ostracods Thaumatomma kozuri Wuchiapingian 0.0719 0.2190 Ostracods Thaumatomma newelli Wuchiapingian 0.1072 0.2543 Ostracods Thaumatomma permiana Wuchiapingian -0.1024 0.0447 Ostracods Thaumatomma piscifrons Wuchiapingian -0.0706 0.0765 Ostracods Thaumatomma procax Wuchiapingian -0.1079 0.0392 Ostracods Cypridinelliforma rex Wuchiapingian 0.2788 0.4258 Ostracods Eocypridina radiata Wuchiapingian 0.3892 0.5363 Ostracods Nodophilomedes phoenix Wuchiapingian 0.5798 0.7269 Ostracods Philomedes rankiniana Wuchiapingian 0.0000 0.1471 Ostracods Siveterella flex Wuchiapingian 0.6464 0.7935 Ostracods Siveterella pax Wuchiapingian 0.3820 0.5291 Ostracods Swainella bex Wuchiapingian 0.2014 0.3485 Ostracods Triadocypris pax Wuchiapingian 0.2041 0.3512 Ostracods Amphissites notabilis Wuchiapingian -0.0088 0.1383 Ostracods Hollinella tuberculata Wuchiapingian 0.2041 0.3512 Ostracods Cavellina subunica Wuchiapingian -0.1079 0.0392 Ostracods Acratinella obscura Wuchiapingian -0.1675 -0.0204 Ostracods Bairdia anbeedei Wuchiapingian -0.0132 0.1339 Ostracods Bairdia antamputata Wuchiapingian -0.1249 0.0221 Ostracods Bairdia araxensis Wuchiapingian -0.0362 0.1109 Ostracods Bairdia diffusa Wuchiapingian -0.0706 0.0765 Ostracods Bairdia pulchra Wuchiapingian -0.0410 0.1061 Ostracods Bairdia subglenensis Wuchiapingian -0.0969 0.0502 Ostracods Bairdia subhassi Wuchiapingian 0.0792 0.2263 Ostracods Bairdiacypris dubius Wuchiapingian 0.0374 0.1845 Ostracods Basslerella reticulata Wuchiapingian -0.5017 -0.3546 Ostracods Fabalicypris permirus Wuchiapingian -0.0655 0.0816

212 Size Normalized Size Clade Species Stage (log10 mm) (log10 mm) Ostracods Microcheilinella Wuchiapingian -0.4089 -0.2618 subreniformis Ostracods Glyptopleurina pasinii Changhsingian -0.2676 -0.1205 Ostracods Hollinella herrickana Changhsingian 0.0792 0.2263 Ostracods Kirkbya buekkensis Changhsingian -0.0862 0.0609 Ostracods Knightina bullaensis Changhsingian -0.3768 -0.2297 Ostracods Knoxiella infirma Changhsingian -0.1427 0.0044 Ostracods Knoxiella oblonga Changhsingian -0.0655 0.0816 Ostracods Knoxiella ventrospinosa Changhsingian -0.1938 -0.0467 Ostracods Neoulrichia pulchra Changhsingian -0.4437 -0.2966 Ostracods Parahollinella visnyoensis Changhsingian -0.2798 -0.1328 Ostracods Sargentina postacuta Changhsingian -0.0996 0.0475 Ostracods Sargentina transita Changhsingian -0.1192 0.0279 Ostracods Shleesha pinguis Changhsingian -0.2041 -0.0570 Ostracods Cavellina alpina Changhsingian -0.2596 -0.1125 Ostracods Cavellina bellerophonella Changhsingian -0.1079 0.0392 Ostracods Cavellina rotunda Changhsingian -0.1612 -0.0141 Ostracods Cavellina visnyoensis Changhsingian -0.2076 -0.0605 Ostracods Sulcella suprapermiana Changhsingian -0.2596 -0.1125 Ostracods Acratia zhongyingensis Changhsingian -0.2007 -0.0536 Ostracods Arqoviella arabica Changhsingian -0.1278 0.0192 Ostracods Arqoviella khartamensis Changhsingian 0.0107 0.1578 Ostracods Arqoviella permiana Changhsingian -0.1024 0.0447 Ostracods Bairdia armenica Changhsingian -0.0315 0.1156 Ostracods Bairdia cheni Changhsingian 0.0645 0.2115 Ostracods Bairdia galei Changhsingian -0.1135 0.0336 Ostracods Bairdia heshanensis Changhsingian -0.2757 -0.1286 Ostracods Bairdia intermedia Changhsingian -0.0458 0.1013 Ostracods Bairdia kershawi Changhsingian 0.0170 0.1641 Ostracods Bairdia ortiseiensis Changhsingian -0.0200 0.1271 Ostracods Bairdia pseudoobuncus Changhsingian -0.1367 0.0104 Ostracods Bairdia subcontracta Changhsingian -0.0580 0.0891 Ostracods Bairdia wangi Changhsingian -0.2480 -0.1009 Ostracods Bairdiacypris caeca Changhsingian -0.0605 0.0866 Ostracods Bairdiacypris changxingensis Changhsingian -0.2147 -0.0676 Ostracods Bairdiacypris longirobusta Changhsingian -0.0482 0.0989 Ostracods Bairdiacypris wangi Changhsingian -0.0969 0.0502 Ostracods Basslerella obesa Changhsingian -0.4034 -0.2563 Ostracods Callicythere mazurensis Changhsingian -0.2366 -0.0895 Ostracods Cryptobairdia postilonga Changhsingian -0.2924 -0.1453 Ostracods Fabalicypris obuncus Changhsingian -0.0362 0.1109 Ostracods Fabalicypris subgeinitziana Changhsingian -0.0315 0.1156 Ostracods Fabalicypris visnyoensis Changhsingian -0.2798 -0.1328 Ostracods Healdia incognita Changhsingian -0.0315 0.1156 Ostracods Healdianella doraschamensis Changhsingian -0.0177 0.1294 Ostracods Healdianella splendida Changhsingian -0.0223 0.1248 Ostracods Kempfia qinglaii Changhsingian -0.1135 0.0336 Ostracods Kempfia tergilata Changhsingian -0.1024 0.0447 Ostracods Microcheilinella lata Changhsingian -0.3098 -0.1627 Ostracods Microcheilinella perexilis Changhsingian -0.3372 -0.1902 Ostracods Parabythocythere? chongpani Changhsingian -0.1739 -0.0268

213 Size Normalized Size Clade Species Stage (log10 mm) (log10 mm) Ostracods Paramacrocypris schallreuteri Changhsingian -0.0155 0.1316 Ostracods Petasobairdia nantongensis Changhsingian -0.2518 -0.1047 Ostracods Pseudoacanthoscapha Changhsingian -0.0835 0.0635 striatula Ostracods Carinaknightina carinata Induan -0.3279 -0.1808 Ostracods Carinaknightina discarinata Induan -0.2596 -0.1125 Ostracods Carinaknightina Induan -0.2596 -0.1125 zhenfengensis Ostracods Judahella sp. Induan -0.4202 -0.2731 Ostracods Carinaknightina neutrium Induan -0.1959 -0.0488 Ostracods Carinaknightina tibetensis Induan -0.1308 0.0163 Ostracods Langdaia laolongdongensis Induan -0.1739 -0.0268 Ostracods Langdaia suboblonga Induan -0.1079 0.0392 Ostracods Cavellina triassica Induan -0.2441 -0.0970 Ostracods Lutkevichinella ornata Induan -0.2924 -0.1453 Ostracods Bairdia meishanensis Induan -0.2255 -0.0784 Ostracods Bairdia urodeloformis Induan -0.3716 -0.2245 Ostracods Bairdia wailiensis Induan -0.2596 -0.1125 Ostracods Bairdiacypris ottomanensis Induan -0.1707 -0.0236 Ostracods Callicythere postangusta Induan -0.4685 -0.3214 Ostracods Fabalicypris reniformis Induan -0.1871 -0.0400 Ostracods Liuzhinia antalyaensis Induan -0.1308 0.0163 Ostracods Paracypris gaetanii Induan -0.1871 -0.0400 Ostracods Truncobairdia beaglensis Induan -0.0915 0.0556 Ostracods Acratina nostorica Olenekian -0.2182 -0.0712 Ostracods Bairdia angusta Olenekian -0.2840 -0.1369 Ostracods Bairdia anisica Olenekian -0.1221 0.0250 Ostracods Bairdia fengshanensis Olenekian -0.0706 0.0765 Ostracods Bairdia finalyi Olenekian -0.2557 -0.1086 Ostracods Bairdiacypris galbruni Olenekian -0.1278 0.0192 Ostracods Liuzhinia guangxiensis Olenekian -0.2291 -0.0821 Ostracods Liuzhinia parva Olenekian -0.4318 -0.2847 Ostracods Microcheilinella venusta Olenekian -0.4949 -0.3478 Ostracods Paracypris jinyaensis Olenekian -0.3979 -0.2509 Ostracods Ptychobairdia aldae Olenekian -0.0315 0.1156 Ostracods Ptychobairdia luciae Olenekian -0.0458 0.1013 Ostracods Spinocypris vulgaris Olenekian -0.2218 -0.0748 Gastropods Aclisina? regularis Wuchiapingian 0.8325 0.0289 Gastropods Allostrophia? raricostata Wuchiapingian 0.6021 -0.2016 Gastropods Ananias campbelli Wuchiapingian 1.5647 0.7611 Gastropods Anomphalus Wuchiapingian 0.6005 -0.2031 Gastropods Apachella nucleola Wuchiapingian -0.0915 -0.8951 Gastropods Araeonema problematicum Wuchiapingian 0.0792 -0.7244 Gastropods Baylea turbinata Wuchiapingian 0.7076 -0.0960 Gastropods Bellerophon squamatus Wuchiapingian 1.6990 0.8954 Gastropods Bicarinella bicarinata Wuchiapingian 0.8751 0.0715 Gastropods Borestus granihumerosus Wuchiapingian 1.1038 0.3002 Gastropods Callistadia qubuergaensis Wuchiapingian 0.7853 -0.0183 Gastropods Coelostylina gibsoni Wuchiapingian 0.9494 0.1458 Gastropods Cylindritopsis altica Wuchiapingian 1.3522 0.5486 Gastropods Cylindritopsis Wuchiapingian 1.2422 0.4385

214 Size Normalized Size Clade Species Stage (log10 mm) (log10 mm) Gastropods Eiselia Wuchiapingian -0.0080 -0.8116 Gastropods Euomphalus uedi Wuchiapingian 1.3711 0.5675 Gastropods Euphemites indicus Wuchiapingian 1.4031 0.5995 Gastropods Euphemites latirimalus Wuchiapingian 1.3636 0.5600 Gastropods Euphemitopsis kitakamiensis Wuchiapingian 1.2330 0.4294 Gastropods Geinitzia Wuchiapingian 0.5008 -0.3028 Gastropods Glabrocingulum tingriensis Wuchiapingian 0.6232 -0.1804 Gastropods Goniasma sulcata Wuchiapingian 0.7709 -0.0328 Gastropods Guizhouspira convexa Wuchiapingian 0.9345 0.1309 Gastropods Hyphantozyga Wuchiapingian 0.4700 -0.3336 Gastropods Knightella regularis Wuchiapingian 0.4150 -0.3886 Gastropods Loxonema Wuchiapingian 0.3529 -0.4507 Gastropods Macrochilina Wuchiapingian 0.5714 -0.2322 Gastropods Magnicapitatus angulus Wuchiapingian 1.4099 0.6063 Gastropods Manzanospira turrita Wuchiapingian 0.5911 -0.2125 Gastropods Margarita Wuchiapingian -0.2323 -1.0359 Gastropods Meekospira symmetrica Wuchiapingian 1.1584 0.3548 Gastropods Mirochiliticus mirus Wuchiapingian 1.2695 0.4659 Gastropods Mourlonia toyomensis Wuchiapingian 1.4393 0.6357 Gastropods Murchisonia? Wuchiapingian 0.7324 -0.0712 conveximarginata Gastropods Naticopsis indica Wuchiapingian 1.6075 0.8038 Gastropods Omphaloptycha Wuchiapingian 0.5536 -0.2500 Gastropods Palaeostylus obliquicostatus Wuchiapingian 0.9243 0.1207 Gastropods Phymatopleura verneuili Wuchiapingian 1.2014 0.3978 Gastropods Pithodea Wuchiapingian 0.6897 -0.1139 Gastropods Platystoma indicum Wuchiapingian 1.7482 0.9446 Gastropods Pleurotomaria Wuchiapingian 0.8839 0.0803 Gastropods Plocezyga matanensis Wuchiapingian 0.6128 -0.1908 Gastropods Polytropis Wuchiapingian 0.6296 -0.1741 Gastropods Porcellia paucituberculata Wuchiapingian 1.0792 0.2756 Gastropods Pseudozygopleura Wuchiapingian 0.1240 -0.6796 Gastropods Ptychobellerophon gubleri Wuchiapingian 0.9638 0.1602 Gastropods Retispira strictocanalicula Wuchiapingian 0.8921 0.0885 Gastropods Rhabdotocochlis ovata Wuchiapingian 0.0000 -0.8036 Gastropods Rhaphistomella Wuchiapingian 0.8238 0.0202 Gastropods Singulitubus ventriculus Wuchiapingian 1.4183 0.6147 Gastropods Soleniscus avellanoides Wuchiapingian 1.6021 0.7984 Gastropods Sosiolytes Wuchiapingian 0.4900 -0.3136 Gastropods Stachella micra Wuchiapingian 1.0086 0.2050 Gastropods Straparollus Wuchiapingian 0.4409 -0.3627 Gastropods Streptacis geinitziana Wuchiapingian 1.0719 0.2683 Gastropods Subulites? microcochleus Wuchiapingian 0.7559 -0.0477 Gastropods Trachydomia Wuchiapingian 0.1482 -0.6554 Gastropods Trypanocochlea permiana Wuchiapingian 0.3979 -0.4057 Gastropods Tunstallia helicina Wuchiapingian 0.8976 0.0940 Gastropods Turbinilopsis rotunda Wuchiapingian 0.4914 -0.3122 Gastropods Warthia lata Wuchiapingian 1.4624 0.6588 Gastropods Zhonghuaspira gibbicircella Wuchiapingian 0.9191 0.1155 Gastropods Zygopleura Wuchiapingian 0.5406 -0.2630 Gastropods "Pleurotomaria" durga Changhsingian 0.9294 0.1258

215 Size Normalized Size Clade Species Stage (log10 mm) (log10 mm) Gastropods Aclisina multicarinata Changhsingian -0.0915 -0.8951 Gastropods Acteonina solida Changhsingian 0.2788 -0.5249 Gastropods Aiptospira acutangula Changhsingian 1.4728 0.6691 Gastropods Ananias campbelli Changhsingian 1.4314 0.6278 Gastropods Anomphalus studiosus Changhsingian -0.0605 -0.8641 Gastropods Apachella Changhsingian 0.5900 -0.2136 Gastropods Araeonema Changhsingian -0.3736 -1.1772 Gastropods Baylea heterocarinata Changhsingian 1.3522 0.5486 Gastropods Bellerophon impressus Changhsingian 1.8129 1.0093 Gastropods Bicarinella bicarinata Changhsingian 1.0000 0.1964 Gastropods Bucanopsis Changhsingian 0.5875 -0.2161 Gastropods Callistadia punjabica Changhsingian 1.0607 0.2571 Gastropods Callitomaria stanislavi Changhsingian 1.4502 0.6466 Gastropods Cerithioides Changhsingian 1.1768 0.3732 Gastropods Collabrina lunulata Changhsingian 1.4771 0.6735 Gastropods Cyclozyga Changhsingian 0.7677 -0.0359 Gastropods Cylindritopsis altica Changhsingian 1.5038 0.7002 Gastropods Dicosmos Changhsingian 1.3111 0.5075 Gastropods Dictyotomaria transcostata Changhsingian 1.1303 0.3267 Gastropods Donaldina trimorpha Changhsingian 1.4314 0.6278 Gastropods Donaldospira Changhsingian 0.8665 0.0629 Gastropods Erwinispira jucunda Changhsingian 0.0334 -0.7702 Gastropods Euomphalus uedi Changhsingian 1.3222 0.5186 Gastropods Euphemites rariliratus Changhsingian 1.3962 0.5926 Gastropods Euphemitopsis Changhsingian 1.1303 0.3267 circumcostatus Gastropods Extendilabrum Changhsingian 1.4579 0.6543 strictomarginis Gastropods Extendilabrum Changhsingian 1.3532 0.5496 Gastropods Girtyspira delicata Changhsingian 0.0492 -0.7544 Gastropods Glabrocingulum Changhsingian 0.7907 -0.0129 Gastropods Glyptospira pinna Changhsingian 0.0899 -0.7137 Gastropods Goniasma fusuiensis Changhsingian 1.4200 0.6163 Gastropods Guizhouspira sequens Changhsingian 1.0414 0.2378 Gastropods Heshanietta bacca Changhsingian -0.0605 -0.8641 Gastropods Holopea? teres Changhsingian -0.1739 -0.9775 Gastropods Hyphantozyga Changhsingian 0.5588 -0.2448 Gastropods Jedria Changhsingian 1.4322 0.6286 Gastropods Kokenospira? guizhouensis Changhsingian 0.7324 -0.0712 Gastropods Labridens Changhsingian 0.8000 -0.0036 Gastropods Laxella micra Changhsingian -0.4089 -1.2125 Gastropods Leptomphalus pusillus Changhsingian 0.9031 0.0995 Gastropods Leptoptygma Changhsingian 0.4280 -0.3756 Gastropods Luoguella elegantula Changhsingian -0.1367 -0.9403 Gastropods Luoguispira micra Changhsingian -0.0458 -0.8494 Gastropods Margarita prisca Changhsingian 0.7782 -0.0255 Gastropods Meekospira? solenisciforma Changhsingian -0.0915 -0.8951 Gastropods Microlampra orcula Changhsingian 0.0969 -0.7067 Gastropods Microptychis charma Changhsingian 0.3324 -0.4712 Gastropods Mourlonia toyomensis Changhsingian 1.2945 0.4909 Gastropods Murchisonia? conjugens Changhsingian 1.7482 0.9446

216 Size Normalized Size Clade Species Stage (log10 mm) (log10 mm) Gastropods Naticasinus sinus Changhsingian -0.1739 -0.9775 Gastropods Naticopsis quangxiensis Changhsingian 1.6532 0.8496 Gastropods Ninglangella ninglangella Changhsingian 0.0000 -0.8036 Gastropods Orthonema panxianensis Changhsingian 0.6232 -0.1804 Gastropods Palaeostylus Changhsingian 1.1522 0.3486 Gastropods Peruvispira umariensis Changhsingian 0.9777 0.1741 Gastropods Peruvispira volupta Changhsingian 1.0000 0.1964 Gastropods Phasianella arenicola Changhsingian 0.6990 -0.1046 Gastropods Platyzona dongluoensis Changhsingian 0.8451 0.0415 Gastropods Plicatus scalaris Changhsingian -0.1549 -0.9585 Gastropods Plocezyga varica Changhsingian 0.6532 -0.1504 Gastropods Porcellia magninodosa Changhsingian 0.8751 0.0715 Gastropods Propupaspira eleganta Changhsingian 0.1761 -0.6275 Gastropods Protostylus exiguus Changhsingian 0.8325 0.0289 Gastropods Pseudozygopleura micra Changhsingian 0.0645 -0.7392 Gastropods Ptychobellerophon Changhsingian 0.7530 -0.0507 Gastropods Ptychosphaera? amplifalcata Changhsingian 1.1931 0.3895 Gastropods Retispira matanensis Changhsingian 1.1703 0.3667 Gastropods Rhaphistomella Changhsingian 0.6769 -0.1267 Gastropods Royalella heshanensis Changhsingian 0.2253 -0.5783 Gastropods Singulitubus obliquus Changhsingian 1.1430 0.3394 Gastropods Soleniscus avellanoides Changhsingian 1.5911 0.7875 Gastropods Stachella bifrons Changhsingian 1.4314 0.6278 Gastropods Straparella rotella Changhsingian -0.1805 -0.9841 Gastropods Streptacis permiana Changhsingian 0.7160 -0.0876 Gastropods Strobeus dongluoensis Changhsingian 1.1523 0.3487 Gastropods Stuoraxis minutus Changhsingian -0.0605 -0.8641 Gastropods Tetratubispira mira Changhsingian 1.3502 0.5466 Gastropods Trachydomia minuta Changhsingian 0.4249 -0.3787 Gastropods Vernelia Changhsingian 0.8323 0.0287 Gastropods Warthia brevizonata Changhsingian 1.3598 0.5562 Gastropods Worthenia corrugata Changhsingian 1.3444 0.5408 Gastropods Zhonghuaspira Changhsingian 1.2455 0.4419 gibbicircelloides Gastropods Abrekopsis depresispirus Induan 0.9509 0.1472 Gastropods Ananias Induan 0.5210 -0.2826 Gastropods Bellerophon abrekensis Induan 1.2480 0.4444 Gastropods Chartronella maedai Induan 0.8241 0.0205 Gastropods Coelostylina Induan 0.7050 -0.0986 Gastropods Euphemites Induan 0.6282 -0.1754 Gastropods Jiangxispira yangouensis Induan 0.1761 -0.6275 Gastropods Lepidotrochus Induan 0.4742 -0.3294 Gastropods Naticopsis Induan 1.1640 0.3604 Gastropods Natiria Induan 1.2319 0.4283 Gastropods Omphaloptycha hormolira Induan 1.1847 0.3811 Gastropods Polygyrina zhongzhaiensis Induan 0.8129 0.0093 Gastropods Retispira asiatica Induan 0.7559 -0.0477 Gastropods Stachella granaticarinata Induan 0.9445 0.1409 Gastropods Streptacis Induan -0.2326 -1.0362 Gastropods Strobeus Induan 0.4220 -0.3816 Gastropods Trachybembix Induan 0.7267 -0.0769

217 Size Normalized Size Clade Species Stage (log10 mm) (log10 mm) Gastropods Warthia zakharovi Induan 1.1614 0.3578 Gastropods Worthenia Induan 0.5801 -0.2235 Gastropods Abrekopsis depresispirus Olenekian 0.8325 0.0289 Gastropods Ampezzopleura rugosa Olenekian 0.7160 -0.0876 Gastropods Battenizyga eotriassica Olenekian 1.1847 0.3811 Gastropods Bellerophon Olenekian 0.6257 -0.1779 Gastropods Chartronella? pagina Olenekian 0.7782 -0.0255 Gastropods Coelostylina angulifera Olenekian 1.1430 0.3394 Gastropods Cryptonerita Olenekian -0.1856 -0.9893 Gastropods Cylindrobullina convexa Olenekian 0.0000 -0.8036 Gastropods Holopella Olenekian 0.4170 -0.3866 Gastropods Homalopoma sinbadensis Olenekian 0.8633 0.0597 Gastropods Kittliconcha sciaphostera Olenekian 0.8808 0.0772 Gastropods Naticopsis utahensis Olenekian 0.6990 -0.1046 Gastropods Natiria aequicostata Olenekian 0.5563 -0.2473 Gastropods Neritaria costata Olenekian 0.0000 -0.8036 Gastropods Omphaloptycha hormolira Olenekian 0.9557 0.1521 Gastropods Ovactaeonina Olenekian -0.0161 -0.8197 Gastropods Pachyomphalus americanus Olenekian 0.3424 -0.4612 Gastropods Polygyrina Olenekian 0.2375 -0.5661 Gastropods Retispira asiatica Olenekian 1.1761 0.3725 Gastropods Solarioconulus Olenekian 0.6705 -0.1331 Gastropods Spirochrysalis Olenekian 0.1030 -0.7006 Gastropods Strobeus paludinaeformis Olenekian 0.9912 0.1876 Gastropods Vernelia fenestravella Olenekian 0.6812 -0.1224 Gastropods Warthia zakharovi Olenekian 1.2455 0.4419 Gastropods Worthenia windowblindensis Olenekian 0.7782 -0.0255 Gastropods Zygopleura haasi Olenekian 1.2742 0.4705 Gastropods Actaeonina Anisian -0.0735 -0.8771 Gastropods Allocosmia Anisian 1.1187 0.3151 Gastropods Amphitomaria Anisian 0.3549 -0.4488 Gastropods Ananias Anisian 0.8628 0.0592 Gastropods Angularia Anisian 0.9790 0.1754 Gastropods Anoptychia Anisian 0.5801 -0.2235 Gastropods Auricularia Anisian 1.0100 0.2064 Gastropods Cheilotoma Anisian 0.5329 -0.2707 Gastropods Cheilotomona Anisian 0.7410 -0.0626 Gastropods Coelocentrus Anisian 1.0486 0.2450 Gastropods Coelochrysalis Anisian 1.0569 0.2533 Gastropods Coelostylina Anisian 1.4201 0.6165 Gastropods Coronaria Anisian 0.9006 0.0970 Gastropods Cryptonerita Anisian 0.8984 0.0948 Gastropods Delphinula Anisian 1.0189 0.2153 Gastropods Delphinulopsis Anisian 1.0889 0.2853 Gastropods Dicosmos Anisian 1.2842 0.4806 Gastropods Discogonius Anisian 0.4221 -0.3815 Gastropods Eucycloscala Anisian 0.8859 0.0823 Gastropods Eunemopsis Anisian 0.4700 -0.3336 Gastropods Euomphalus Anisian 1.0451 0.2415 Gastropods Euryalox Anisian 1.1778 0.3742 Gastropods Eustylus Anisian 0.8496 0.0460

218 Size Normalized Size Clade Species Stage (log10 mm) (log10 mm) Gastropods Euthystylus Anisian 0.8371 0.0335 Gastropods Fadaiella Anisian 1.4755 0.6719 Gastropods Fossariopsis Anisian 0.9725 0.1689 Gastropods Fritschia Anisian 0.3662 -0.4374 Gastropods Glyptotomaria Anisian 0.7197 -0.0839 Gastropods Heterocosmia Anisian 1.1119 0.3083 Gastropods Hologyra Anisian 1.3008 0.4972 Gastropods Humiliworthenia Anisian 1.1151 0.3115 Gastropods Kokenella Anisian 1.0633 0.2597 Gastropods Lissochilina Anisian 0.5702 -0.2334 Gastropods Loxonema Anisian 1.2397 0.4361 Gastropods Macrochilina Anisian 0.6703 -0.1333 Gastropods Marmolatella Anisian 1.7505 0.9469 Gastropods Microschiza Anisian 0.6017 -0.2019 Gastropods Moerckeia Anisian 0.8506 0.0469 Gastropods Murchisonia Anisian 0.6740 -0.1296 Gastropods Naticella Anisian 0.7261 -0.0776 Gastropods Naticopsis Anisian 1.4313 0.6277 Gastropods Natiria Anisian 1.2319 0.4283 Gastropods Neodonaldina Anisian 0.8614 0.0578 Gastropods Neritaria Anisian 1.1958 0.3922 Gastropods Omphaloptycha Anisian 1.1669 0.3633 Gastropods Pachyomphalus Anisian 0.5995 -0.2041 Gastropods Palaeacmaea Anisian 0.4663 -0.3373 Gastropods Platychilina Anisian 1.0119 0.2083 Gastropods Pleurotomaria Anisian 1.1099 0.3063 Gastropods Polygyrina Anisian 0.7746 -0.0290 Gastropods Promathilda Anisian 0.5933 -0.2103 Gastropods Protonerita Anisian 1.0984 0.2948 Gastropods Protorcula Anisian 0.5851 -0.2185 Gastropods Pseudochrysalis Anisian 0.7817 -0.0220 Gastropods Ptychomphalina Anisian 0.7074 -0.0962 Gastropods Purpuroidea Anisian 0.8702 0.0666 Gastropods Rama Anisian 0.7272 -0.0764 Gastropods Ramina Anisian 0.4267 -0.3769 Gastropods Reducta Anisian 0.4222 -0.3814 Gastropods Rhabdoconcha Anisian 0.9954 0.1918 Gastropods Rothpletzella Anisian 1.0964 0.2928 Gastropods Scalaria Anisian 0.7272 -0.0764 Gastropods Schizogonium Anisian 0.5174 -0.2862 Gastropods Scurria Anisian 0.8158 0.0122 Gastropods Scurriopsis Anisian 0.8673 0.0637 Gastropods Sisenna Anisian 1.1548 0.3512 Gastropods Spirochrysalis Anisian 0.8402 0.0366 Gastropods Spirostylus Anisian 1.1191 0.3155 Gastropods Stuorella Anisian 0.8604 0.0568 Gastropods Telleria Anisian 0.5750 -0.2286 Gastropods Tongweispira Anisian 0.9732 0.1696 Gastropods Toxoconcha Anisian 1.3009 0.4973 Gastropods Toxonema Anisian 1.1122 0.3086 Gastropods Trachybembix Anisian 0.9944 0.1908

219 Size Normalized Size Clade Species Stage (log10 mm) (log10 mm) Gastropods Trachynerita Anisian 1.2735 0.4699 Gastropods Tretospira Anisian 0.6844 -0.1192 Gastropods Triassocirrus Anisian 1.1440 0.3404 Gastropods Trypanostylus Anisian 1.0599 0.2563 Gastropods Turbonitella Anisian 0.7516 -0.0520 Gastropods Tylotrochus Anisian 0.1363 -0.6673 Gastropods Tyrsoecus Anisian 0.5710 -0.2327 Gastropods Undularia Anisian 1.7714 0.9678 Gastropods Vernelia Anisian 1.0605 0.2569 Gastropods Vistilia Anisian 0.9631 0.1595 Gastropods Woehrmannia Anisian 0.4224 -0.3812 Gastropods Worthenia Anisian 1.2997 0.4960 Gastropods Wortheniella Anisian 0.6204 -0.1832 Gastropods Wortheniopsis Anisian 0.9719 0.1683 Gastropods Zygites Anisian 1.0186 0.2150 Gastropods Zygopleura Anisian 0.9899 0.1863 Gastropods Allocosmia Ladinian 1.1187 0.3151 Gastropods Chartronella Ladinian 0.8388 0.0351 Gastropods Cheilotoma Ladinian 0.5190 -0.2846 Gastropods Coelocentrus Ladinian 1.1400 0.3364 Gastropods Coelochrysalis Ladinian 0.6052 -0.1984 Gastropods Coelostylina Ladinian 0.8827 0.0791 Gastropods Cryptonerita Ladinian 0.6873 -0.1163 Gastropods Dicosmos Ladinian 0.8489 0.0452 Gastropods Euryalox Ladinian 1.0242 0.2206 Gastropods Guizhouia Ladinian 0.6538 -0.1498 Gastropods Heterocosmia Ladinian 1.1119 0.3083 Gastropods Hologyra Ladinian 0.4882 -0.3154 Gastropods Loxonema Ladinian 0.6686 -0.1350 Gastropods Luciellina Ladinian 0.9620 0.1584 Gastropods Marmolatella Ladinian 1.0829 0.2793 Gastropods Naticella Ladinian 0.8070 0.0034 Gastropods Natiria Ladinian 0.8298 0.0262 Gastropods Neritaria Ladinian 0.9695 0.1659 Gastropods Omphaloptycha Ladinian 1.0925 0.2889 Gastropods Polygyrina Ladinian 0.7910 -0.0126 Gastropods Promathilda Ladinian 0.3015 -0.5021 Gastropods Prostylifer Ladinian 0.5864 -0.2172 Gastropods Protorcula Ladinian -0.0787 -0.8823 Gastropods Scurria Ladinian 0.9396 0.1360 Gastropods Seisia Ladinian 0.8229 0.0193 Gastropods Spirochrysalis Ladinian 0.5544 -0.2492 Gastropods Spirostylus Ladinian 0.7091 -0.0945 Gastropods Toxoconcha Ladinian 1.0839 0.2803 Gastropods Trachynerita Ladinian 1.3829 0.5793 Gastropods Trypanostylus Ladinian 1.3784 0.5748 Gastropods Vernelia Ladinian 0.9174 0.1138 Gastropods Woehrmannia Ladinian 0.7889 -0.0147 Gastropods Worthenia Ladinian 1.4078 0.6041 Gastropods Wortheniella Ladinian 0.7177 -0.0859 Gastropods Zygopleura Ladinian 0.8030 -0.0006

220 Size Normalized Size Clade Species Stage (log10 mm) (log10 mm) Gastropods Acilia Carnian 0.7805 -0.0232 Gastropods Acrocosmia Carnian 1.3249 0.5213 Gastropods Actaeonina Carnian 0.4819 -0.3217 Gastropods Allostrophia Carnian 0.8088 0.0052 Gastropods Ampezzalina Carnian 0.7613 -0.0423 Gastropods Ampezzamilda Carnian 0.3306 -0.4730 Gastropods Ampezzoella Carnian 0.7374 -0.0662 Gastropods Ampezzotrochus Carnian 0.1047 -0.6989 Gastropods Amphitomaria Carnian 0.4430 -0.3606 Gastropods Amphitrochus Carnian 0.6867 -0.1170 Gastropods Ampullospira Carnian 1.0103 0.2067 Gastropods Angularia Carnian 0.3642 -0.4394 Gastropods Anisostoma Carnian 0.9606 0.1570 Gastropods Anomphalus Carnian 0.9081 0.1044 Gastropods Anoptychia Carnian 0.9133 0.1097 Gastropods Anticonulus Carnian 0.1392 -0.6644 Gastropods Bandelium Carnian 0.0599 -0.7437 Gastropods Bandelthilda Carnian 0.4340 -0.3697 Gastropods Bathycles Carnian 0.5464 -0.2573 Gastropods Brochidium Carnian 0.5656 -0.2380 Gastropods Camponaxis Carnian 0.2352 -0.5684 Gastropods Camponella Carnian 0.2073 -0.5963 Gastropods Cassianastraea Carnian 0.6287 -0.1749 Gastropods Cassianella Carnian 0.3417 -0.4619 Gastropods Cassianilda Carnian 0.4573 -0.3463 Gastropods Cassianocirrus Carnian 0.4533 -0.3504 Gastropods Cassianozyga Carnian 0.2519 -0.5517 Gastropods Chartronella Carnian 1.2049 0.4013 Gastropods Cheilotoma Carnian 0.9088 0.1052 Gastropods Chilocyclus Carnian 1.0508 0.2472 Gastropods Coelocentrus Carnian 1.0292 0.2256 Gastropods Coelochrysalis Carnian 0.7868 -0.0169 Gastropods Coelostylina Carnian 1.4748 0.6712 Gastropods Collonia Carnian 0.6991 -0.1045 Gastropods Collonia Carnian 0.6991 -0.1045 Gastropods Collonia Carnian 0.6991 -0.1045 Gastropods Collonia Carnian 0.6991 -0.1045 Gastropods Conchiglia Carnian 0.7183 -0.0853 Gastropods Coronaria Carnian 1.4144 0.6108 Gastropods Cortinella Carnian -0.0049 -0.8086 Gastropods Cryptonerita Carnian 0.8055 0.0019 Gastropods Crystalloella Carnian -0.1298 -0.9334 Gastropods Cylindrobullina Carnian 0.6903 -0.1133 Gastropods Delphinula Carnian 0.5358 -0.2678 Gastropods Delphinulopsis Carnian 0.8813 0.0777 Gastropods Dicosmos Carnian 1.5042 0.7005 Gastropods Dimorphotectus Carnian 0.7564 -0.0473 Gastropods Discotoma Carnian 1.0658 0.2622 Gastropods Dolomitella Carnian 0.3893 -0.4143 Gastropods Echetus Carnian 0.8902 0.0866 Gastropods Emarginula Carnian 0.7556 -0.0481

221 Size Normalized Size Clade Species Stage (log10 mm) (log10 mm) Gastropods Euchrysalis Carnian 0.9630 0.1594 Gastropods Eucycloscala Carnian 0.7592 -0.0445 Gastropods Eucyclus Carnian 1.0392 0.2355 Gastropods Eudaronia Carnian 0.3722 -0.4314 Gastropods Eunema Carnian 0.7290 -0.0746 Gastropods Eunemopsis Carnian 0.5805 -0.2231 Gastropods Euomphalus Carnian 0.6846 -0.1191 Gastropods Euryalox Carnian 1.3346 0.5310 Gastropods Eustylus Carnian 0.7906 -0.0130 Gastropods Euthystylus Carnian 1.2277 0.4241 Gastropods Euzone Carnian 0.8183 0.0147 Gastropods Fadaiella Carnian 1.1896 0.3859 Gastropods Flemmingia Carnian 0.8113 0.0077 Gastropods Fossariopsis Carnian 1.0064 0.2028 Gastropods Frederikella Carnian -0.1119 -0.9155 Gastropods Frombachia Carnian 1.5418 0.7382 Gastropods Fusinus? Carnian 0.6985 -0.1051 Gastropods Gallensteinia Carnian 0.7892 -0.0144 Gastropods Goniogyra Carnian 0.7071 -0.0965 Gastropods Goniospira Carnian 0.7671 -0.0365 Gastropods Gosseletina Carnian 1.0162 0.2126 Gastropods Gradiella Carnian 1.5828 0.7792 Gastropods Haliotiomorpha Carnian 1.4532 0.6496 Gastropods Heterogyra Carnian 0.4594 -0.3442 Gastropods Hologyra Carnian 1.0906 0.2870 Gastropods Hyperacanthus Carnian 0.5982 -0.2054 Gastropods Hypsipleura Carnian 0.9540 0.1504 Gastropods Katosira Carnian 1.3259 0.5223 Gastropods Keration Carnian 0.5510 -0.2526 Gastropods Kittliconcha Carnian 0.7404 -0.0632 Gastropods Kokenella Carnian 1.4830 0.6794 Gastropods Kotelia Carnian 0.8209 0.0173 Gastropods Lacunina Carnian 0.3551 -0.4485 Gastropods Ladinotrochus Carnian -0.0101 -0.8137 Gastropods Laubella Carnian 0.5453 -0.2583 Gastropods Lepetopsis Carnian 1.2586 0.4549 Gastropods Lepidotrochus Carnian 1.1272 0.3236 Gastropods Loxonema Carnian 1.1827 0.3791 Gastropods Luciella Carnian 1.1183 0.3146 Gastropods Macrochilina Carnian 0.9958 0.1922 Gastropods Margarita Carnian 0.5406 -0.2630 Gastropods Marmolatella Carnian 0.2807 -0.5229 Gastropods Microcheilus Carnian 0.4345 -0.3691 Gastropods Misurinella Carnian 0.1750 -0.6286 Gastropods Moerckeia Carnian 0.5979 -0.2057 Gastropods Murchisonia Carnian 0.9822 0.1786 Gastropods Naticella Carnian 1.5908 0.7872 Gastropods Naticopsis Carnian 1.5933 0.7896 Gastropods Natiria Carnian 1.0163 0.2127 Gastropods Neritaria Carnian 1.0917 0.2881 Gastropods Omphaloptycha Carnian 1.8089 1.0053

222 Size Normalized Size Clade Species Stage (log10 mm) (log10 mm) Gastropods Oncochilus Carnian 0.7164 -0.0872 Gastropods Oonia Carnian 0.9386 0.1350 Gastropods Orthostylus Carnian 0.9415 0.1379 Gastropods Ovactaeonina Carnian -0.1757 -0.9793 Gastropods Pachyomphalus Carnian 0.7812 -0.0224 Gastropods Pachypoma Carnian 1.1232 0.3196 Gastropods Palaeonarica Carnian 1.1061 0.3025 Gastropods Palaeoniso Carnian 0.5785 -0.2251 Gastropods Palaeotriton Carnian 0.5178 -0.2858 Gastropods Paleunema Carnian 0.9596 0.1560 Gastropods Parapalaeonarica Carnian 0.6023 -0.2013 Gastropods Phryx Carnian 0.9443 0.1407 Gastropods Platychilina Carnian 1.1689 0.3652 Gastropods Platystoma Carnian 0.7509 -0.0527 Gastropods Pleurotomaria Carnian 1.2900 0.4864 Gastropods Polygyrina Carnian 0.7379 -0.0657 Gastropods Poroa Carnian 1.2570 0.4534 Gastropods Praestomatia Carnian 0.4979 -0.3058 Gastropods Promathilda Carnian 1.2777 0.4741 Gastropods Prostylifer Carnian 0.6569 -0.1467 Gastropods Protorcula Carnian 1.2423 0.4387 Gastropods Pseudamaura Carnian 0.9199 0.1162 Gastropods Pseudochrysalis Carnian 0.8074 0.0038 Gastropods Pseudoclanculus Carnian 0.9243 0.1207 Gastropods Pseudomelania Carnian 1.0022 0.1986 Gastropods Pseudomurchisonia Carnian 0.4984 -0.3052 Gastropods Pseudoscalites Carnian 1.2642 0.4606 Gastropods Pseudotritonium Carnian 0.6944 -0.1093 Gastropods Pseudotubina Carnian 0.8874 0.0838 Gastropods Ptychomphalina Carnian 1.1069 0.3033 Gastropods Ptychomphalus Carnian 0.7593 -0.0443 Gastropods Ptychostoma Carnian 1.0799 0.2763 Gastropods Purpurina Carnian 0.8134 0.0098 Gastropods Purpuroidea Carnian 1.4387 0.6351 Gastropods Pustulifer Carnian 1.3784 0.5748 Gastropods Raha Carnian 1.4723 0.6687 Gastropods Rama Carnian 0.8568 0.0532 Gastropods Rhaphistomella Carnian 0.7933 -0.0103 Gastropods Rinaldomphalus Carnian 0.2690 -0.5346 Gastropods Rufilla Carnian 0.8226 0.0190 Gastropods Rumerloella Carnian 0.7960 -0.0077 Gastropods Sabrinella Carnian 0.1069 -0.6967 Gastropods Scalaria Carnian 0.9584 0.1548 Gastropods Schizodiscus Carnian 0.4032 -0.4004 Gastropods Schizogonium Carnian 0.7597 -0.0439 Gastropods Schizostoma Carnian 0.6986 -0.1050 Gastropods Schroederilda Carnian -0.4470 -1.2506 Gastropods Scurriopsis Carnian 1.0279 0.2243 Gastropods Serpulopsis Carnian 0.4837 -0.3199 Gastropods Serpulospira Carnian 0.6485 -0.1551 Gastropods Siphonophyla Carnian 0.7801 -0.0235

223 Size Normalized Size Clade Species Stage (log10 mm) (log10 mm) Gastropods Sisenna Carnian 1.5031 0.6995 Gastropods Solarioconulus Carnian 0.9735 0.1699 Gastropods Sorapisella Carnian -0.3249 -1.1285 Gastropods Spirochrysalis Carnian 0.9542 0.1506 Gastropods Spirocyclina Carnian 0.1015 -0.7021 Gastropods Spirocyclina Carnian 0.1015 -0.7021 Gastropods Spirocyclina Carnian 0.1015 -0.7021 Gastropods Spirocyclina Carnian 0.1015 -0.7021 Gastropods Spirocyclus Carnian 1.1814 0.3778 Gastropods Spirostylus Carnian 0.8263 0.0227 Gastropods Stephanocosmia Carnian 1.0457 0.2421 Gastropods Straparollus Carnian 0.5064 -0.2972 Gastropods Stuorella Carnian 1.0364 0.2328 Gastropods Stuorilda Carnian -0.1352 -0.9388 Gastropods Tauschia Carnian 0.1204 -0.6832 Gastropods Telleria Carnian 0.9356 0.1319 Gastropods Temnotropis Carnian 0.8771 0.0735 Gastropods Teretrina Carnian 0.8828 0.0792 Gastropods Tirolthilda Carnian 0.1145 -0.6891 Gastropods Tofanella Carnian 0.0996 -0.7040 Gastropods Tomocheilus Carnian 0.5806 -0.2230 Gastropods Toxoconcha Carnian 1.2091 0.4055 Gastropods Trachoecus Carnian 0.5806 -0.2230 Gastropods Trachynerita Carnian 1.1322 0.3285 Gastropods Transylvanella Carnian 1.1532 0.3496 Gastropods Tretospira Carnian 1.0014 0.1978 Gastropods Triadoskenea Carnian -0.0086 -0.8123 Gastropods Triassocirrus Carnian 0.9653 0.1617 Gastropods Trochonema Carnian 0.9825 0.1789 Gastropods Trypanostylus Carnian 1.0996 0.2960 Gastropods Tubina Carnian 0.6437 -0.1599 Gastropods Turcicula Carnian 1.1627 0.3591 Gastropods Turristylus Carnian 0.8692 0.0656 Gastropods Turrithilda Carnian -0.1982 -1.0018 Gastropods Tylotrochus Carnian 1.0233 0.2197 Gastropods Tyrsoecus Carnian 1.2862 0.4825 Gastropods Vallandroella Carnian 0.2660 -0.5376 Gastropods Ventricaria Carnian 0.9754 0.1718 Gastropods Vistilia Carnian 0.8601 0.0565 Gastropods Woehrmannia Carnian 0.5284 -0.2753 Gastropods Worthenia Carnian 0.9850 0.1814 Gastropods Wortheniella Carnian 1.0970 0.2934 Gastropods Yunnania Carnian 0.1716 -0.6321 Gastropods Zardinella Carnian -0.0146 -0.8182 Gastropods Zardinicirrus Carnian 0.0794 -0.7242 Gastropods Zardinihelix Carnian 0.7490 -0.0546 Gastropods Zardinistylus Carnian 0.0066 -0.7970 Gastropods Zygites Carnian 0.8585 0.0548 Gastropods Zygopleura Carnian 1.7179 0.9143 Gastropods Acrosolarium Norian 1.1318 0.3281 Gastropods Allocosmia Norian 1.4440 0.6404

224 Size Normalized Size Clade Species Stage (log10 mm) (log10 mm) Gastropods Allostrophia Norian 0.3352 -0.4684 Gastropods Amberleya Norian 1.1920 0.3884 Gastropods Andangularia Norian 0.6733 -0.1303 Gastropods Angularia Norian 1.0560 0.2523 Gastropods Anisostoma Norian 0.7267 -0.0769 Gastropods Anoptychia Norian 0.9328 0.1292 Gastropods Blodgettella Norian 0.4771 -0.3265 Gastropods Brochidiella Norian 0.8294 0.0258 Gastropods Chartronella Norian 1.0096 0.2060 Gastropods Coelochrysalis Norian 0.9564 0.1528 Gastropods Coelostylina Norian 1.5397 0.7361 Gastropods Coronaria Norian 0.9612 0.1576 Gastropods Coronopsis Norian 0.2796 -0.5240 Gastropods Cryptaulax Norian 0.5819 -0.2217 Gastropods Cylindrobullina Norian 0.3329 -0.4707 Gastropods Delphinula Norian 0.8833 0.0797 Gastropods Diatrypesis Norian 0.7015 -0.1021 Gastropods Dicosmos Norian 1.2753 0.4717 Gastropods Dimorphotectus Norian 0.9838 0.1802 Gastropods Echetus Norian 1.0554 0.2518 Gastropods Enantiostoma Norian 1.2293 0.4257 Gastropods Eocalliostoma Norian 0.4945 -0.3091 Gastropods Epulotrochus Norian 0.9232 0.1196 Gastropods Eucycloscala Norian 1.1062 0.3025 Gastropods Eucyclus Norian 1.3352 0.5315 Gastropods Euryalox Norian 1.1617 0.3581 Gastropods Eustylus Norian 0.7365 -0.0671 Gastropods Eustylus Norian 0.7365 -0.0671 Gastropods Eustylus Norian 0.7365 -0.0671 Gastropods Eustylus Norian 0.7365 -0.0671 Gastropods Eustylus Norian 0.7365 -0.0671 Gastropods Eustylus Norian 0.7365 -0.0671 Gastropods Euthystylus Norian 0.8555 0.0518 Gastropods Euzone Norian 0.9184 0.1148 Gastropods Fadaiella Norian 1.1884 0.3848 Gastropods Flacilla Norian 1.3062 0.5026 Gastropods Fossariopsis Norian 1.4732 0.6695 Gastropods Galerus Norian 0.9470 0.1434 Gastropods Gena Norian 0.8333 0.0297 Gastropods Glyptochrysalis Norian 0.7923 -0.0113 Gastropods Gosseletina Norian 1.0061 0.2025 Gastropods Gradiella Norian 1.2322 0.4286 Gastropods Gudrunella Norian 0.2419 -0.5617 Gastropods Hamusina Norian 1.0237 0.2200 Gastropods Heterocosmia Norian 1.7332 0.9296 Gastropods Hologyra Norian 0.9063 0.1027 Gastropods Hologyra Norian 0.9063 0.1027 Gastropods Hologyra Norian 0.9063 0.1027 Gastropods Hungariella Norian 1.8667 1.0631 Gastropods Hyperacanthus Norian 1.2559 0.4522 Gastropods Idahospira Norian 0.6740 -0.1296

225 Size Normalized Size Clade Species Stage (log10 mm) (log10 mm) Gastropods Jurassiphorus Norian 0.6064 -0.1972 Gastropods Katosira Norian 0.8849 0.0812 Gastropods Kokenella Norian 1.4830 0.6794 Gastropods Lamelliphorus Norian 1.1474 0.3438 Gastropods Lepidotrochus Norian 1.2026 0.3990 Gastropods Loxonema Norian 0.8586 0.0550 Gastropods Luciella Norian 1.0471 0.2435 Gastropods Marmolatella Norian 1.1943 0.3907 Gastropods Mesotrochus Norian 1.2896 0.4860 Gastropods Murihikua Norian 1.6652 0.8616 Gastropods Naticopsis Norian 1.1510 0.3474 Gastropods Neritaria Norian 1.1001 0.2965 Gastropods Nodoconus Norian 0.7436 -0.0600 Gastropods Nuetzelopsis Norian 0.4177 -0.3859 Gastropods Occidentocerithium Norian 0.8613 0.0577 Gastropods Omphaloptycha Norian 1.4039 0.6003 Gastropods Oncochilus Norian 1.0744 0.2707 Gastropods Oonia Norian 1.3539 0.5503 Gastropods Ornatospira Norian 1.1213 0.3177 Gastropods Palaeonarica Norian 1.0858 0.2822 Gastropods Paradelphinulopsis Norian 0.9943 0.1907 Gastropods Platyceras Norian 0.9148 0.1112 Gastropods Platychilina Norian 1.2385 0.4349 Gastropods Pleurotomaria Norian 1.5189 0.7152 Gastropods Polygyrina Norian 1.2860 0.4824 Gastropods Praelittorina Norian 0.5957 -0.2079 Gastropods Promathilda Norian 0.7588 -0.0448 Gastropods Protorcula Norian 1.0177 0.2141 Gastropods Pseudoscalites Norian 1.0423 0.2387 Gastropods Ptychostoma Norian 0.8876 0.0840 Gastropods Purpurina Norian 1.0004 0.1968 Gastropods Purpuroidea Norian 1.7865 0.9829 Gastropods Pustulifer Norian 1.4936 0.6900 Gastropods Pycnomphalus Norian 1.1333 0.3297 Gastropods Redocla Norian 1.0401 0.2364 Gastropods Scurria Norian 0.8942 0.0906 Gastropods Settsassia Norian 0.7832 -0.0204 Gastropods Siphonilda Norian 0.9650 0.1614 Gastropods Sisenna Norian 0.9617 0.1581 Gastropods Solariella Norian 1.3931 0.5894 Gastropods Sororcula Norian 0.7242 -0.0794 Gastropods Spinidelphinulopsis Norian 1.0508 0.2471 Gastropods Spiniomphalus Norian 0.9461 0.1425 Gastropods Spirostylus Norian 0.4131 -0.3905 Gastropods Stephanocosmia Norian 1.2066 0.4030 Gastropods Stephanozyga Norian 1.3636 0.5600 Gastropods Stereokion Norian 0.4916 -0.3120 Gastropods Tahua Norian 1.2552 0.4516 Gastropods Telleria Norian 1.1527 0.3491 Gastropods Temnotropis Norian 0.9629 0.1593 Gastropods Teretrina Norian 1.0134 0.2098

226 Size Normalized Size Clade Species Stage (log10 mm) (log10 mm) Gastropods Trachynerita Norian 1.2800 0.4764 Gastropods Tretospira Norian 1.4593 0.6557 Gastropods Trochotoma Norian 1.4218 0.6182 Gastropods Trypanostylus Norian 0.8555 0.0518 Gastropods Turristylus Norian 0.6729 -0.1307 Gastropods Tylotrochus Norian 1.1082 0.3046 Gastropods Tyrsoecus Norian 0.8417 0.0380 Gastropods Ueckerconulus Norian 0.7569 -0.0467 Gastropods Undularia Norian 0.5140 -0.2896 Gastropods Ventricaria Norian 0.9624 0.1588 Gastropods Vistilia Norian 0.9953 0.1917 Gastropods Wallowax Norian 0.6216 -0.1820 Gastropods Weitschatopsis Norian 0.9497 0.1461 Gastropods Worthenia Norian 1.3993 0.5957 Gastropods Wortheniopsis Norian 0.8484 0.0448 Gastropods Zygopleura Norian 0.8264 0.0228 Gastropods Actaeonina Rhaetian 0.8800 0.0764 Gastropods Alaria Rhaetian 1.0546 0.2510 Gastropods Anomphalus Rhaetian -0.0752 -0.8789 Gastropods Anoptychia Rhaetian 1.1632 0.3595 Gastropods Asperilla Rhaetian 0.5049 -0.2987 Gastropods Atlantobellerophon Rhaetian 1.8261 1.0225 Gastropods Boutillieria Rhaetian 0.2701 -0.5335 Gastropods Brochidium Rhaetian 0.2578 -0.5458 Gastropods Chartronella Rhaetian 1.3349 0.5313 Gastropods Clathrobaculus Rhaetian 0.4523 -0.3513 Gastropods Coelostylina Rhaetian 0.3442 -0.4594 Gastropods Conactaeon Rhaetian 0.4142 -0.3894 Gastropods Consobrinella Rhaetian 0.2211 -0.5825 Gastropods Cryptaulax Rhaetian 0.3188 -0.4848 Gastropods Cylindrites Rhaetian 0.5380 -0.2656 Gastropods Cylindrobullina Rhaetian 0.4794 -0.3242 Gastropods Eocalliostoma Rhaetian 0.2184 -0.5852 Gastropods Eosolariella Rhaetian 0.2949 -0.5087 Gastropods Euconactaeon Rhaetian 0.6662 -0.1374 Gastropods Eucycloscala Rhaetian 0.4515 -0.3521 Gastropods Eucyclus Rhaetian 0.0676 -0.7360 Gastropods Euomphalus Rhaetian 0.2662 -0.5374 Gastropods Euomphalus Rhaetian 0.2662 -0.5374 Gastropods Euomphalus Rhaetian 0.2662 -0.5374 Gastropods Guidonia Rhaetian 0.7463 -0.0573 Gastropods Hesperocirrus Rhaetian 1.2184 0.4148 Gastropods Heterospira Rhaetian 0.8652 0.0616 Gastropods Jurassiphorus Rhaetian 0.6232 -0.1804 Gastropods Kittliconcha Rhaetian 0.4490 -0.3547 Gastropods Kittlistylus Rhaetian 0.3976 -0.4060 Gastropods Loxonema Rhaetian 0.8880 0.0844 Gastropods Murihikua Rhaetian 1.6652 0.8616 Gastropods Neritaria Rhaetian 1.0765 0.2729 Gastropods Omphaloptycha Rhaetian 0.9557 0.1521 Gastropods Oncochilus Rhaetian 0.3382 -0.4654

227 Size Normalized Size Clade Species Stage (log10 mm) (log10 mm) Gastropods Paracerithium Rhaetian 0.4191 -0.3845 Gastropods Pleurotomaria Rhaetian 1.3548 0.5512 Gastropods Polygyrina Rhaetian 0.0020 -0.8017 Gastropods Promathilda Rhaetian 1.2351 0.4315 Gastropods Protofusus Rhaetian 0.6121 -0.1915 Gastropods Protorcula Rhaetian 0.0524 -0.7512 Gastropods Pseudomelania Rhaetian 1.1602 0.3566 Gastropods Pseudoscalites Rhaetian 0.1117 -0.6919 Gastropods Ptychomphalina Rhaetian 1.1392 0.3356 Gastropods Rhabdocolpus Rhaetian 0.4058 -0.3978 Gastropods Sisenna Rhaetian 1.0195 0.2159 Gastropods Solarioconulus Rhaetian 0.8451 0.0415 Gastropods Sororcula Rhaetian 0.2527 -0.5509 Gastropods Spinigera Rhaetian 0.9740 0.1704 Gastropods Spirostylus Rhaetian 0.0586 -0.7450 Gastropods Straparollus Rhaetian 0.6073 -0.1963 Gastropods Talantodiscus Rhaetian 1.2349 0.4313 Gastropods Teretrina Rhaetian 0.8556 0.0520 Gastropods Toxoconcha Rhaetian 0.8690 0.0654 Gastropods Trachynerita Rhaetian 1.4201 0.6165 Gastropods Trachynerita Rhaetian 1.4201 0.6165 Gastropods Trachynerita Rhaetian 1.4201 0.6165 Gastropods Trypanocochlea Rhaetian 0.9374 0.1338 Gastropods Trypanostylus Rhaetian 1.0743 0.2707 Gastropods Tylotrochus Rhaetian 0.7430 -0.0606 Gastropods Undularia Rhaetian 1.2073 0.4037 Brachiopods Lingularia credneri Wuchiapingian 0.9868 -0.0471 (phosphatic) Brachiopods Orbiculoidea konincki Wuchiapingian 0.8865 -0.1474 (phosphatic) Brachiopods Orbiculoidea qinglongensis Wuchiapingian 1.0607 0.0268 (phosphatic) Brachiopods Orbiculoidea tobaensis Wuchiapingian 1.2041 0.1702 (phosphatic) Brachiopods Lunoglossa cymostriata Changhsingian 1.1055 0.0716 (phosphatic) Brachiopods Lunoglossa puqiensis Changhsingian 0.9868 -0.0471 (phosphatic) Brachiopods Orbiculoidea clintonensis Changhsingian 0.8325 -0.2014 (phosphatic) Brachiopods Orbiculoidea nucleola Changhsingian 1.2068 0.1729 (phosphatic) Brachiopods Lingularia acutangula Induan 0.5441 -0.4898 (phosphatic) Brachiopods Lingularia borealis Induan 1.0000 -0.0339 (phosphatic) Brachiopods Lingularia fuyuanensis Induan 1.1173 0.0834 (phosphatic) Brachiopods Orbiculoidea elegans Induan 1.2455 0.2116 (phosphatic)

228 Size Normalized Size Clade Species Stage (log10 mm) (log10 mm) Brachiopods Sinoglottidia archboldi Induan 0.7404 -0.2936 (phosphatic) Brachiopods Sinolingularia huananensis Induan 1.0043 -0.0296 (phosphatic) Brachiopods Sinolingularia yini Induan 0.9138 -0.1201 (phosphatic) Brachiopods Orbiculoidea sibirica Olenekian 1.1303 0.0964 (phosphatic) Bivalves Grammatodon geminum Wuchiapingian 1.7160 0.3879 Bivalves Grammatodon tenuistriatus Wuchiapingian 1.6532 0.3251 Bivalves Astartella doulingensis Wuchiapingian 0.9777 -0.3504 Bivalves "Lima" clathrata Wuchiapingian 1.5051 0.1771 Bivalves "Lima" nana Wuchiapingian 0.9031 -0.4250 Bivalves Palaeolima nakamurai Wuchiapingian 1.4914 0.1633 Bivalves Palaeolima tenuilineata Wuchiapingian 1.0414 -0.2867 Bivalves Palaeolima xiangnanensis Wuchiapingian 1.4624 0.1343 Bivalves Promytilus semiorbicularis Wuchiapingian 1.6435 0.3154 Bivalves Promytilus semiorbicularis Wuchiapingian 1.6335 0.3054 Bivalves Promytilus semiorbicularis Wuchiapingian 1.6021 0.2740 Bivalves Volsellina transparens Wuchiapingian 1.6128 0.2847 Bivalves Palaeoneilo shaoyangensis Wuchiapingian 1.0414 -0.2867 Bivalves Palaeoneilo symmetricus Wuchiapingian 0.9777 -0.3504 Bivalves Acanthopecten derajatensis Wuchiapingian 1.7160 0.3879 Bivalves Acanthopecten licharewi Wuchiapingian 1.4548 0.1268 Bivalves Aviculopecten morahensis Wuchiapingian 1.6021 0.2740 Bivalves Aviculopecten prototextoris Wuchiapingian 1.3617 0.0337 Bivalves Aviculopecten Wuchiapingian 1.3222 -0.0059 xiaoyuanchongensis Bivalves Cassianoides sexcostatus Wuchiapingian 1.1461 -0.1819 Bivalves Crenipecten lianyuanensis Wuchiapingian 0.5051 -0.8229 Bivalves Cyrtorostra atavum Wuchiapingian 1.4624 0.1343 Bivalves Etheripecten mutabilis Wuchiapingian 1.7782 0.4501 Bivalves Etheripecten wynnei Wuchiapingian 1.4914 0.1633 Bivalves Euchondria jiaheensis Wuchiapingian 1.4624 0.1343 Bivalves Euchondria squamula Wuchiapingian 0.9031 -0.4250 Bivalves Heteropecten gigantea Wuchiapingian 2.2122 0.8841 Bivalves Heteropecten jabiensis Wuchiapingian 1.6812 0.3532 Bivalves Hunanopecten exilis Wuchiapingian 1.2455 -0.0826 Bivalves Hunanopecten qujiangensis Wuchiapingian 1.4472 0.1191 Bivalves Limatulina? hunanensis Wuchiapingian 1.1139 -0.2141 Bivalves Neptunopecten Wuchiapingian 1.6580 0.3299 keyserlingiformis Bivalves Paradoxipecten flabelliformis Wuchiapingian 1.6721 0.3440 Bivalves Pseudomonotis kazanensis Wuchiapingian 1.6232 0.2952 Bivalves Pseudomonotis speluncaria Wuchiapingian 1.9191 0.5910 Bivalves Streblochondria winsnesi Wuchiapingian 1.5250 0.1970 Bivalves Streblopteria eichwaldi Wuchiapingian 1.1139 -0.2141 Bivalves Vorkutopecten svalbardensis Wuchiapingian 1.5798 0.2517 Bivalves Cardiomorpha doulingensis Wuchiapingian 1.0792 -0.2489 Bivalves Gujocardita elliptica Wuchiapingian 1.1139 -0.2141 Bivalves Gujocardita obesa Wuchiapingian 1.0414 -0.2867

229 Size Normalized Size Clade Species Stage (log10 mm) (log10 mm) Bivalves Gujocardita oblonga Wuchiapingian 1.1139 -0.2141 Bivalves Gujocardita subquadrata Wuchiapingian 0.7782 -0.5499 Bivalves Netschajewia fenghaiensis Wuchiapingian 1.6335 0.3054 Bivalves Permophorus subovalis Wuchiapingian 1.6435 0.3154 Bivalves Stutchburia hunanensis Wuchiapingian 0.9138 -0.4143 Bivalves Wilkingia perelegans Wuchiapingian 1.6180 0.2900 Bivalves Wilkingia pleuromyoides Wuchiapingian 1.6532 0.3251 Bivalves Atomodesma indicum Wuchiapingian 1.3424 0.0143 Bivalves Maitaia tenkensis Wuchiapingian 1.6335 0.3054 Bivalves Maitaia trechmanni Wuchiapingian 1.7993 0.4713 Bivalves Tambanella? squama Wuchiapingian 1.3979 0.0699 Bivalves Trabeculatia trabeculum Wuchiapingian 1.8751 0.5470 Bivalves "Loripes" atavus Changhsingian 1.0000 -0.3281 Bivalves "Lucina?" bombifrons Changhsingian 0.7782 -0.5499 Bivalves "Palantina" indica Changhsingian 1.3424 0.0143 Bivalves "Sphaeriola" grandaeva Changhsingian 0.9031 -0.4250 Bivalves Parallelodon corbina Changhsingian 1.3979 0.0699 Bivalves Parallelodon laochangensis Changhsingian 1.5119 0.1838 Bivalves Astartella ambiensis Changhsingian 0.9777 -0.3504 Bivalves Astartella progenetrix Changhsingian 1.0414 -0.2867 Bivalves Palaeolima chekiangensis Changhsingian 0.8808 -0.4473 Bivalves Palaeolima dieneri Changhsingian 0.9731 -0.3549 Bivalves Palaeolima footei Changhsingian 1.0000 -0.3281 Bivalves Palaeolima sichuanensis Changhsingian 0.9912 -0.3369 Bivalves Palaeolima xiangnanensis Changhsingian 1.0864 -0.2417 Bivalves Plagiostoma? inveras Changhsingian 1.1761 -0.1520 Bivalves Lithodomina abbreviata Changhsingian 1.0792 -0.2489 Bivalves Lithodomina typa Changhsingian 1.2553 -0.0728 Bivalves Phestia hunanensis Changhsingian 0.8451 -0.4830 Bivalves Phestia subacuta Changhsingian 0.9031 -0.4250 Bivalves Phestia zhejiangensis Changhsingian 1.1959 -0.1322 Bivalves Nuculopsis trivialis Changhsingian 0.7782 -0.5499 Bivalves Nuculopsis ventricosa Changhsingian 0.9031 -0.4250 Bivalves Nuculopsis wymmensis Changhsingian 1.0934 -0.2347 Bivalves Palaeoneilo qinzhouensis Changhsingian 0.8451 -0.4830 Bivalves "Aviculopecten" Changhsingian 1.9138 0.5857 pseudoctenostreon Bivalves Acanthopecten coloradoensis Changhsingian 1.6693 0.3412 Bivalves Claraioides caucasica Changhsingian 1.6021 0.2740 Bivalves Claraioides labensis Changhsingian 1.5315 0.2034 Bivalves Claraia liuqiaoensis Changhsingian 1.2304 -0.0976 Bivalves Clavicosta rugatula Changhsingian 2.0000 0.6719 Bivalves Cyrtorostra? subexoticus Changhsingian 1.1139 -0.2141 Bivalves Dolponella sulcata Changhsingian 1.9138 0.5857 Bivalves Entolium piriforis Changhsingian 1.3222 -0.0059 Bivalves Etheripecten breviauriculatus Changhsingian 1.0719 -0.2562 Bivalves Etheripecten fasciculicostatus Changhsingian 1.1903 -0.1377 Bivalves Euchondria fusuiensis Changhsingian 1.2553 -0.0728 Bivalves Euchondria paucicostata Changhsingian 1.1553 -0.1727 Bivalves Eumorphotis lorigae Changhsingian 1.5289 0.2008 Bivalves Fasciculiconcha orbicularis Changhsingian 1.4771 0.1490

230 Size Normalized Size Clade Species Stage (log10 mm) (log10 mm) Bivalves Girtypecten spinosus Changhsingian 1.2041 -0.1240 Bivalves Guizhoupecten regularis Changhsingian 1.3304 0.0023 Bivalves Heteropecten kathwaiensis Changhsingian 1.3222 -0.0059 Bivalves Heteropecten shiroshitai Changhsingian 1.4698 0.1417 Bivalves Hunanopecten exilis Changhsingian 1.1399 -0.1882 Bivalves Hunanopecten longauriculus Changhsingian 1.1072 -0.2209 Bivalves Hunanopecten qujiangensis Changhsingian 1.0253 -0.3028 Bivalves Leptochondria intermedia Changhsingian 1.2430 -0.0850 Bivalves Leptochondria praecox Changhsingian 0.9542 -0.3738 Bivalves Orientopecten fenghaiensis Changhsingian 1.0414 -0.2867 Bivalves Orientopecten prosoclinus Changhsingian 1.0414 -0.2867 Bivalves Paradoxipecten dalongensis Changhsingian 1.5119 0.1838 Bivalves Paradoxipecten latisinus Changhsingian 1.3284 0.0003 Bivalves Paradoxipecten longispinus Changhsingian 1.0719 -0.2562 Bivalves Paradoxipecten trigonalis Changhsingian 1.2989 -0.0292 Bivalves Pernopecten Changhsingian 1.0719 -0.2562 huanyingshanensis Bivalves Pernopecten latangulatus Changhsingian 1.3263 -0.0017 Bivalves Pernopecten symmetricus Changhsingian 1.3010 -0.0270 Bivalves Pernopecten zhutangensis Changhsingian 1.3820 0.0539 Bivalves Pseudomonotis speluncaria Changhsingian 1.0000 -0.3281 Bivalves Streblochondria subgranosus Changhsingian 1.7243 0.3962 Bivalves Streblochondria subpusilla Changhsingian 0.9031 -0.4250 Bivalves Xinanopecten orbicularis Changhsingian 1.3617 0.0337 Bivalves Dyasmya elegans Changhsingian 1.0294 -0.2987 Bivalves Edmondia nebrascensis Changhsingian 1.0043 -0.3238 Bivalves Gujocardita acuteplicata Changhsingian 0.9542 -0.3738 Bivalves Gujocardita oviformis Changhsingian 1.2227 -0.1054 Bivalves Netschajewia elongata Changhsingian 0.8062 -0.5219 Bivalves Netschajewia fenghaiensis Changhsingian 0.9191 -0.4090 Bivalves Netschajewia jiangsuensis Changhsingian 1.0864 -0.2417 Bivalves Netschajewia striatulus Changhsingian 1.3424 0.0143 Bivalves Palaeosolen? atavus Changhsingian 1.3617 0.0337 Bivalves Permophorus imbricatus Changhsingian 1.6335 0.3054 Bivalves Permophorus lunulus Changhsingian 1.0969 -0.2312 Bivalves Permophorus tenuistriatus Changhsingian 1.5647 0.2366 Bivalves Pseudopermophorus Changhsingian 1.2788 -0.0493 complanatus Bivalves Pyramus grandaeva Changhsingian 0.6990 -0.6291 Bivalves Pyramus planus Changhsingian 1.5551 0.2270 Bivalves Pyramus silicius Changhsingian 1.6335 0.3054 Bivalves Sanguinolites vetusta Changhsingian 0.8751 -0.4530 Bivalves Sedgwickia guangdongensis Changhsingian 1.3692 0.0411 Bivalves Stutchburia trapezoidalis Changhsingian 1.6990 0.3709 Bivalves Vacunella curvata Changhsingian 1.3201 -0.0079 Bivalves Vacunella rostrata Changhsingian 1.6758 0.3477 Bivalves Wilkingia dubia Changhsingian 1.3222 -0.0059 Bivalves Wilkingia fengchengensis Changhsingian 0.9138 -0.4143 Bivalves Atomodesma exaratum Changhsingian 1.5185 0.1904 Bivalves Atomodesma semiplicata Changhsingian 1.3424 0.0143 Bivalves Atomodesma variabile Changhsingian 1.6990 0.3709

231 Size Normalized Size Clade Species Stage (log10 mm) (log10 mm) Bivalves Atomodesma woodi Changhsingian 1.3802 0.0521 Bivalves Bakevellia ceratophaga Changhsingian 1.2355 -0.0925 Bivalves Bakevellia gujoensis Changhsingian 1.2330 -0.0951 Bivalves Bakevellia jiuzhaiensis Changhsingian 1.2122 -0.1159 Bivalves Ensipteria praeangusta Changhsingian 1.1818 -0.1462 Bivalves Intomodesma balygytshanica Changhsingian 2.2900 0.9620 Bivalves Intomodesma evenica Changhsingian 2.0374 0.7093 Bivalves Leptodesma chidruensis Changhsingian 1.2788 -0.0493 Bivalves Leptodesma gouldii Changhsingian 0.9777 -0.3504 Bivalves Leptodesma zhangi Changhsingian 1.1875 -0.1406 Bivalves Liebea zhenanensis Changhsingian 0.9191 -0.4090 Bivalves Maitaia hurensis Changhsingian 1.8261 0.4980 Bivalves Myalinella acutirostris Changhsingian 1.3979 0.0699 Bivalves Myalinella? patriarchalis Changhsingian 1.3979 0.0699 Bivalves Tambanella guanshanensis Changhsingian 1.1903 -0.1377 Bivalves Tambanella gujoensis Changhsingian 1.2553 -0.0728 Bivalves Tambanella shaodongensis Changhsingian 1.0414 -0.2867 Bivalves Towapteria intermedia Changhsingian 0.5185 -0.8096 Bivalves Trabeculatia trabeculum Changhsingian 1.8129 0.4848 Bivalves Janeia elliptica Changhsingian 1.4014 0.0733 Bivalves Eoastarte primaeva Changhsingian 0.7404 -0.5877 Bivalves Lyroschizodus praecox Changhsingian 1.2304 -0.0976 Bivalves Lyroschizodus subelegans Changhsingian 1.0792 -0.2489 Bivalves Paraschizodus rothi Changhsingian 1.0792 -0.2489 Bivalves Schizodus cardissa Changhsingian 1.3979 0.0699 Bivalves Schizodus compressus Changhsingian 1.6990 0.3709 Bivalves Schizodus dubiiformis Changhsingian 1.4624 0.1343 Bivalves Schizodus pinguis Changhsingian 1.5185 0.1904 Bivalves Schizodus schlotheimi Changhsingian 1.4314 0.1033 Bivalves Palaeoneilo qinzhouensis Induan 0.9542 -0.3738 Bivalves Eumorphotis multiformis Induan 1.5740 0.2460 Bivalves Leptochondria minima Induan 0.8325 -0.4956 Bivalves Claraia dieneri Induan 1.3365 0.0084 Bivalves Claraia fukianensis Induan 1.1875 -0.1406 Bivalves Claraia griesbachi Induan 1.3962 0.0681 Bivalves Claraia guizhouensis Induan 1.2856 -0.0425 Bivalves Claraia hubeiensis Induan 1.4281 0.1001 Bivalves Claraia hunanica Induan 1.0000 -0.3281 Bivalves Claraia liuqiaoensis Induan 1.2304 -0.0976 Bivalves Claraia longyanensis Induan 1.6117 0.2836 Bivalves Claraia longyanensis Induan 1.3560 0.0279 Bivalves Claraia stachei Induan 1.5899 0.2619 Bivalves Crittendenia paikhandana Induan 1.2625 -0.0656 Bivalves Entolioides utahensis Induan 1.7404 0.4123 Bivalves Leptochondria minima Induan 0.8573 -0.4707 Bivalves Triaphorus multiformis Induan 1.1931 -0.1350 Bivalves Promyalina schamarae Induan 1.3945 0.0664 Bivalves Pteria ussurica Induan 1.1959 -0.1322 Bivalves Promyalina putiatinensis Induan 1.3962 0.0681 Bivalves Pteria ussurica Induan 1.0645 -0.2636 Bivalves Neoschizodus ovatus Induan 1.1461 -0.1819

232 Size Normalized Size Clade Species Stage (log10 mm) (log10 mm) Bivalves Neoschizodus laevigatus Induan 1.2480 -0.0801 Bivalves Unionites fassaensis Induan 1.3424 0.0143 Bivalves Unionites canalensis Induan 1.5145 0.1865 Bivalves Unionites fassaensis Induan 1.3075 -0.0206 Bivalves Eumorphotis multiformis Olenekian 1.8195 0.4915 Bivalves "Streblochondria" matsushitai Olenekian 1.4624 0.1343

Bivalves Crittendenia kummeli Olenekian 1.4031 0.0750 Bivalves Eumorphotis multiformis Olenekian 1.5185 0.1904 Bivalves Leptochondria minima Olenekian 1.0492 -0.2789 Bivalves Leptochondria minima Olenekian 0.7634 -0.5646 Bivalves Eumorphotis multiformis Olenekian 1.7482 0.4201 Bivalves Leptochondria occidaneus Olenekian 1.3483 0.0202 Bivalves Leptochondria? hataii Olenekian 1.3838 0.0557 Bivalves Pegmavalvula triassica Olenekian 1.0374 -0.2907 Bivalves Pleuronectites meeki Olenekian 1.2648 -0.0633 Bivalves Triaphorus multiformis Olenekian 1.4314 0.1033 Bivalves Permophorus triassicus Olenekian 1.7093 0.3812 Bivalves Bakevellia rostrata Olenekian 1.3118 -0.0163 Bivalves Pteria ussurica Olenekian 1.2304 -0.0976 Bivalves Bakevellia? silberlingi Olenekian 1.5441 0.2160 Bivalves Neoschizodus laevigatus Olenekian 1.3404 0.0124 Bivalves Elegantinia paullorum Olenekian 1.1523 -0.1758 Bivalves Neoschizodus elongatus Olenekian 1.5250 0.1970 Bivalves Trigonodus orientalis Olenekian 1.2989 -0.0292 Bivalves Unionites canalensis Olenekian 1.5798 0.2517 Bivalves Unionites fassaensis Olenekian 1.4624 0.1343 Bivalves Sinbadiella pygmaea Olenekian 0.8751 -0.4530 Ammonoids Anderssonoceras anfuense Wuchiapingian 1.3766 -0.3176 Ammonoids Anderssonoceras robustum Wuchiapingian 1.1239 -0.5703 Ammonoids Anderssonoceras simplex Wuchiapingian 1.1847 -0.5095 Ammonoids Anfuceras longilobatum Wuchiapingian 1.5302 -0.1640 Ammonoids Araxoceras kiangsiense Wuchiapingian 1.2253 -0.4689 Ammonoids Araxoceras rotoides Wuchiapingian 1.6335 -0.0607 Ammonoids Fengchengoceras Wuchiapingian 1.2175 -0.4767 Ammonoids Huananoceras involutum Wuchiapingian 1.6493 -0.0449 Ammonoids Jinjiangoceras stenosellatum Wuchiapingian 1.7396 0.0454 Ammonoids Kiangsiceras rotule Wuchiapingian 1.2355 -0.4587 Ammonoids Konglingites gaoanensis Wuchiapingian 1.6749 -0.0193 Ammonoids Konglingites inflatus Wuchiapingian 1.6964 0.0022 Ammonoids Konglingites latisellatus Wuchiapingian 1.7152 0.0210 Ammonoids Konglingites sinensis Wuchiapingian 1.6767 -0.0175 Ammonoids Konglingites striatus Wuchiapingian 1.6803 -0.0139 Ammonoids Konglingites tumidus Wuchiapingian 1.6821 -0.0121 Ammonoids Lenticoceltites Wuchiapingian 1.0682 -0.6260 fengchengensis Ammonoids Lenticoceltites involutus Wuchiapingian 1.0969 -0.5973 Ammonoids Leptogyroceras compressum Wuchiapingian 1.2923 -0.4019 Ammonoids Leptogyroceras Wuchiapingian 1.3962 -0.2980 dongshenlingense Ammonoids Pachyrotoceras Wuchiapingian 1.1173 -0.5769

233 Size Normalized Size Clade Species Stage (log10 mm) (log10 mm) Ammonoids Pachyrotoceras laevigatum Wuchiapingian 1.3304 -0.3638 Ammonoids Pericarinoceras compressum Wuchiapingian 1.2355 -0.4587 Ammonoids Pericarinoceras robustum Wuchiapingian 1.3674 -0.3268 Ammonoids Periptychoceras compressum Wuchiapingian 1.6721 -0.0221 Ammonoids Planodiscoceras gratiosum Wuchiapingian 1.6021 -0.0921 Ammonoids Planodiscoceras involutum Wuchiapingian 1.3483 -0.3459 Ammonoids Prototoceras anfuense Wuchiapingian 1.4843 -0.2099 Ammonoids Prototoceras complanatum Wuchiapingian 1.4232 -0.2709 Ammonoids Prototoceras fengchengense Wuchiapingian 1.3560 -0.3382 Ammonoids Prototoceras inflatum Wuchiapingian 1.4378 -0.2564 Ammonoids Prototoceras japonicum Wuchiapingian 1.3979 -0.2963 Ammonoids Prototoceras longilobatum Wuchiapingian 1.4955 -0.1987 Ammonoids Prototoceras Wuchiapingian 1.3997 -0.2945 multidenticulatum Ammonoids Prototoceras pachygyrum Wuchiapingian 1.2989 -0.3953 Ammonoids Prototoceras plicatum Wuchiapingian 1.3181 -0.3761 Ammonoids Prototoceras venustum Wuchiapingian 1.5011 -0.1931 Ammonoids Sanyangites tricarinatus Wuchiapingian 1.5888 -0.1054 Ammonoids Sanyangites umbilicatus Wuchiapingian 1.6561 -0.0381 Ammonoids Xenodiscus carbonarius Wuchiapingian 2.0128 0.3186 Ammonoids Xiangulingites acutus Wuchiapingian 1.2095 -0.4847 Ammonoids Xiangulingites applanatus Wuchiapingian 1.2765 -0.4177 Ammonoids Xiangulingites orbilobatus Wuchiapingian 1.1987 -0.4955 Ammonoids Cyclolobus oldhami Wuchiapingian 2.1461 0.4519 Ammonoids Cyclolobus persulcatus Wuchiapingian 1.5911 -0.1031 Ammonoids Daubichites Wuchiapingian 1.9609 0.2668 hunggermiaoensis Ammonoids Demarezites anfuensis Wuchiapingian 1.1139 -0.5803 Ammonoids Neoaganides nesenensis Wuchiapingian 1.3617 -0.3325 Ammonoids Neoaganides paulus Wuchiapingian 0.8692 -0.8250 Ammonoids Pseudogastrioceras gigantum Wuchiapingian 2.1239 0.4297 Ammonoids Pseudogastrioceras Wuchiapingian 1.7380 0.0438 jiangxiense Ammonoids Stacheoceras iwaizakiense Wuchiapingian 1.5798 -0.1144 Ammonoids Stacheoceras otomoi Wuchiapingian 1.6021 -0.0921 Ammonoids Strigogoniatites anfuensis Wuchiapingian 1.7308 0.0366 Ammonoids Strigogoniatites compressum Wuchiapingian 1.4133 -0.2809 Ammonoids Strigogoniatites Wuchiapingian 1.1644 -0.5298 fengchengense Ammonoids Strigogoniatites pulchrium Wuchiapingian 1.5899 -0.1042 Ammonoids Timorites intermedius Wuchiapingian 2.4771 0.7829 Ammonoids Domatoceras gracile Wuchiapingian 1.6021 -0.0921 Ammonoids Eulomacoceras bicostatum Wuchiapingian 1.8096 0.1154 Ammonoids Eulomacoceras venustum Wuchiapingian 1.8842 0.1900 Ammonoids Foordiceras flemingianus Wuchiapingian 2.2380 0.5439 Ammonoids Metacoceras dorashamensis Wuchiapingian 1.5911 -0.1031 Ammonoids Metacoceras medlicottianum Wuchiapingian 1.8325 0.1383 Ammonoids Paranautilus peregrinus Wuchiapingian 1.9542 0.2600 Ammonoids Pleuronautilus dzhulfensis Wuchiapingian 1.6232 -0.0709 Ammonoids Pselioceras connectens Wuchiapingian 2.2148 0.5206

234 Size Normalized Size Clade Species Stage (log10 mm) (log10 mm) Ammonoids Pseudotitanoceras Wuchiapingian 2.3010 0.6068 armeniacum Ammonoids Tainionautilus transitorius Wuchiapingian 2.1139 0.4197 Ammonoids Tainionautilus wynnei Wuchiapingian 2.0645 0.3703 Ammonoids Eumedlicottia primas Wuchiapingian 2.0569 0.3627 Ammonoids Paedopronorites leonovae Wuchiapingian 1.3010 -0.3932 Ammonoids Abichites abichi Changhsingian 1.6946 0.0004 Ammonoids Abichites mojsisovicsi Changhsingian 1.8055 0.1113 Ammonoids Abichites stoyanowi Changhsingian 1.6998 0.0056 Ammonoids Dzhulfites spinosus Changhsingian 2.0145 0.3203 Ammonoids Huananoceras perornatum Changhsingian 1.6532 -0.0410 Ammonoids Huananoceras perornatum Changhsingian 1.5955 -0.0987 Ammonoids Huananoceras qianjiangense Changhsingian 1.5185 -0.1757 Ammonoids Iranites transcaucasicum Changhsingian 1.0899 -0.6043 Ammonoids Liuchengoceras Changhsingian 1.6096 -0.0846 crassicostatum Ammonoids Liuchengoceras evolutum Changhsingian 1.6335 -0.0607 Ammonoids Liuchengoceras minutum Changhsingian 1.3766 -0.3176 Ammonoids Mingyuexiaceras Changhsingian 1.5428 -0.1514 changxingense Ammonoids Mingyuexiaceras radiatum Changhsingian 1.5922 -0.1020 Ammonoids Paratirolites compressus Changhsingian 1.8751 0.1809 Ammonoids Paratirolites vediensis Changhsingian 1.8739 0.1797 Ammonoids Phisonites triangulus Changhsingian 1.8921 0.1979 Ammonoids Pseudostephanites costatus Changhsingian 1.6618 -0.0324 Ammonoids Pseudotirolites asiaticus Changhsingian 1.7259 0.0317 Ammonoids Pseudotirolites orientalis Changhsingian 1.6415 -0.0527 Ammonoids Rongjiangoceras lenticulare Changhsingian 1.4362 -0.2580 Ammonoids Shevyrevites shevyrevi Changhsingian 1.7701 0.0759 Ammonoids Sinoceltites costatus Changhsingian 1.7443 0.0501 Ammonoids Sinoceltites curvatus Changhsingian 1.8388 0.1447 Ammonoids Sinoceltites opimus Changhsingian 1.6857 -0.0085 Ammonoids Sinoceltites sichuanensis Changhsingian 1.7084 0.0142 Ammonoids Tapashanites acuticostatus Changhsingian 1.6085 -0.0857 Ammonoids Tapashanites changxingensis Changhsingian 1.4814 -0.2128 Ammonoids Tapashanites chaotianensis Changhsingian 1.7177 0.0235 Ammonoids Tapashanites compressus Changhsingian 1.6998 0.0056 Ammonoids Tapashanites costatus Changhsingian 1.9791 0.2849 Ammonoids Tapashanites curvoplicatus Changhsingian 1.7818 0.0876 Ammonoids Tapashanites floriformis Changhsingian 1.6503 -0.0439 Ammonoids Tapashanites latiumbilicus Changhsingian 1.7482 0.0540 Ammonoids Tapashanites Changhsingian 1.8500 0.1558 mingyuexiaensis Ammonoids Tapashanites robustus Changhsingian 1.6712 -0.0230 Ammonoids Tapashanites tenuicostatus Changhsingian 1.8129 0.1187 Ammonoids Xenodiscus chaotianensis Changhsingian 1.5670 -0.1272 Ammonoids Xenodiscus dorashamensis Changhsingian 1.5911 -0.1031 Ammonoids Changhsingoceras Changhsingian 1.9395 0.2453 meishanense Ammonoids Changhsingoceras Changhsingian 1.5670 -0.1272 sichuanense

235 Size Normalized Size Clade Species Stage (log10 mm) (log10 mm) Ammonoids Cyclolobus teicherti Changhsingian 2.0969 0.4027 Ammonoids Cyclolobus walkeri Changhsingian 1.8388 0.1447 Ammonoids Neoglassoceras caucasicus Changhsingian 1.4983 -0.1959 Ammonoids Pseudogastrioceras Changhsingian 1.9154 0.2212 guangxiense Ammonoids Pseudogastrioceras Changhsingian 1.9294 0.2352 guizhouense Ammonoids Pseudogastrioceras Changhsingian 2.0212 0.3270 szechuanense Ammonoids Stacheoceras antiquum Changhsingian 1.8195 0.1253 Ammonoids Stacheoceras chaotianense Changhsingian 1.4594 -0.2348 Ammonoids Clavinautilus compressus Changhsingian 1.7896 0.0954 Ammonoids Domatoceras guangxiense Changhsingian 1.7803 0.0861 Ammonoids Liroceras meishanense Changhsingian 2.4683 0.7742 Ammonoids Lirometacoceras guizhouense Changhsingian 1.4265 -0.2677 Ammonoids Neostenopoceras Changhsingian 1.5539 -0.1403 qingzhenense Ammonoids Neotainoceras pachydiscum Changhsingian 1.9699 0.2757 Ammonoids Parametacoceras Changhsingian 1.6454 -0.0488 changxingense Ammonoids Paratainonautilus dushanensis Changhsingian 1.7016 0.0074

Ammonoids Pselioceras convolutus Changhsingian 1.9294 0.2352 Ammonoids Syringonautilus vagus Changhsingian 1.6902 -0.0040 Ammonoids Tainionautilus wynnei Changhsingian 2.0792 0.3850 Ammonoids Temnocheilus Changhsingian 1.6335 -0.0607 multituberculatum Ammonoids Lopingoceras guangdeense Changhsingian 1.7672 0.0730 Ammonoids Lopingoceras lopingense Changhsingian 1.7235 0.0293 Ammonoids Episageceras wynnei Changhsingian 2.0128 0.3186 Ammonoids Neogeoceras kitakamiensis Changhsingian 1.8388 0.1447 Ammonoids Ambites Ferruginus Induan 2.0000 0.3058 Ammonoids Ambites Fuliginatus Induan 1.9294 0.2352 Ammonoids Ambites Wissneri Induan 1.8129 0.1187 Ammonoids Ambitoides fulginatus Induan 1.5866 -0.1076 Ammonoids Ambitoides orientalis Induan 1.7627 0.0685 Ammonoids Anahedenstroemia Evoluta Induan 2.2856 0.5914 Ammonoids Anahedenstroemia Induan 2.2405 0.5464 Himalayica Ammonoids Anotoceras Nala Induan 1.4822 -0.2120 Ammonoids Bukkenites Incisus Induan 2.0000 0.3058 Ammonoids Bukkenites Macilentus Induan 1.9243 0.2301 Ammonoids Bukkenites Nanus Induan 1.8633 0.1691 Ammonoids Bukkenites Nitidus Induan 1.6532 -0.0410 Ammonoids Bukkenites Strigatus Induan 1.9638 0.2696 Ammonoids Clypeoceras Ensanum Induan 1.7782 0.0840 Ammonoids Clypeoceras Largisellatum Induan 1.8804 0.1862 Ammonoids Clypeoceras spitiense Induan 1.6730 -0.0212 Ammonoids Discophiceras Wordiei Induan 1.9345 0.2403 Ammonoids Dunedinites magnumbilicatus Induan 1.4771 -0.2171

236 Size Normalized Size Clade Species Stage (log10 mm) (log10 mm) Ammonoids Dunedinites Pinguis Induan 1.7782 0.0840 Ammonoids Episageceras Latidorsatum Induan 1.9355 0.2413 Ammonoids Compressus Induan 2.3464 0.6522 Ammonoids Flemingites Lidacensis Induan 2.2014 0.5072 Ammonoids Flemingites Reticulatus Induan 1.4314 -0.2628 Ammonoids Flemingites Timorensis Induan 1.9395 0.2453 Ammonoids Glyptophiceras Kashmiricum Induan 1.4522 -0.2419 Ammonoids Glyptophiceras Ophioides Induan 1.6990 0.0048 Ammonoids Glyptophiceras Pascoei Induan 1.7482 0.0540 Ammonoids Grypoceras aemulans Induan 1.7782 0.0840 Ammonoids Grypoceras bidorsatoides Induan 1.7404 0.0462 Ammonoids Gyronautilus popovi Induan 1.7160 0.0218 Ammonoids Gyronautilus praevolutus Induan 2.1303 0.4361 Ammonoids Gyronites Frequens Induan 1.6232 -0.0709 Ammonoids Gyronites Planissimus Induan 1.9542 0.2600 Ammonoids Gyronites subdharmus Induan 1.7084 0.0142 Ammonoids Gyrophiceras Subplicatum Induan 1.7235 0.0293 Ammonoids Gyrophiceras Veriforme Induan 1.7634 0.0692 Ammonoids Heibergites Heibergensis Induan 2.3522 0.6580 Ammonoids Hypophiceras Gracile Induan 1.5682 -0.1260 Ammonoids Kingites Discoidalis Induan 2.3010 0.6068 Ammonoids Kingites Thulensis Induan 2.3979 0.7037 Ammonoids Koninckites Apertus Induan 1.8981 0.2039 Ammonoids Koninckites Davidsonianus Induan 1.7413 0.0471 Ammonoids Koninckites Dimidiatus Induan 1.8129 0.1187 Ammonoids Koninckites Occlusus Induan 1.7939 0.0997 Ammonoids Koninckites Timorensis Induan 1.8976 0.2034 Ammonoids Koninckites Yanjiaensis Induan 1.6902 -0.0040 Ammonoids Kymatites Typus Induan 1.7243 0.0301 Ammonoids Kymatites Yanjiaensis Induan 1.7076 0.0134 Ammonoids Meekophiceras Induan 1.8451 0.1509 Columbianum Ammonoids Meekophiceras Franklini Induan 2.2553 0.5611 Ammonoids Menuthionautilus korzchi Induan 1.3784 -0.3158 Ammonoids Metotoceras Dieneri Induan 1.8692 0.1750 Ammonoids Commune Induan 1.6335 -0.0607 Ammonoids Ophiceras Demissum Induan 1.3222 -0.3720 Ammonoids Ophiceras Gibbosum Induan 1.8985 0.2043 Ammonoids Ophiceras Greenlandicum Induan 2.1139 0.4197 Ammonoids Ophiceras Ptychodes Induan 1.8660 0.1718 Ammonoids Ophiceras Sakuntala Induan 1.8388 0.1447 Ammonoids Ophiceras Subsakuntala Induan 1.9777 0.2835 Ammonoids Otoceras Boreale Induan 2.3979 0.7037 Ammonoids Otoceras Concavum Induan 2.1761 0.4819 Ammonoids Otoceras Gracile Induan 1.8451 0.1509 Ammonoids Otoceras Undatum Induan 1.6232 -0.0709 Ammonoids Otoceras Woodwardi Induan 2.0080 0.3138 Ammonoids Pachyproptychites Induan 1.8675 0.1733 otoceratoides Ammonoids Parahedemstroemia Induan 1.8722 0.1780 kiparisovae

237 Size Normalized Size Clade Species Stage (log10 mm) (log10 mm) Ammonoids Paranorites Aequalis Induan 2.0607 0.3665 Ammonoids Paranorites Ambiensis Induan 2.0334 0.3392 Ammonoids Paranorites Hydaspis Induan 2.3010 0.6068 Ammonoids Paranorites Inflatus Induan 1.8397 0.1455 Ammonoids Paranorites Praestans Induan 2.3424 0.6482 Ammonoids Paranorites Pulchrus Induan 2.2304 0.5363 Ammonoids Paranorites varians Induan 2.0338 0.3396 Ammonoids Paranorites Vercheri Induan 1.8633 0.1691 Ammonoids Paraspidites Proecursor Induan 1.7352 0.0410 Ammonoids Pleurambites Frechi Induan 1.7782 0.0840 Ammonoids Pleurogyronites Kraffti Induan 1.5682 -0.1260 Ammonoids Pleurogyronites Mulleri Induan 2.2041 0.5099 Ammonoids Prionolobus Hanieli Induan 1.8388 0.1447 Ammonoids Prionolobus Impressus Induan 1.7482 0.0540 Ammonoids Prionolobus Konincki Induan 1.6532 -0.0410 Ammonoids Prionolobus Lilangensis Induan 1.7202 0.0260 Ammonoids Prionolobus Orbis Induan 2.0434 0.3492 Ammonoids Prionolobus Rotundatus Induan 1.9355 0.2413 Ammonoids Prionolobus Wanneri Induan 1.8062 0.1120 Ammonoids Prionolobus Welteri Induan 1.8388 0.1447 Ammonoids Proptychites Induan 1.8169 0.1227 alterammonoides Ammonoids Proptychites Candidus Induan 2.3010 0.6068 Ammonoids Proptychites Kummeli Induan 1.5798 -0.1144 Ammonoids Proptychites Latifuimbriatus Induan 1.9433 0.2492 Ammonoids Proptychites Markhami Induan 2.2122 0.5180 Ammonoids Pseudoproptychites hiemalis Induan 1.8142 0.1201 Ammonoids Pseudosageceras Induan 2.1461 0.4519 Multilobatum Ammonoids Pseudovishnuites Induan 1.8261 0.1319 Guidingensis Ammonoids Tellerites Induan 1.6232 -0.0709 Ammonoids Tompophiceras Extremum Induan 1.8325 0.1383 Ammonoids Ussuridiscus varaha Induan 1.7372 0.0430 Ammonoids Ussuriflemingites abrekensis Induan 1.7604 0.0662 Ammonoids Vavilovites Obtusus Induan 2.0414 0.3472 Ammonoids Vavilovites Sverdrupi Induan 2.2041 0.5099 Ammonoids Vishnuites Kummeli Induan 1.7404 0.0462 Ammonoids Vishnuites Wenjiangsiensis Induan 1.8401 0.1459 Ammonoids Vishnuites Yangziensis Induan 1.9243 0.2301 Ammonoids Wasatchites Tridentinus Induan 2.1614 0.4672 Ammonoids Wordieoceras Guizhouensis Induan 2.1173 0.4231 Ammonoids Wordieoceras Wordiei Induan 2.1072 0.4130 Ammonoids Wyomingites Scapulatus Induan 1.6021 -0.0921 Ammonoids Xenodiscoides Calnani Induan 1.3010 -0.3932 Ammonoids Xenodiscoides Hollandi Induan 2.1206 0.4264 Ammonoids Xiaohenautilus abrekensis Induan 1.8899 0.1957 Ammonoids Abrekites editus Olenekian 1.6902 -0.0040 Ammonoids Abrekites planus Olenekian 1.7980 0.1038 Ammonoids Albanites Sheldoni Olenekian 1.8451 0.1509 Ammonoids Albanites Triadicus Olenekian 1.8091 0.1149

238 Size Normalized Size Clade Species Stage (log10 mm) (log10 mm) Ammonoids Anaflemingites Hochulii Olenekian 1.8751 0.1809 Ammonoids Anakashmirites Nivalis Olenekian 1.6990 0.0048 Ammonoids Anasibirites archiperipheras Olenekian 1.5682 -0.1260 Ammonoids Anasibirites Crickmayi Olenekian 1.5441 -0.1501 Ammonoids Anasibirites ehimensis Olenekian 1.2041 -0.4901 Ammonoids Anasibirites inaequicostatus Olenekian 1.1761 -0.5181 Ammonoids Anasibirites intermedius Olenekian 1.2304 -0.4637 Ammonoids Anasibirites Kummeli Olenekian 1.8451 0.1509 Ammonoids Anasibirites Multiformis Olenekian 1.9777 0.2835 Ammonoids Anasibirites multiplicatus Olenekian 1.4150 -0.2792 Ammonoids Anasibirites Nevolini Olenekian 1.6628 -0.0314 Ammonoids Anasibirites onoi Olenekian 1.7160 0.0218 Ammonoids Anasibirites pacificus Olenekian 1.2788 -0.4154 Ammonoids Anasibirites Robustus Olenekian 1.5682 -0.1260 Ammonoids Anasibirites shimizui Olenekian 1.4624 -0.2318 Ammonoids Anawasatchites Dawsoni Olenekian 1.8129 0.1187 Ammonoids Anawasatchites Kindlei Olenekian 1.9031 0.2089 Ammonoids Anawasatchites Merrilli Olenekian 1.9031 0.2089 Ammonoids Anawasatchites Spathi Olenekian 1.8195 0.1253 Ammonoids Anawasatchites Tardus Olenekian 1.9542 0.2600 Ammonoids Anaxenaspis Dieneri Olenekian 2.2175 0.5233 Ammonoids Anaxenaspis Kraffti Olenekian 1.9542 0.2600 Ammonoids Anaxenaspis Welteri Olenekian 2.4771 0.7829 Ammonoids Anaxenaspis Olenekian 2.3010 0.6068 Ammonoids Arctoceras Blomstrandi Olenekian 2.2430 0.5488 Ammonoids Arctoceras Gigas Olenekian 2.4771 0.7829 Ammonoids Arctoceras Lindstroemi Olenekian 2.0792 0.3850 Ammonoids Arctoceras Oebergi Olenekian 2.0212 0.3270 Ammonoids Arctoceras Polare Olenekian 1.7243 0.0301 Ammonoids Arctoceras septentrionale Olenekian 1.8209 0.1267 Ammonoids Arctoceras Strigatus Olenekian 1.9912 0.2970 Ammonoids Arctoceras subhydaspis Olenekian 2.2430 0.5488 Ammonoids Arctoceras Olenekian 2.1703 0.4761 Ammonoids Arctomeekoceras Obtusum Olenekian 1.3222 -0.3720 Ammonoids Arctoprionites minor Olenekian 1.1761 -0.5181 Ammonoids Arctoprionites nipponicus Olenekian 1.2041 -0.4901 Ammonoids Arctoprionites Nodosus Olenekian 1.8976 0.2034 Ammonoids Arctoprionites Tyrrelli Olenekian 1.5441 -0.1501 Ammonoids Arctoprionites Williamsi Olenekian 1.6721 -0.0221 Ammonoids Arctoprionites yeharai Olenekian 1.1903 -0.5039 Ammonoids Arctoprionites Olenekian 1.9031 0.2089 Ammonoids Arnautoceltites Arnauticus Olenekian 1.3979 -0.2963 Ammonoids Arnautoceltites Olenekian 1.2553 -0.4389 Mediterraneus Ammonoids Aspenites Acutus Olenekian 1.8129 0.1187 Ammonoids Aspenites Olenekian 2.0682 0.3740 Ammonoids Balhaeceras balhaense Olenekian 1.4843 -0.2099 Ammonoids Beneckeia Tenuis Olenekian 2.1761 0.4819 Ammonoids Boreoceras Apostolicum Olenekian 1.6335 -0.0607 Ammonoids Ceccaisculitoides Elegans Olenekian 1.3617 -0.3325 Ammonoids Churkites noblei Olenekian 2.5092 0.8150

239 Size Normalized Size Clade Species Stage (log10 mm) (log10 mm) Ammonoids Clypeoceras timorense Olenekian 2.1523 0.4581 Ammonoids Clypites Olenekian 1.7324 0.0382 Ammonoids Columbites Crassicostatus Olenekian 1.5185 -0.1757 Ammonoids Columbites Dolnapensis Olenekian 1.4624 -0.2318 Ammonoids Columbites Isabellae Olenekian 1.4472 -0.2470 Ammonoids Columbites Minimus Olenekian 1.5315 -0.1627 Ammonoids Columbites Parisianus Olenekian 1.7559 0.0617 Ammonoids Columbites Ventroangustus Olenekian 1.4829 -0.2113 Ammonoids Cordillerites Angulatus Olenekian 1.9889 0.2947 Ammonoids Cordillerites Antrum Olenekian 2.0114 0.3172 Ammonoids Cordillerites Bicarinatus Olenekian 1.6335 -0.0607 Ammonoids Cowboyiceras Farwestense Olenekian 1.9031 0.2089 Ammonoids Dagnoceras Nopscanum Olenekian 1.5011 -0.1931 Ammonoids Dagnoceras Zappanense Olenekian 1.5798 -0.1144 Ammonoids Dagnoceras Olenekian 1.5051 -0.1890 Ammonoids Danubites ambika Olenekian 1.7566 0.0624 Ammonoids Deweyeria Crenulata Olenekian 1.4771 -0.2171 Ammonoids Deweyeria Dudresnyi Olenekian 1.6335 -0.0607 Ammonoids Dieneroceras dieneri Olenekian 1.6884 -0.0058 Ammonoids Dieneroceras iwaiense Olenekian 1.3522 -0.3420 Ammonoids Dieneroceras Tientungense Olenekian 1.7993 0.1051 Ammonoids Enoploceras newelli Olenekian 1.9243 0.2301 Ammonoids Eophyllites Davoudzadehi Olenekian 1.5798 -0.1144 Ammonoids Eophyllites Refractus Olenekian 1.6532 -0.0410 Ammonoids Eophyllites Variabilis Olenekian 1.5798 -0.1144 Ammonoids Eophyllites Olenekian 1.5441 -0.1501 Ammonoids Eosturia towaensis Olenekian 1.9138 0.2196 Ammonoids Epiceltites Gentii Olenekian 1.5051 -0.1890 Ammonoids Euflemingites Cirratus Olenekian 2.3979 0.7037 Ammonoids Euflemingites prynadai Olenekian 2.2175 0.5233 Ammonoids Euflemingites Romunderi Olenekian 2.3590 0.6648 Ammonoids Fengshanites Americanus Olenekian 1.7243 0.0301 Ammonoids Flemingites Flemingianus Olenekian 1.9823 0.2881 Ammonoids Flemingites Radiatus Olenekian 1.6857 -0.0085 Ammonoids Flemingites Rursiradiatus Olenekian 1.9103 0.2161 Ammonoids Flemingites Russelli Olenekian 2.0170 0.3228 Ammonoids Galfettites Simplicitatis Olenekian 2.1173 0.4231 Ammonoids Gaudemerites Rectangularis Olenekian 1.5315 -0.1627 Ammonoids Germanonautilus Olenekian 1.7889 0.0947 montpelierensis Ammonoids Glavercolumbites Glaber Olenekian 1.5051 -0.1890 Ammonoids Glyptophiceras aequicostatus Olenekian 1.7987 0.1045 Ammonoids Guangxiceltites Admirabilis Olenekian 1.3979 -0.2963 Ammonoids Guangxiceras Inflata Olenekian 2.1293 0.4351 Ammonoids Guodunites hooveri Olenekian 2.1186 0.4244 Ammonoids Guodunites Monneti Olenekian 2.2833 0.5891 Ammonoids Gurleyites Freboldi Olenekian 1.6721 -0.0221 Ammonoids Gyronites Recentis Olenekian 1.3979 -0.2963 Ammonoids Gyronites Superior Olenekian 1.8751 0.1809 Ammonoids Hanielites Angulus Olenekian 1.3979 -0.2963 Ammonoids Hanielites Carinatitabulatus Olenekian 1.3522 -0.3420

240 Size Normalized Size Clade Species Stage (log10 mm) (log10 mm) Ammonoids Hanielites Elegans Olenekian 1.3711 -0.3231 Ammonoids Hanielites Gracilus Olenekian 1.5682 -0.1260 Ammonoids Hebeisenites Compressus Olenekian 1.2041 -0.4901 Ammonoids Hebeisenites Evolutus Olenekian 1.3979 -0.2963 Ammonoids Hebeisenites Varians Olenekian 1.3892 -0.3050 Ammonoids Hedenstroemia Augusta Olenekian 1.8261 0.1319 Ammonoids Hedenstroemia Hedenstroemi Olenekian 2.3424 0.6482 Ammonoids Hellenites Elegans Olenekian 1.3802 -0.3140 Ammonoids Hellenites Idahoense Olenekian 1.5855 -0.1087 Ammonoids Hemilecanites Discus Olenekian 1.4150 -0.2792 Ammonoids Hemilecanites Fastigatus Olenekian 1.4698 -0.2244 Ammonoids Hemilecanites Paradiscus Olenekian 1.2304 -0.4637 Ammonoids Hemiprionites Butleri Olenekian 1.9379 0.2437 Ammonoids Hemiprionites Garwoodi Olenekian 1.6990 0.0048 Ammonoids Hemiprionites katoi Olenekian 1.6021 -0.0921 Ammonoids Hemiprionites Klugi Olenekian 1.8976 0.2034 Ammonoids Hemiprionites kuharanus Olenekian 1.5623 -0.1319 Ammonoids Hemiprionites morianus Olenekian 1.5250 -0.1692 Ammonoids Hemiprionites sawatanus Olenekian 1.5563 -0.1379 Ammonoids Hemiprionites shikokuensis Olenekian 1.4150 -0.2792 Ammonoids Hemiprionites tahoensis Olenekian 1.5682 -0.1260 Ammonoids Idahocolumbites Cheneyi Olenekian 1.5441 -0.1501 Ammonoids Inyoites Krystyni Olenekian 2.1106 0.4164 Ammonoids Inyoites Oweni Olenekian 1.8513 0.1571 Ammonoids Isculitoides Hammondi Olenekian 1.3802 -0.3140 Ammonoids Isculitoides Minor Olenekian 1.4771 -0.2171 Ammonoids Isculitoides Originis Olenekian 1.5563 -0.1379 Ammonoids Isculitoides Seyedemamii Olenekian 1.6057 -0.0885 Ammonoids Jingyaceras Bellum Olenekian 1.4472 -0.2470 Ammonoids Juvenites Dieneri Olenekian 1.2788 -0.4154 Ammonoids Juvenites Kraffti Olenekian 1.1139 -0.5803 Ammonoids Juvenites Laevis Olenekian 1.4771 -0.2171 Ammonoids Juvenites Procurvus Olenekian 1.3010 -0.3932 Ammonoids Juvenites septentrionalis Olenekian 1.2945 -0.3997 Ammonoids Kashmirites Borealis Olenekian 1.7404 0.0462 Ammonoids Kashmirites Columbianus Olenekian 1.4624 -0.2318 Ammonoids Kashmirites Evolutus Olenekian 1.7482 0.0540 Ammonoids Kashmirites Guangxiense Olenekian 1.7559 0.0617 Ammonoids Kashmirites Kapila Olenekian 1.5563 -0.1379 Ammonoids Kazakhstanites Dolnapensis Olenekian 1.4955 -0.1987 Ammonoids Keyserlingites Subrobustus Olenekian 1.7924 0.0982 Ammonoids Lanceolites Bicarinatus Olenekian 1.6990 0.0048 Ammonoids Lanceolites Compactus Olenekian 1.8513 0.1571 Ammonoids Larenites Reticulatus Olenekian 1.9542 0.2600 Ammonoids Leiophyllites pitamaha Olenekian 1.4639 -0.2303 Ammonoids Leiophyllites pradyumna Olenekian 1.7348 0.0406 Ammonoids Leiophyllites Variabilis Olenekian 1.6073 -0.0868 Ammonoids Leyeceras Rothi Olenekian 1.8751 0.1809 Ammonoids Lingyunites Discoides Olenekian 1.7959 0.1017 Ammonoids Marcouxia Astakhovi Olenekian 1.8195 0.1253 Ammonoids Meekoceras Graciltatis Olenekian 2.0864 0.3922

241 Size Normalized Size Clade Species Stage (log10 mm) (log10 mm) Ammonoids Meekoceras Haydeni Olenekian 1.7243 0.0301 Ammonoids Meekoceras japonicum Olenekian 1.6902 -0.0040 Ammonoids Meekoceras orientale Olenekian 1.6532 -0.0410 Ammonoids Melagathiceras Crassum Olenekian 1.4624 -0.2318 Ammonoids Melagathiceras Depressum Olenekian 1.2553 -0.4389 Ammonoids Mesohedenstroemia Planata Olenekian 1.5966 -0.0976 Ammonoids Mesohenstroemia Olenekian 1.7482 0.0540 Kwangsiana Ammonoids Metadagnoceras Amidii Olenekian 2.1348 0.4406 Ammonoids Metadagnoceras freemani Olenekian 1.6794 -0.0148 Ammonoids Metadagnoceras Pulchrum Olenekian 1.8129 0.1187 Ammonoids Metussuria Olenekian 1.9823 0.2881 Ammonoids Mojsvaroceras frenchi Olenekian 1.7818 0.0876 Ammonoids Monacanthites Monoceros Olenekian 1.3222 -0.3720 Ammonoids Nanningites Tientungense Olenekian 1.3802 -0.3140 Ammonoids Neocolumbites Olenekian 1.5051 -0.1890 Ammonoids Neomeekoceras Scalariforme Olenekian 1.4472 -0.2470 Ammonoids Olenikites Bombus Olenekian 1.5185 -0.1757 Ammonoids Olenikites Canadensis Olenekian 1.4771 -0.2171 Ammonoids Olenikites Spiniplicatus Olenekian 1.3617 -0.3325 Ammonoids Olenikites Triton Olenekian 1.4771 -0.2171 Ammonoids Olenkikites Subtilis Olenekian 1.3979 -0.2963 Ammonoids Owenites Carpenteri Olenekian 1.3617 -0.3325 Ammonoids Owenites Koeneni Olenekian 1.8195 0.1253 Ammonoids Owenites shimizui Olenekian 1.3222 -0.3720 Ammonoids Owenites simplex Olenekian 1.5999 -0.0943 Ammonoids Oxyussuria Canadensis Olenekian 1.5185 -0.1757 Ammonoids Palaeokazakhstanites Olenekian 1.2695 -0.4247 ussuriensis Ammonoids Paragoceras Mediterraneum Olenekian 1.5363 -0.1579 Ammonoids Paragoceras Olenekian 1.2041 -0.4901 Ammonoids Paranannites Aspenensis Olenekian 1.4150 -0.2792 Ammonoids Paranannites Dubius Olenekian 1.1614 -0.5328 Ammonoids Paranannites Ovum Olenekian 1.7924 0.0982 Ammonoids Paranannites Spathi Olenekian 1.5563 -0.1379 Ammonoids Paranannites Subangulosus Olenekian 1.2041 -0.4901 Ammonoids Paranannites Olenekian 1.1139 -0.5803 Ammonoids Paranorites Jenksi Olenekian 1.7559 0.0617 Ammonoids Pleuronautilus idahoensis Olenekian 2.0212 0.3270 Ammonoids Popovites Borealis Olenekian 1.6532 -0.0410 Ammonoids Popovites Occidentalis Olenekian 1.4771 -0.2171 Ammonoids Preflorianites Radians Olenekian 1.9138 0.2196 Ammonoids Preflorianites Sulioticus Olenekian 1.6435 -0.0507 Ammonoids Prenkites Malsorensis Olenekian 1.4150 -0.2792 Ammonoids Prionites Hollandi Olenekian 1.9294 0.2352 Ammonoids Prionolobus Lucinus Olenekian 1.3979 -0.2963 Ammonoids Procarnites Acutus Olenekian 2.0187 0.3245 Ammonoids Procarnites kokeni Olenekian 1.7559 0.0617 Ammonoids Procarnites Modestus Olenekian 1.7853 0.0911 Ammonoids Procarnites Skanderbegis Olenekian 1.9191 0.2249 Ammonoids Procarnites Olenekian 1.3274 -0.3668

242 Size Normalized Size Clade Species Stage (log10 mm) (log10 mm) Ammonoids Procolumbites Karataucicus Olenekian 1.6767 -0.0175 Ammonoids Procurvoceratites Ampliatus Olenekian 1.3979 -0.2963 Ammonoids Procurvoceratites Pygmaeus Olenekian 1.2788 -0.4154 Ammonoids Procurvoceratites Tabulatus Olenekian 1.6128 -0.0814 Ammonoids Proharpoceras Olenekian 1.4914 -0.2028 Carinatitabulatum Ammonoids Proptychitoides Decipiens Olenekian 1.9435 0.2493 Ammonoids Proptychitoides Mahomedis Olenekian 2.0212 0.3270 Ammonoids Proptychitoides Trigonalis Olenekian 1.8921 0.1979 Ammonoids Prosphingites austini Olenekian 1.5378 -0.1564 Ammonoids Prosphingites Czekanowskii Olenekian 1.6021 -0.0921 Ammonoids Prosphingites Spathi Olenekian 1.5051 -0.1890 Ammonoids Protropites Hilmi Olenekian 1.5051 -0.1890 Ammonoids Pseudaspenites Evolutus Olenekian 1.4548 -0.2394 Ammonoids Pseudaspenites Layeriformis Olenekian 1.4472 -0.2470 Ammonoids Pseudaspenites Tenuis Olenekian 1.6857 -0.0085 Ammonoids Pseudaspidites Muthianus Olenekian 2.1139 0.4197 Ammonoids Pseudocageceras Plicatum Olenekian 1.7404 0.0462 Ammonoids Pseudoceltites Olenekian 1.7709 0.0767 Angustecostatus Ammonoids Pseudoflemingites Olenekian 1.9395 0.2453 Goudemandi Ammonoids Pseudosageceras Olenekian 2.2553 0.5611 Longilobatum Ammonoids Pseudosageceras Olenekian 1.6415 -0.0527 multilobatum Ammonoids Pseudosageceras Olenekian 1.4871 -0.2071 Ammonoids Radioprionites abrekensis Olenekian 1.8248 0.1306 Ammonoids Rohillites Bruehwileri Olenekian 1.7404 0.0462 Ammonoids Rohillites laevis Olenekian 1.6964 0.0022 Ammonoids Rohillites Sobolevi Olenekian 1.7324 0.0382 Ammonoids Rohillites Olenekian 1.8513 0.1571 Ammonoids Shamaraites schamarensis Olenekian 1.4742 -0.2200 Ammonoids Stacheites Concavus Olenekian 1.6021 -0.0921 Ammonoids Stacheites Floweri Olenekian 1.7782 0.0840 Ammonoids Stacheites Undatus Olenekian 1.6980 0.0038 Ammonoids Subcolumbites Europaeus Olenekian 1.7404 0.0462 Ammonoids Subcolumbites Perrini-smithi Olenekian 1.7324 0.0382

Ammonoids Submeekoceras Olenekian 1.9868 0.2926 Mushbachanum Ammonoids Subvishnuites Stokesi Olenekian 1.7634 0.0692 Ammonoids Sulioticeras Intermedium Olenekian 1.6532 -0.0410 Ammonoids Svalbardiceras Chowadei Olenekian 1.6902 -0.0040 Ammonoids Svalbardiceras Freboldi Olenekian 1.5315 -0.1627 Ammonoids Tardicolumbites Olenekian 1.3802 -0.3140 Tardicolumbus Ammonoids Tellerites Furcatus Olenekian 1.3174 -0.3768 Ammonoids Thermalites Canadensis Olenekian 1.5051 -0.1890 Ammonoids Thermalites Needhami Olenekian 1.3802 -0.3140 Ammonoids Tirolites Cassianus Olenekian 1.6219 -0.0723

243 Size Normalized Size Clade Species Stage (log10 mm) (log10 mm) Ammonoids Tirolites Mojsisovics Olenekian 1.8129 0.1187 Ammonoids Tirolites Smithi Olenekian 1.8129 0.1187 Ammonoids Trematoceras subcampanile Olenekian 2.0607 0.3665 Ammonoids Urdyceras Insolitus Olenekian 1.6721 -0.0221 Ammonoids Ussuriflemingites Olenekian 2.0899 0.3957 primoriensis Ammonoids Kwangsiana Olenekian 1.9574 0.2633 Ammonoids Vickohlerites sundaicus Olenekian 1.6096 -0.0846 Ammonoids Wailiceras Aemulus Olenekian 1.8325 0.1383 Ammonoids Wasatchites Deleeni Olenekian 1.7160 0.0218 Ammonoids Wasatchites Perrini Olenekian 2.1761 0.4819 Ammonoids Wasatchites Procurvus Olenekian 1.7559 0.0617 Ammonoids Wasatchites Tridentinus Olenekian 1.7324 0.0382 Ammonoids Weitschaticeras Concavum Olenekian 1.6021 -0.0921 Ammonoids Wyomingites Aplanatus Olenekian 1.8451 0.1509 Ammonoids Xenoceltites evolutus Olenekian 1.0969 -0.5973 Ammonoids Xenoceltites Gregoryi Olenekian 1.6532 -0.0410 Ammonoids Xenoceltites Pauciradiatus Olenekian 1.9085 0.2143 Ammonoids Xenoceltites Spitsbergensis Olenekian 1.8451 0.1509 Ammonoids Xenoceltites Subevolutus Olenekian 2.1150 0.4208 Ammonoids Xenoceltites Variocostatus Olenekian 1.9031 0.2089 Ammonoids Xiaoqiaoceras Involutus Olenekian 1.4472 -0.2470 Ammonoids Yvesgalleticeras Olenekian 1.6812 -0.0130 Montpelierense Ammonoids Yvesgalleticeras Raphaeli Olenekian 1.7586 0.0644 Ammonoids Zenoites Arcticus Olenekian 1.2788 -0.4154 Ammonoids Acrochordiceras Carolinae Anisian 1.9085 0.2143 Ammonoids Acrochordiceras Portisi Anisian 1.6628 -0.0314 Ammonoids Amphipopanoceras Acutum Anisian 1.7404 0.0462 Ammonoids Amphipopanoceras Anisian 1.7782 0.0840 Inconstans Ammonoids Amphipopanoceras Medium Anisian 1.7404 0.0462 Ammonoids Amphipopanoceras Selwyni Anisian 1.7709 0.0767 Ammonoids Amphipopanoceras Tetsa Anisian 1.8513 0.1571 Ammonoids Anagymnites Anisian 2.1523 0.4581 Ammonoids Anagymnotoceras Anisian 1.6435 -0.0507 Columbianum Ammonoids Anagymnotoceras Ismidicus Anisian 1.9274 0.2332 Ammonoids Anagymnotoceras Tozeri Anisian 1.9031 0.2089 Ammonoids Anagymnotoceras Wrighti Anisian 2.0414 0.3472 Ammonoids Angymnotoceras Varium Anisian 1.7709 0.0767 Ammonoids Arctohungarites Liardensis Anisian 1.3617 -0.3325 Ammonoids Azarianites Bufonis Anisian 1.7782 0.0840 Ammonoids Balatonites Hexatuberculatus Anisian 1.9031 0.2089 Ammonoids Beyrichites Bipunctatus Anisian 1.8388 0.1447 Ammonoids Billingsites Cordeyi Anisian 2.0000 0.3058 Ammonoids Billingsites Escargueli Anisian 1.7782 0.0840 Ammonoids Brackites Spinosus Anisian 1.6684 -0.0258 Ammonoids Brackites Vogdesi Anisian 1.8451 0.1509 Ammonoids Buddhaites Hagei Anisian 2.1139 0.4197 Ammonoids Bulogites Mojsvari Anisian 1.9294 0.2352

244 Size Normalized Size Clade Species Stage (log10 mm) (log10 mm) Ammonoids Caucasites Mulleri Anisian 1.6990 0.0048 Ammonoids Ceccaceras Stecki Anisian 1.6990 0.0048 Ammonoids Chiratites Bituberculatus Anisian 1.7709 0.0767 Ammonoids Chiratites Retrospinosus Anisian 2.0969 0.4027 Ammonoids Columbisculites Maclearni Anisian 1.4314 -0.2628 Ammonoids Czekanowskites Anisian 1.4914 -0.2028 Acuteplicatus Ammonoids Czekanowskites Pinguis Anisian 1.4624 -0.2318 Ammonoids Discogymnites Hollandi Anisian 2.3802 0.6860 Ammonoids Discoptychites Megalodiscus Anisian 2.2672 0.5730 Ammonoids Dixieceras Lawsoni Anisian 1.9294 0.2352 Ammonoids Eogymnotoceras Beachi Anisian 1.7782 0.0840 Ammonoids Eogymnotoceras Deleeni Anisian 1.9777 0.2835 Ammonoids Eogymnotoceras Liardense Anisian 1.9085 0.2143 Ammonoids Epacrochordiceras Anisian 2.0575 0.3633 Ammonoids Eutomoceras Dunni Anisian 1.6484 -0.0458 Ammonoids Frechites Chischa Anisian 1.6532 -0.0410 Ammonoids Frechites Hamatus Anisian 1.9494 0.2552 Ammonoids Frechites Laqueatus Anisian 1.7404 0.0462 Ammonoids Garambergia Mackenzii Anisian 2.0000 0.3058 Ammonoids Grambergia Liardensis Anisian 1.9294 0.2352 Ammonoids Grambergia Mackenzii Anisian 2.0000 0.3058 Ammonoids Grambergia Nahwisi Anisian 1.8751 0.1809 Ammonoids Grambergia Tetsaensis Anisian 1.5051 -0.1890 Ammonoids Groenlandites Amplus Anisian 1.8451 0.1509 Ammonoids Groenlandites Canadensis Anisian 1.3802 -0.3140 Ammonoids Groenlandites Kummeli Anisian 1.2304 -0.4637 Ammonoids Groenlandites Silberlingi Anisian 1.0792 -0.6150 Ammonoids Anisian 1.6021 -0.0921 Ammonoids Gymnites Asseretoi Anisian 1.8838 0.1896 Ammonoids Gymnites Compressus Anisian 1.8451 0.1509 Ammonoids Gymnites Palmai Anisian 1.9774 0.2832 Ammonoids Gymnites Perplanus Anisian 1.8129 0.1187 Ammonoids Gymnites Procerus Anisian 1.6990 0.0048 Ammonoids Gymnites Rotelliformis Anisian 1.7782 0.0840 Ammonoids Gymnitest Religious Anisian 1.9408 0.2466 Ammonoids Gymnotoceras Smithi Anisian 1.8129 0.1187 Ammonoids Gymnotoceras Weitschati Anisian 2.0792 0.3850 Ammonoids Hollandites Dieneri Anisian 2.1761 0.4819 Ammonoids Hollandites Liardensis Anisian 1.8451 0.1509 Ammonoids Hollandites Macconnelli Anisian 1.6628 -0.0314 Ammonoids Hollandites Minor Anisian 1.6021 -0.0921 Ammonoids Hollandites Pelletieri Anisian 1.8451 0.1509 Ammonoids Hollandites Spivaki Anisian 1.6021 -0.0921 Ammonoids Hollandites Tozeri Anisian 1.5164 -0.1778 Ammonoids Hungarites Proponticus Anisian 1.5372 -0.1570 Ammonoids Intornites Canadensis Anisian 1.9542 0.2600 Ammonoids Intornites Intornatus Anisian 2.0000 0.3058 Ammonoids Intornites Mactaggarti Anisian 2.0792 0.3850 Ammonoids Intornites Williamsi Anisian 1.9956 0.3014 Ammonoids Japonites Readi Anisian 2.4249 0.7307

245 Size Normalized Size Clade Species Stage (log10 mm) (log10 mm) Ammonoids Japonites Wrighti Anisian 2.0792 0.3850 Ammonoids Leiophyllites Stoecklini Anisian 1.9108 0.2166 Ammonoids Leiophyllites Taramellii Anisian 1.8388 0.1447 Ammonoids Lenotropites Caurus Anisian 1.3010 -0.3932 Ammonoids Lenotropites Ellesmerensis Anisian 1.8195 0.1253 Ammonoids Lenotropites Tardus Anisian 1.7924 0.0982 Ammonoids Lenotropites Tricarinatus Anisian 1.4314 -0.2628 Ammonoids Lenotropites Undulatus Anisian 1.4771 -0.2171 Ammonoids Longobardites Murrayensis Anisian 1.9294 0.2352 Ammonoids Longobardites Parvus Anisian 1.8751 0.1809 Ammonoids Longobardites Zsigmondyi Anisian 1.6532 -0.0410 Ammonoids Marcouxites Spinifer Anisian 1.8451 0.1509 Ammonoids Nicomedites Arthaberi Anisian 2.0000 0.3058 Ammonoids Nicomedites Moderatus Anisian 1.9031 0.2089 Ammonoids Nicomedites Toulai Anisian 2.0374 0.3432 Ammonoids Norites Gondola Anisian 1.6675 -0.0267 Ammonoids Owenites Egrediens Anisian 1.6990 0.0048 Ammonoids Oxylongobardites Acutus Anisian 1.4082 -0.2860 Ammonoids Paraceratites Binodosus Anisian 1.6709 -0.0233 Ammonoids Paraceratites Winterbottomi Anisian 1.7993 0.1051 Ammonoids Paracrochordiceras Anisian 1.5563 -0.1379 Americanum Ammonoids Paracrochordiceras Benderi Anisian 1.6628 -0.0314 Ammonoids Paradanubites Shevyrevi Anisian 1.8539 0.1597 Ammonoids Paranevadites Anisian 1.2788 -0.4154 Ammonoids Parapinacoceras Damesi Anisian 1.6561 -0.0381 Ammonoids Parapopanoceras Malmgreni Anisian 1.6532 -0.0410 Ammonoids Parapopanoceras Torelli Anisian 1.2553 -0.4389 Ammonoids Parasageceras Discoidale Anisian 1.5595 -0.1346 Ammonoids Parasageceras Gracile Anisian 1.6990 0.0048 Ammonoids Pearylandites Perefrinus Anisian 2.0000 0.3058 Ammonoids Pearylandites Troelseni Anisian 1.4771 -0.2171 Ammonoids Platycuccoceras Anisian 1.3010 -0.3932 Ammonoids Pleurofrechites Lineatus Anisian 1.6990 0.0048 Ammonoids Pleurofrechites Subsidens Anisian 1.8451 0.1509 Ammonoids Proavites Hueffeli Anisian 1.8451 0.1509 Ammonoids Proptychitoides Hakki Anisian 2.2504 0.5562 Ammonoids Ptychites Anisian 1.6405 -0.0537 Ammonoids Ptychites Guloensis Anisian 1.8451 0.1509 Ammonoids Ptychites Hamatus Anisian 1.9777 0.2835 Ammonoids Ptychites Pauli Anisian 2.0865 0.3923 Ammonoids Ptychites Trochleaeformis Anisian 2.1139 0.4197 Ammonoids Ptychites Wrighti Anisian 1.7709 0.0767 Ammonoids Rieberites Transformis Anisian 2.0212 0.3270 Ammonoids Rieppelites Boletzkyi Anisian 1.8808 0.1866 Ammonoids Rieppelites Shevyrevi Anisian 1.7559 0.0617 Ammonoids Sageceras Walteri Anisian 1.9294 0.2352 Ammonoids Silberlingia Clarkei Anisian 1.5682 -0.1260 Ammonoids Silberlingia Cricki Anisian 2.0043 0.3101 Ammonoids Silberlingia Praecursor Anisian 1.8513 0.1571 Ammonoids Stenophyllites Kindlei Anisian 1.8573 0.1631

246 Size Normalized Size Clade Species Stage (log10 mm) (log10 mm) Ammonoids Stenopopanoceras Angulatum Anisian 1.7559 0.0617 Ammonoids Stenopopanoceras Celere Anisian 1.8062 0.1120 Ammonoids Stenopopanoceras Falcatum Anisian 1.6335 -0.0607 Ammonoids Stenopopanoceras Normale Anisian 1.8325 0.1383 Ammonoids Stenopopanoceras Obesum Anisian 1.6532 -0.0410 Ammonoids Sturia Sansovinii Anisian 2.5378 0.8436 Ammonoids Tetsaoceras Angulatum Anisian 1.4472 -0.2470 Ammonoids Tetsaoceras Hayesi Anisian 1.6232 -0.0709 Ammonoids Tozerites Polygyratus Anisian 1.3222 -0.3720 Ammonoids Tropigastrites Costatus Anisian 1.4472 -0.2470 Ammonoids Tropigastrites Lahontanus Anisian 1.6021 -0.0921 Ammonoids Tropigastrites Louderbacki Anisian 1.5682 -0.1260 Ammonoids Tropigymnites Anisian 1.3802 -0.3140 Ammonoids Tropigymnites Haueri Anisian 1.4771 -0.2171 Ammonoids Ussurites Arthaberi Anisian 1.9294 0.2352 Ammonoids Ussurites Cameroni Anisian 1.9031 0.2089 Ammonoids Ussurites Muskwa Anisian 1.7634 0.0692 Ammonoids Ussurites Spetsbergensis Anisian 1.9777 0.2835 Ammonoids Ussurites Yabei Anisian 2.0719 0.3777 Ammonoids Anolcites Angustus Ladinian 1.6990 0.0048 Ammonoids Anolcites Gemmatus Ladinian 1.5441 -0.1501 Ammonoids Anolcites Impolitus Ladinian 1.9031 0.2089 Ammonoids Anolcites Pipillatus Ladinian 1.6990 0.0048 Ammonoids Anolcites Politus Ladinian 1.6021 -0.0921 Ammonoids Anolcites Rasilis Ladinian 1.3617 -0.3325 Ammonoids Arctoptychites Lingulatus Ladinian 1.8692 0.1750 Ammonoids Arpadites Szaboi Ladinian 1.4478 -0.2464 Ammonoids Asklepioceras Altilis Ladinian 1.3802 -0.3140 Ammonoids Asklepioceras Exilis Ladinian 1.4624 -0.2318 Ammonoids Asklepioceras Laurenci Ladinian 1.6021 -0.0921 Ammonoids Beneckeia Buchi Ladinian 1.6021 -0.0921 Ammonoids Clionitites Venerabilis Ladinian 2.0414 0.3472 Ammonoids Daonella Lomelli Ladinian 1.4983 -0.1959 Ammonoids Canadensis Ladinian 1.8921 0.1979 Ammonoids Daxatina Laubei Ladinian 1.6435 -0.0507 Ammonoids Daxatina Megabrotheus Ladinian 1.6721 -0.0221 Ammonoids Drumoceras Anodosum Ladinian 1.4624 -0.2318 Ammonoids Drumoceras Tuberculatum Ladinian 1.5798 -0.1144 Ammonoids Eonathorstites Dieneri Ladinian 1.6021 -0.0921 Ammonoids Eoprotrachyceras Gibsoni Ladinian 1.7482 0.0540 Ammonoids Eoprotrachyceras Matutinum Ladinian 1.6021 -0.0921 Ammonoids Eosagenites Gethingi Ladinian 1.6021 -0.0921 Ammonoids Glaber Ladinian 1.8129 0.1187 Ammonoids Frankites Sutherlandi Ladinian 1.8129 0.1187 Ammonoids Gymnites Ladinian 2.1303 0.4361 Ammonoids Hungarites Inermis Ladinian 1.7404 0.0462 Ammonoids Indigirites Boehmi Ladinian 1.9031 0.2089 Ammonoids Indigirites Freboldi Ladinian 1.5682 -0.1260 Ammonoids Indigirites Stolleyi Ladinian 1.8028 0.1086 Ammonoids Indoceltites Transiens Ladinian 1.2788 -0.4154 Ammonoids Istreites Nanuk Ladinian 1.7160 0.0218

247 Size Normalized Size Clade Species Stage (log10 mm) (log10 mm) Ammonoids Leiophyllites Pitamaha Ladinian 1.5315 -0.1627 Ammonoids Liardites Whiteavesi Ladinian 1.6628 -0.0314 Ammonoids Lobites Ladinian 1.3979 -0.2963 Ammonoids Lobites Ellipticus Ladinian 1.7782 0.0840 Ammonoids Lobites Pacianus Ladinian 1.6128 -0.0814 Ammonoids Longobardites Ladinian 2.0607 0.3665 Ammonoids Longobardites Murrayensis Ladinian 1.1761 -0.5181 Ammonoids Maclearnoceras Ensio Ladinian 1.5051 -0.1890 Ammonoids Maclearnoceras Maclearni Ladinian 1.6990 0.0048 Ammonoids Megaphyllites Ladinian 1.7892 0.0950 Ammonoids Meginoceras Aylardi Ladinian 1.6628 -0.0314 Ammonoids Meginoceras Caurinium Ladinian 1.6021 -0.0921 Ammonoids Meginoceras Effervescens Ladinian 1.5563 -0.1379 Ammonoids Meginoceras Meginae Ladinian 1.6532 -0.0410 Ammonoids Meginoceras Tetsa Ladinian 1.7243 0.0301 Ammonoids Meginoceras Triviale Ladinian 1.7404 0.0462 Ammonoids Metatirolites Withrowl Ladinian 1.3010 -0.3932 Ammonoids Aonis Ladinian 1.7853 0.0911 Ammonoids Monophyllites Kieperti Ladinian 1.4833 -0.2109 Ammonoids Monophyllites Wengensis Ladinian 1.8451 0.1509 Ammonoids Muensterites Delicatulus Ladinian 1.9031 0.2089 Ammonoids Muensterites Glaciensis Ladinian 1.8751 0.1809 Ammonoids Muensterites Helenae Ladinian 1.3424 -0.3518 Ammonoids Nathorstites Macconnelli Ladinian 2.0000 0.3058 Ammonoids Nathorstites Maclearni Ladinian 1.9294 0.2352 Ammonoids Nitanoceras Compressum Ladinian 1.2788 -0.4154 Ammonoids Nitanoceras Selwyni Ladinian 1.5185 -0.1757 Ammonoids Otoarpadites Auritus Ladinian 1.6128 -0.0814 Ammonoids Paraceratites Binodosus Ladinian 1.7500 0.0558 Ammonoids Pleurofrechites Fellersi Ladinian 1.9243 0.2301 Ammonoids Procladiscites Ladinian 1.2435 -0.4507 Ammonoids Protrachyceras Ladinian 1.6232 -0.0709 Ammonoids Protrachyceras Sikanianum Ladinian 1.9445 0.2503 Ammonoids Ptychites Hamatus Ladinian 1.6812 -0.0130 Ammonoids Ptychites Pauli Ladinian 1.6496 -0.0446 Ammonoids Silenticeras Bamberdi Ladinian 1.6532 -0.0410 Ammonoids Silenticeras Gibsoni Ladinian 1.6021 -0.0921 Ammonoids Silenticeras Hatae Ladinian 1.6721 -0.0221 Ammonoids Silenticeras Liardense Ladinian 1.3424 -0.3518 Ammonoids Stenopopanoceras Transiens Ladinian 1.4723 -0.2219 Ammonoids Stolleyites Intermedium Ladinian 1.5682 -0.1260 Ammonoids Sympolycyclus Antiquus Ladinian 1.4771 -0.2171 Ammonoids Thanamites Parvus Ladinian 1.3617 -0.3325 Ammonoids Thanamites Schooleri Ladinian 1.5682 -0.1260 Ammonoids Tuchodiceras Costatum Ladinian 1.6902 -0.0040 Ammonoids Tuchodiceras Poseidon Ladinian 1.9191 0.2249 Ammonoids Zestoceras Cerastes Ladinian 1.6532 -0.0410 Ammonoids Zestoceras Enode Ladinian 1.6021 -0.0921 Ammonoids Zestoceras Nitidum Ladinian 1.6532 -0.0410 Ammonoids Acanthotropites Racklaensis Carnian 1.3617 -0.3325 Ammonoids Anatropites Ausoniformis Carnian 1.7404 0.0462

248 Size Normalized Size Clade Species Stage (log10 mm) (log10 mm) Ammonoids Anatropites Cascadensis Carnian 1.7782 0.0840 Ammonoids Anatropites Cupressus Carnian 1.6990 0.0048 Ammonoids Anatropites Maclearni Carnian 1.5441 -0.1501 Ammonoids Anatropites Pardoneti Carnian 1.6232 -0.0709 Ammonoids Anatropites Silberlingis Carnian 1.5682 -0.1260 Ammonoids Anatropites Sulfurensis Carnian 1.6721 -0.0221 Ammonoids Arctoarpadites Costatus Carnian 1.7160 0.0218 Ammonoids Arctosirenites Canadensis Carnian 1.6628 -0.0314 Ammonoids Arctosirenites Columbianus Carnian 1.5237 -0.1704 Ammonoids Austrotrachyceras Obesum Carnian 2.1614 0.4672 Ammonoids Bacchites Hyatti Carnian 1.6021 -0.0921 Ammonoids Badiotites Scapulatus Carnian 1.1761 -0.5181 Ammonoids Clionitites Arietinus Carnian 1.6990 0.0048 Ammonoids Clionitites Callazonensis Carnian 1.3979 -0.2963 Ammonoids Clionitites Reesidei Carnian 1.5441 -0.1501 Ammonoids Coroceras Carnian 1.2430 -0.4512 Ammonoids Coroceras Nasutum Carnian 1.6628 -0.0314 Ammonoids Daxatina Limpida Carnian 1.7782 0.0840 Ammonoids Discotropites Sandlingensis Carnian 1.4624 -0.2318 Ammonoids Discotropites Smithi Carnian 1.9542 0.2600 Ammonoids Discotropites Theron Carnian 1.8751 0.1809 Ammonoids Epiceratites Yukonensis Carnian 1.1139 -0.5803 Ammonoids Euisculites Krystyni Carnian 1.4771 -0.2171 Ammonoids Goniojuvavites Kellyi Carnian 1.9031 0.2089 Ammonoids Gonionotites Avarus Carnian 1.9777 0.2835 Ammonoids Gonionotites Nobilis Carnian 1.7924 0.0982 Ammonoids Griesbachites Auctoris Carnian 1.7404 0.0462 Ammonoids Gymnotropites Americanus Carnian 1.3979 -0.2963 Ammonoids Hadrothisbites Taylori Carnian 1.5911 -0.1031 Ammonoids Hisnitites Janmulleri Carnian 1.8451 0.1509 Ammonoids Homerites Semiglobosus Carnian 1.0792 -0.6150 Ammonoids Homeroceras Grandis Carnian 1.6232 -0.0709 Ammonoids Hoplotropites Auctus Carnian 1.5441 -0.1501 Ammonoids Hoplotropites Globosus Carnian 1.2304 -0.4637 Ammonoids Hoplotropites Intermedius Carnian 1.3424 -0.3518 Ammonoids Hopotropites Circumspinatus Carnian 1.6628 -0.0314 Ammonoids Indonesites Sphaericus Carnian 1.6232 -0.0709 Ammonoids Jovites Borealis Carnian 1.6435 -0.0507 Ammonoids Jovites Bosnensis Carnian 1.8062 0.1120 Ammonoids Jovites Ellipticus Carnian 1.5682 -0.1260 Ammonoids Leconteiceras Californicum Carnian 1.2788 -0.4154 Ammonoids Margarijuvavites Carlottensis Carnian 1.7634 0.0692 Ammonoids MArgaritropites Johnsoni Carnian 1.6902 -0.0040 Ammonoids Margaritropites Kokeni Carnian 1.5315 -0.1627 Ammonoids Neotenoceras Simplex Carnian 1.0414 -0.6528 Ammonoids Orthoceltites Belcheri Carnian 1.3979 -0.2963 Ammonoids Pamphagosirenites Pacificus Carnian 1.5185 -0.1757 Ammonoids Pamphagosirenites Carnian 1.4472 -0.2470 Pamphagus Ammonoids Parahauerites Carnian 1.3222 -0.3720 Ammonoids Paratropites Arcticus Carnian 1.7634 0.0692

249 Size Normalized Size Clade Species Stage (log10 mm) (log10 mm) Ammonoids Paratropites Sulfurensis Carnian 1.2304 -0.4637 Ammonoids Paratropites Teres Carnian 1.4472 -0.2470 Ammonoids Pleurotropites Carnian 1.5682 -0.1260 Ammonoids Pleurotropites Gabbi Carnian 1.6902 -0.0040 Ammonoids Pleurotropites Gracilis Carnian 1.6990 0.0048 Ammonoids Projuvavites Brockensis Carnian 1.3979 -0.2963 Ammonoids Projuvavites Strongi Carnian 1.5682 -0.1260 Ammonoids Sageceras Haidinergi Carnian 1.7676 0.0734 Ammonoids Sandlingites Oribasus Carnian 1.2788 -0.4154 Ammonoids Shastites Vulcanus Carnian 1.6021 -0.0921 Ammonoids Silenticeras Involutum Carnian 1.6021 -0.0921 Ammonoids Sirenites Nanseni Carnian 1.8513 0.1571 Ammonoids Sirenites Ovinus Carnian 1.7076 0.0134 Ammonoids Sirenites Serotinus Carnian 1.5798 -0.1144 Ammonoids Spirogmoceras Shastense Carnian 2.1139 0.4197 Ammonoids Stolleyites Carnian 1.5798 -0.1144 Ammonoids Striatosirenites Striatofalcatus Carnian 1.6990 0.0048

Ammonoids Styrites Dawsoni Carnian 1.3979 -0.2963 Ammonoids Sympolycyclus Gunningi Carnian 1.2304 -0.4637 Ammonoids Sympolycyclus Kellyi Carnian 1.5441 -0.1501 Ammonoids Tardeceras Parvum Carnian 1.3617 -0.3325 Ammonoids Thisbites Huxleyi Carnian 1.1761 -0.5181 Ammonoids Thisbites Selwyni Carnian 1.4771 -0.2171 Ammonoids Trachyceras Aonoides Carnian 1.9542 0.2600 Ammonoids Trachyceras Desatoyense Carnian 1.9031 0.2089 Ammonoids Trachysagenites Carnian 1.8451 0.1509 Ammonoids Trachystenoceras Gabbi Carnian 1.6232 -0.0709 Ammonoids Traskites Carnian 1.2041 -0.4901 Ammonoids Tropiceltites Pacificus Carnian 1.3979 -0.2963 Ammonoids Tropites Bufonis Carnian 1.6435 -0.0507 Ammonoids Tropites Dilleri Carnian 1.5315 -0.1627 Ammonoids Tropites Izardi Carnian 1.5441 -0.1501 Ammonoids Tropites Keliformis Carnian 1.6021 -0.0921 Ammonoids Tropithisbites Densicostatus Carnian 1.4771 -0.2171 Ammonoids Yakutosirenites Pentastichus Carnian 1.3979 -0.2963 Ammonoids Acanthodrepanites Dieneri Norian 1.6990 0.0048 Ammonoids Acathinites Magnificus Norian 1.6532 -0.0410 Ammonoids Alloclionites Dieneri Norian 1.3222 -0.3720 Ammonoids Alloclionites Jeanneti Norian 1.6021 -0.0921 Ammonoids Alloclionites Welteri Norian 1.6532 -0.0410 Ammonoids Brouwerites Stotti Norian 1.8451 0.1509 Ammonoids Clionitites Laevis Norian 1.4472 -0.2470 Ammonoids Clionitites Punctulatus Norian 1.4771 -0.2171 Ammonoids Cyrtopleurites Bicrenatus Norian 1.4624 -0.2318 Ammonoids Cytropleurites Hersiliae Norian 1.4914 -0.2028 Ammonoids Didymites Quenstedti Norian 1.7782 0.0840 Ammonoids Dimorphites Pardonetiensis Norian 1.7924 0.0982 Ammonoids Dimorphotoceras Arctum Norian 1.4314 -0.2628 Ammonoids Dimorphotoceras Caurinium Norian 1.6990 0.0048 Ammonoids Diphyllites Neojurensis Norian 1.9864 0.2922

250 Size Normalized Size Clade Species Stage (log10 mm) (log10 mm) Ammonoids Discomalayites Carinatus Norian 1.6990 0.0048 Ammonoids Discophyllites Ebneri Norian 1.7634 0.0692 Ammonoids Discostyrites Ireneaus Norian 1.3010 -0.3932 Ammonoids Distichites Gethingi Norian 2.1303 0.4361 Ammonoids Drepanites Rutherfordi Norian 1.8129 0.1187 Ammonoids Dryojuvavites Orchardi Norian 1.7243 0.0301 Ammonoids Eosteinmannites Nitidus Norian 1.6021 -0.0921 Ammonoids Eosteinmannites Ursensis Norian 1.7404 0.0462 Ammonoids Epijuvavites Transiens Norian 1.8451 0.1509 Ammonoids Episculites Wrighti Norian 1.3010 -0.3932 Ammonoids Gonionotites Gethingi Norian 1.6021 -0.0921 Ammonoids Gonionotites Rarus Norian 1.9345 0.2403 Ammonoids Gonionotites Scapulatus Norian 2.2041 0.5099 Ammonoids Griesbachites Borealis Norian 2.0414 0.3472 Ammonoids Griesbachites Humi Norian 1.7404 0.0462 Ammonoids Griesbachites Laevis Norian 1.7782 0.0840 Ammonoids Griesbachites Pinensis Norian 1.8751 0.1809 Ammonoids Griesbachites Selwyni Norian 1.9138 0.2196 Ammonoids Griesbachites Spiekeri Norian 1.7924 0.0982 Ammonoids Guembelites clavatus Norian 1.7924 0.0982 Ammonoids Guembelites Jandianus Norian 1.9085 0.2143 Ammonoids Hauerites Astrictus Norian 1.7782 0.0840 Ammonoids Hauerites Piceus Norian 2.2430 0.5488 Ammonoids Helictites Pacalis Norian 1.4314 -0.2628 Ammonoids Heraclites Canadensis Norian 1.6990 0.0048 Ammonoids Himavatites Norian 1.9294 0.2352 Ammonoids Himavatites Apinnatus Norian 1.9542 0.2600 Ammonoids Himavatites Multiauritus Norian 1.9294 0.2352 Ammonoids Himavatites Planiplicatus Norian 1.9294 0.2352 Ammonoids Indojuvavites Brunneus Norian 1.9138 0.2196 Ammonoids Indojuvavites Falcatus Norian 1.7404 0.0462 Ammonoids Indojuvavites Laurieri Norian 1.6021 -0.0921 Ammonoids Juvavites Biornatus Norian 1.6232 -0.0709 Ammonoids Juvavites Concretus Norian 1.9542 0.2600 Ammonoids Juvavites Gibbosus Norian 1.8129 0.1187 Ammonoids Juvavites Levigatus Norian 1.7118 0.0176 Ammonoids Juvavites Magnus Norian 2.0000 0.3058 Ammonoids Juvavites Subangulatus Norian 1.9912 0.2970 Ammonoids Juvavtites Levigatus Norian 1.8451 0.1509 Ammonoids Malayites Bococki Norian 1.8451 0.1509 Ammonoids Malayites Dawsoni Norian 2.1139 0.4197 Ammonoids Mesohimavatites Norian 2.1761 0.4819 Columbianus Ammonoids Metaclionites Taylori Norian 1.3979 -0.2963 Ammonoids Metathisbites Dawsoni Norian 1.3010 -0.3932 Ammonoids Metathisbites Griphus Norian 1.6532 -0.0410 Ammonoids Neohimavatites Peregrinus Norian 1.6990 0.0048 Ammonoids Norosirenites Krystyni Norian 1.8129 0.1187 Ammonoids Omojuvavites Fuscus Norian 1.7634 0.0692 Ammonoids Omojuvavites Norian 1.7782 0.0840 Magnumbilicatus

251 Size Normalized Size Clade Species Stage (log10 mm) (log10 mm) Ammonoids Omojuvavites Minor Norian 1.5682 -0.1260 Ammonoids Omojuvavites Rostratus Norian 1.6532 -0.0410 Ammonoids Omojuvavites Ventroplicatus Norian 1.6990 0.0048 Ammonoids Paragymnites Symmertricus Norian 1.1761 -0.5181 Ammonoids Parathisbites Oineus Norian 1.6128 -0.0814 Ammonoids Parisculites Mundus Norian 1.3522 -0.3420 Ammonoids Phormedites Juvavicus Norian 1.5051 -0.1890 Ammonoids Pinacoceras Indent Norian 1.4472 -0.2470 Ammonoids Pleurodistichites Hindei Norian 1.3010 -0.3932 Ammonoids Pseudocardioceras Acutum Norian 1.4771 -0.2171 Ammonoids Pseudocardioceras Idunae Norian 1.4771 -0.2171 Ammonoids Pseudosirenites Falcatus Norian 1.6990 0.0048 Ammonoids Pseudosirenites Pardoneti Norian 1.7404 0.0462 Ammonoids Pterosirenites Auritus Norian 1.9294 0.2352 Ammonoids Racophylites Debilis Norian 1.7782 0.0840 Ammonoids Stikinoceras Kerri Norian 1.6435 -0.0507 Ammonoids Styrites Communis Norian 1.1139 -0.5803 Ammonoids Thisbites Custi Norian 1.4771 -0.2171 Ammonoids Thisbites Petralis Norian 1.3010 -0.3932 Ammonoids Thisbites Robustus Norian 1.3979 -0.2963 Ammonoids Tibetitid Indent Norian 1.7404 0.0462 Ammonoids Tornquistites Transiens Norian 1.3979 -0.2963 Ammonoids Tropiceltites Columbianus Norian 1.5441 -0.1501 Ammonoids Tropiceltites Inflatus Norian 1.3222 -0.3720 Ammonoids Wangoceras Pax Norian 1.6532 -0.0410

252 APPENDIX D: Species-level conodont size data from the Catalogue of Conodonts (Chapter 3)

FAD Age LAD Age Size Species FAD Stage LAD Stage (Ma) (Ma) (log10 mm) brevis Floian 473.85 473.85 -0.2974 Acodus deltatus deltatus Floian Floian 473.85 473.85 -0.3680 Acodus deltatus longibasis Floian Floian 473.85 473.85 0.0113 Acodus deltatus tortus Floian Floian 473.85 473.85 0.1164 Acodus emanuelensis Floian Floian 473.85 473.85 -0.0459 Acodus erectus Floian Floian 473.85 473.85 -0.3383 Acodus erectus Floian Floian 473.85 473.85 -0.5765 Acodus gladiatus Floian 473.85 468.65 -0.4752 Acodus housensis Tremadocian Floian 481.55 481.55 -0.3175 Acodus sweeti Floian Floian 473.85 473.85 -0.3735 Acodus transitans Floian Floian 473.85 473.85 -0.0063 Acontiodus lavadamensis Tremadocian Floian 481.55 481.55 -0.7038 complicatus Katian 449.1 449.1 -0.1728 Amorphognathus falodiformis Tremadocian Floian 473.85 473.85 -0.5745 Amorphognathus inaequalis Darriwilian 462.85 462.85 -0.1414 Amorphognathus ordovicius Sandbian Hirnantian 449.1 444.3 -0.1823 Amorphognathus superbus Sandbian Katian 449.1 449.1 0.0927 Amorphognathus tvaerensis Darriwilian Katian 462.85 449.1 0.0837 Amorphognathus variabilis Dapingian Darriwilian 462.85 462.85 0.0445 Anchignathodus minutus 327.05 270.55 -0.1430 Anchignathodus typicalis Changhsingian Induan 253.2 251.7 -0.1444 ioides Frasnian Frasnian 377.45 377.45 0.0755 Ancyrodella rotundiloba Frasnian Frasnian 377.45 377.45 0.3074 rotundiloba Ancyrodella rotundiloba alata Frasnian Frasnian 377.45 377.45 0.0312 Ancyrodella rotundiloba Frasnian Frasnian 377.45 377.45 0.0261 bindosa Ancyrodelloides asymmetricus Lochkovian Lochkovian 415 415 0.2809 Ancyrodelloides carlsi Lochkovian Lochkovian 415 415 -0.1523 Ancyrodelloides delta Lochkovian Lochkovian 415 415 0.1795 Ancyrodelloides eleanorae Lochkovian Lochkovian 415 415 -0.0082 Ancyrodelloides kutscheri Lochkovian Lochkovian 415 415 0.1160 Ancyrodelloides limbacarinatus Lochkovian Lochkovian 415 415 0.1508 Ancyrodelloides omus Lochkovian Lochkovian 415 415 0.1204 Ancyrodelloides transitans Lochkovian Pragian 415 409.2 0.2052 Ancyrodelloides trigonicus Lochkovian Pragian 415 409.2 0.3087 asymmetricus Frasnian Frasnian 377.45 377.45 0.2142 Ancyrognathus bifurcatus Famennian Famennian 365.55 365.55 0.2148 Ancyrognathus calvini Frasnian Frasnian 377.45 377.45 0.0195 Ancyrognathus cryptus Frasnian Frasnian 377.45 377.45 -0.0180 Ancyrognathus irregularis Frasnian Frasnian 377.45 377.45 0.2449 Ancyrognathus sinelamina Frasnian Famennian 377.45 365.55 0.3239 Ancyrognathus symmetricus Famennian Famennian 365.55 365.55 0.2163 Ancyrognathus triangularis Frasnian Frasnian 377.45 377.45 -0.0770 Ancyrolepis cruciformis Frasnian Famennian 365.55 365.55 0.1017 Ancyrolepis walliseri Frasnian Famennian 385.2 385.2 -0.2708

253 FAD Age LAD Age Size Species FAD Stage LAD Stage (Ma) (Ma) (log10 mm) Aphelognathus divergens Katian Hirnantian 449.1 444.3 0.0032 Aphelognathus floweri Katian Hirnantian 449.1 444.3 0.1103 Aphelognathus grandis Sandbian Hirnantian 455.7 449.1 0.1101 Aphelognathus Darriwilian Katian 455.7 449.1 -0.5026 kimmswickensis Aphelognathus politus Katian Katian 449.1 449.1 0.2234 Aphelognathus pyramidalis Katian Hirnantian 449.1 444.3 -0.1091 Aphelognathus rhodesi Darriwilian Katian 449.1 449.1 -0.2023 Aphelognathus shatzeri Katian Hirnantian 449.1 444.3 -0.4749 Aphelognathus shoshonensis Katian Katian 449.1 449.1 -0.2542 Aulacognathus bullatus Aeronian Homerian 435.95 435.95 0.1658 Aulacognathus ceratoides Aeronian Homerian 435.95 435.95 0.1123 Aulacognathus kuehni Aeronian Homerian 435.95 435.95 0.2247 Aulacognathus latus Aeronian Homerian 435.95 435.95 0.1821 alobatus Darriwilian Katian 462.85 449.1 0.2036 Baltoniodus crassulus Floian Floian 473.85 473.85 -0.6381 Baltoniodus gerdae Darriwilian Katian 462.85 449.1 0.1252 Baltoniodus navis Dapingian Dapingian 468.65 468.65 -0.2871 Baltoniodus prevariabilis Floian Dapingian 462.85 462.85 -0.2574 Baltoniodus triangularis Dapingian Dapingian 468.65 468.65 -0.3999 Baltoniodus variabilis Darriwilian Katian 462.85 449.1 0.2593 Belodina arca Sandbian Katian 455.7 449.1 -0.2827 Belodina calciprominens Katian Hirnantian 455.7 444.3 -0.3864 Belodina compressa Darriwilian Sandbian 462.85 455.7 -0.2410 Belodina confluens Sandbian Katian 455.7 449.1 -0.2204 Belodina monitorensis Dapingian Katian 462.85 449.1 -0.2662 Belodina stonei Katian Hirnantian 449.1 444.3 -0.2156 Bispathodus aculeatus aculeatus Famennian 365.55 352.8 0.1398

Bispathodus aculeatus Famennian Tournaisian 365.55 352.8 0.0848 anteposicornis Bispathodus aculeatus plumulus Famennian Tournaisian 365.55 352.8 -0.0356

Bispathodus bispathodus Frasnian Famennian 365.55 365.55 -0.1113 Bispathodus costatus Famennian Tournaisian 365.55 352.8 0.2159 Bispathodus jugosus Frasnian Famennian 365.55 365.55 0.2424 Bispathodus spinulicostatus Famennian Tournaisian 365.55 352.8 0.2921 Bispathodus stabilis Famennian Tournaisian 365.55 352.8 0.0097 Bispathodus ultimus Famennian Famennian 365.55 365.55 0.0792 Bispathodus ziegleri Famennian Famennian 365.55 365.55 0.2100 Cahabagnathus carnesi Darriwilian Darriwilian 462.85 462.85 -0.2937 Cahabagnathus chazyensis Darriwilian Darriwilian 462.85 462.85 -0.1529 Cahabagnathus friendsvillensis Darriwilian Darriwilian 462.85 462.85 -0.0786 Cahabagnathus sweeti Darriwilian Darriwilian 462.85 462.85 -0.0334 Cahabagnathus sweeti Darriwilian Darriwilian 462.85 462.85 0.0990 duodactylus Darriwilian Darriwilian 462.85 462.85 -0.1158 Clavohamulus elongatus Tremadocian Floian 481.55 481.55 -0.5430 Clavohamulus hintzei Tremadocian Floian 481.55 481.55 -0.6494 Clavohamulus primitius Tremadocian Floian 481.55 481.55 -0.4632 Cornudus bergstroemi Tremadocian Hirnantian 473.85 444.3 -0.2925 Cornudus longibasis Tremadocian Hirnantian 473.85 444.3 -0.1937

254 FAD Age LAD Age Size Species FAD Stage LAD Stage (Ma) (Ma) (log10 mm) Cornudus montanaroae Katian Hirnantian 449.1 444.3 -0.3163 coloradoensis Moscovian 319.2 319.2 -0.3656 Diplognathodus edentulus Kasimovian 319.2 311.1 -0.2708 Diplognathodus ellipticus Gzhelian Sakmarian 311.1 305.35 -0.3840 Diplognathodus expansus 301.3 297.2 -0.4730 Diplognathodus illinoisensis Moscovian Kasimovian 297.2 284.7 -0.3597 Diplognathodus moorei Asselian Gzhelian 297.2 275.8 -0.6581 Diplognathodus Capitanian Wuchiapingian 311.1 305.35 -0.2568 movschovitschi Diplognathodus oertlii Wordian 301.3 297.2 -0.5092 Diplognathodus orphanus Moscovian Moscovian 257.05 257.05 -0.2680 Diplognathodus sicilianus Wordian Wordian 266.95 266.95 -0.0625 dubius Tournaisian Visean 311.1 311.1 0.1276 Doliognathus latus Tournaisian Visean 266.95 266.95 0.3479 Drepanodus arcuatus Tremadocian Floian 352.8 352.8 -0.1577 Drepanodus sculponea Tremadocian Floian 352.8 352.8 0.1585 Declinognathodus lateralis Bashkirian Moscovian 481.55 468.65 -0.1783 Declinognathodus noduliferus Bashkirian Moscovian 481.55 468.65 -0.1220 Drepanodus arcuatus Tremadocian Floian 473.85 473.85 -0.1971 Drepanoistodus basiovalis Floian Dapingian 468.65 468.65 -0.1862 Drepanoistodus forceps Floian Dapingian 468.65 468.65 -0.3835 Drepanoistodus forceps Floian Dapingian 468.65 468.65 -0.2148 Eognathodus bipennatus Eifelian Givetian 390.5 385.2 0.0949 Eognathodus secus Lochkovian Emsian 409.2 409.2 0.2087 Eognathodus sulcatus Lochkovian Emsian 409.2 409.2 0.2442 Eognathodus trilinearis Lochkovian Emsian 409.2 400.45 0.1357 Eoplacognathus elongatus Darriwilian Sandbian 462.85 455.7 0.0176 Eoplacognathus foliaceus Dapingian Dapingian 462.85 462.85 -0.1200 Eoplacognathus lindstroemi Floian Darriwilian 462.85 462.85 0.0388 Eoplacognathus reclinatus Dapingian Dapingian 462.85 462.85 0.0333 Eoplacognathus robustus Dapingian Dapingian 462.85 462.85 -0.0057 Eoplacognathus suecicus Dapingian Dapingian 462.85 462.85 -0.0159 Eotaphrus bultyncki Visean Visean 352.8 352.8 -0.0257 Eotaphrus burlingtonensis Visean Visean 352.8 352.8 0.0388 Eotaphrus evae Visean Visean 352.8 352.8 -0.0179 Epigondolella abneptis Carnian Norian 231.5 218.25 -0.1714 Epigondolella angusta Carnian Carnian 231.5 231.5 -0.1553 Epigondolella bidentata Norian Norian 218.25 218.25 -0.2631 Epigondolella cierensis Ladinian Ladinian 238.5 238.5 -0.1825 Epigondolella deibeli Carnian Norian 231.5 218.25 -0.2834 Epigondolella echinata Norian Norian 218.25 218.25 -0.2999 Epigondolella hungarica Ladinian Norian 238.5 218.25 -0.1382 Epigondolella japonica Norian Norian 218.25 218.25 -0.3401 Epigondolella misiki Carnian Carnian 231.5 231.5 -0.4286 Epigondolella mosheri Norian Norian 218.25 218.25 -0.3029 Epigondolella mostleri Carnian Carnian 238.5 238.5 -0.4265 Epigondolella multidentata Norian Norian 218.25 218.25 -0.0884 Epigondolella mungoensis Ladinian Carnian 238.5 231.5 -0.1228 Epigondolella nodosa Carnian Norian 231.5 218.25 -0.2208 Epigondolella parva Carnian Carnian 231.5 231.5 -0.3316 Epigondolella permica Carnian Norian 231.5 218.25 -0.3688

255 FAD Age LAD Age Size Species FAD Stage LAD Stage (Ma) (Ma) (log10 mm) Epigondolella postera Norian Norian 218.25 218.25 -0.3823 Epigondolella postera hayashii Norian Norian 218.25 218.25 -0.1199 Epigondolella primitia Carnian Norian 231.5 218.25 -0.0928 Epigondolella pseudodiebeli Carnian Norian 231.5 218.25 -0.1878 Epigondolella slovakensis Norian Norian 218.25 218.25 -0.3009 Epigondolella spatulata Norian Norian 218.25 218.25 -0.2982 Epigondolella triangularis Norian Norian 218.25 218.25 -0.2579 Erismodus quadridactylus Darriwilian Darriwilian 455.7 455.7 -0.0985 Fryxellodontus inornatus Tremadocian Floian 481.55 481.55 -0.3661 Fryxellodontus lineatus Tremadocian Floian 481.55 481.55 -0.4067 Gladigondolella carinata Olenekian Olenekian 249.2 249.2 -0.1547 Gladigondolella malayensis Carnian Carnian 231.5 231.5 -0.0146 Gladigondolella tethydis Olenekian Carnian 249.2 231.5 0.2578 cuneiformis Visean Visean 352.8 352.8 -0.2310 Gnathodus delicatus Tournaisian Visean 352.8 352.8 0.0413 Gnathodus pseudosemiglaber Visean Visean 338.8 338.8 -0.0022 Gnathodus punctatus Tournaisian Visean 352.8 352.8 0.2449 Gnathodus semiglaber Visean Visean 338.8 338.8 0.2340 Gnathodus texanus Visean Visean 338.8 338.8 0.0016 Gnathodus typicus Tournaisian Visean 352.8 352.8 -0.0001 costata Moscovian Kasimovian 311.1 305.35 0.0963 Gondolella curvata Moscovian Moscovian 311.1 305.35 -0.0370 Gondolella denuda Kasimovian Gzhelian 305.35 301.3 0.1204 Gondolella elegantula Moscovian Gzhelian 311.1 297.2 -0.0059 Gondolella lobata Kasimovian Kasimovian 305.35 305.35 -0.0113 Gondolella magna Moscovian Kasimovian 311.1 305.35 0.0808 Gondolella sublanceolata Kasimovian Kasimovian 305.35 305.35 0.0239 Hindeodus cristulus Visean 338.8 327.05 -0.2262 Hindeodus excavatus Kungurian Roadian 275.8 270.55 -0.4639 Hindeodus julfensis Changhsingian Changhsingian 253.2 253.2 -0.5945 Hindeodus typicalis Changhsingian Olenekian 253.2 249.2 -0.0812 Hirsutodontus bulbousus Tremadocian Floian 481.55 481.55 -0.7268 Hirsutodontus hirstutus Tremadocian Floian 481.55 481.55 -0.3857 Hirsutodontus lenaensis Floian Darriwilian 473.85 462.85 -0.2162 Hirsutodontus rarus Tremadocian Floian 481.55 481.55 -0.6405 alternatus Famennian Famennian 365.55 365.55 -0.1189 Icriodus angustoides Lochkovian Pragian 415 409.2 0.0856 Icriodus angustus Eifelian Eifelian 390.5 390.5 0.0271 Icriodus arkonensis Givetian Givetian 385.2 385.2 -0.0484 Icriodus beckmanni Emsian Emsian 400.45 400.45 -0.0350 Icriodus bilatericrescens Emsian Emsian 400.45 400.45 -0.0735 Icriodus brevis Givetian Givetian 385.2 385.2 -0.5069 Icriodus claudiae Pragian Emsian 409.2 409.2 0.2520 Icriodus constrictus Famennian Famennian 365.55 365.55 0.0638 Icriodus corniger Emsian Eifelian 400.45 390.5 0.0273 Icriodus cornutus Frasnian Famennian 377.45 365.55 -0.1085 Icriodus costatus Famennian Famennian 365.55 365.55 -0.0092 Icriodus curvicauda Pragian Emsian 409.2 400.45 -0.0129 Icriodus eolatericrescens Lochkovian Lochkovian 415 415 0.0818 Icriodus expansus Givetian Frasnian 385.2 377.45 -0.1582 Icriodus fusiformis Emsian Emsian 400.45 400.45 0.1127

256 FAD Age LAD Age Size Species FAD Stage LAD Stage (Ma) (Ma) (log10 mm) Icriodus huddlei Emsian Emsian 400.45 400.45 -0.1780 Icriodus introlevatus Emsian Frasnian 400.45 385.2 0.0082 Icriodus iowaensis Famennian Famennian 365.55 365.55 0.1686 Icriodus latericrescens Givetian Givetian 385.2 385.2 0.0601 latericrescens Icriodus latericrescens robustus Emsian Eifelian 400.45 390.5 -0.1967 Icriodus nevadensis Emsian Emsian 400.45 400.45 0.0584 Icriodus nordfordi Eifelian Eifelian 390.5 390.5 0.0172 Icriodus obliquimarginatus Givetian Givetian 385.2 385.2 0.0941 Icriodus postwoschmidti Lochkovian Lochkovian 415 415 0.1478 Icriodus regularicrescens Emsian Givetian 390.5 385.2 0.0570 Icriodus retrodepressus Emsian Emsian 400.45 385.2 0.0989 Icriodus sigmoidalis Emsian Emsian 400.45 400.45 -0.4103 Icriodus subterminus Givetian Frasnian 385.2 377.45 -0.1788 Icriodus symmetricus Frasnian Frasnian 377.45 377.45 -0.0163 Icriodus trojani Emsian Emsian 400.45 390.5 0.0652 Icriodus woschmidti Lochkovian Lochkovian 415 415 0.0463 Icriodus woschmidti hesperius Pridolian Lochkovian 421.1 415 0.1525 Idiognathus antiquus Moscovian Gzhelian 311.1 297.2 -0.0863 Idiognathus claviformis Moscovian Kasimovian 311.1 305.35 0.1537 Idiognathus delicatus Moscovian Gzhelian 311.1 301.3 0.1149 Idiognathus humerus Bashkirian Moscovian 319.2 319.2 -0.5272 Idiognathus magnificus Moscovian Gzhelian 311.1 301.3 0.0542 Idiognathus sinuosus Bashkirian Moscovian 319.2 319.2 -0.0827 Idiognathus suberectus Bashkirian Moscovian 319.2 319.2 -0.0193 Isarcicella isarcica Olenekian Olenekian 251.7 251.7 -0.2308 Klapperina disparata Givetian Givetian 385.2 385.2 0.0439 Klapperina disparilis Givetian Givetian 385.2 385.2 0.0692 absidata Homerian Ludfordian 428.95 424.3 0.1291 Kockelella amsdeni Homerian 431.95 428.95 -0.0003 Kockelella corpulenta Sheinwoodian Sheinwoodian 431.95 431.95 -0.2200 Kockelella patula Sheinwoodian Homerian 431.95 428.95 0.0244 Kockelella ranuliformis Sheinwoodian 435.95 431.95 -0.2455 Kockelella stauros Sheinwoodian Gorstian 431.95 426.5 0.1947 Kockelella variabilis Homerian Ludfordian 428.95 424.3 -0.0241 Kockelella walliseri Sheinwoodian Homerian 431.95 428.95 0.1022 adentata Floian Floian 473.85 473.85 -0.2857 Microzarkodina flabellum Floian Dapingian 473.85 468.65 -0.4912 Microzarkodina ozarkodella Dapingian Darriwilian 462.85 462.85 -0.5176 Microzarkodina parva Dapingian Dapingian 468.65 468.65 -0.5839 bassleri Moscovian Kasimovian 311.1 305.35 0.0034 Neognathodus bothrops Moscovian Kasimovian 311.1 305.35 0.0863 Neognathodus dilatus Moscovian Kasimovian 311.1 305.35 0.0775 Neognathodus medadultimus Moscovian Moscovian 311.1 311.1 -0.0262 Neognathodus medexultimus Moscovian Kasimovian 311.1 305.35 0.0904 Neognathodus roundyi Moscovian Kasimovian 311.1 305.35 0.2353 Neognathodus symmetricus Bashkirian Moscovian 319.2 319.2 0.0943 Neogondolella bakalovi Anisian Anisian 244.6 244.6 -0.1203 Neogondolella basisymmetrica Anisian Anisian 244.6 244.6 -0.0442 Neogondolella bifurcata Anisian Anisian 244.6 244.6 -0.1027 Neogondolella carinata Changhsingian Olenekian 253.2 249.2 -0.1246

257 FAD Age LAD Age Size Species FAD Stage LAD Stage (Ma) (Ma) (log10 mm) Neogondolella constricta Anisian Ladinian 244.6 238.5 -0.2557 Neogondolella cornuta Anisian Anisian 244.6 244.6 0.1168 Neogondolella crenulata Olenekian Olenekian 249.2 249.2 0.0076 Neogondolella elongata Olenekian Olenekian 249.2 249.2 -0.2188 Neogondolella excelsa Anisian Carnian 244.6 231.5 -0.0649 Neogondolella excentrica Ladinian Carnian 238.5 231.5 0.0254 Neogondolella jubata Olenekian Olenekian 249.2 249.2 -0.1623 Neogondolella milleri Olenekian Olenekian 249.2 249.2 -0.0146 Neogondolella orientalis Wuchiapingian Changhsingian 257.05 257.05 -0.0946 Neogondolella Carnian Norian 231.5 218.25 -0.1761 polygnathiformis Neogondolella regale Olenekian Anisian 249.2 244.6 0.0393 Neogondolella reversa Carnian Carnian 231.5 231.5 -0.2164 Neogondolella rosenkrantzi Capitanian Capitanian 262.5 257.05 -0.0200 Neogondolella serrata Roadian Wordian 270.55 266.95 -0.0382 Neogondolella transita Ladinian Carnian 238.5 231.5 -0.0137 Neopanderodus perlineatus Emsian Givetian 400.45 385.2 -0.2454 Neopanderodus transitans Emsian Givetian 400.45 385.2 -0.6330 Neospathodus aegaea Anisian Anisian 244.6 244.6 -0.1919 Neospathodus arcucristatus Roadian Roadian 270.55 270.55 -0.3419 Neospathodus bicuspidatus Anisian Anisian 244.6 244.6 -0.1539 Neospathodus bransoni Olenekian Anisian 249.2 244.6 -0.0353 Neospathodus conservativus Olenekian Olenekian 249.2 249.2 -0.0951 Neospathodus cristagalli Induan Induan 251.7 251.7 -0.2474 Neospathodus dieneri Induan Anisian 251.7 244.6 -0.3808 Neospathodus divergens Wuchiapingian Wuchiapingian 257.05 257.05 -0.4081 Neospathodus homeri Olenekian Olenekian 249.2 249.2 -0.5443 Neospathodus hungaricus Olenekian Olenekian 249.2 249.2 -0.3864 Neospathodus kummeli Induan Induan 251.7 251.7 -0.2297 Neospathodus pakistanensis Olenekian Olenekian 249.2 249.2 -0.1545 Neospathodus peculiaris Induan Induan 251.7 251.7 -0.3479 Neospathodus spathi Olenekian Olenekian 249.2 249.2 -0.4195 Neospathodus timorensis Olenekian Anisian 249.2 244.6 -0.1020 Neospathodus triangularis Olenekian Olenekian 251.7 249.2 -0.3704 Neospathodus waageni Olenekian Olenekian 249.2 249.2 -0.2698 Neostreptognathodus adjunctus Kungurian Roadian 275.8 270.55 -0.1266 Neostreptognathodus clinei Kungurian Roadian 275.8 270.55 -0.4937 Neostreptognathodus Artinskian Kungurian 275.8 275.8 -0.1106 pequopensis Neostreptognathodus prayi Kungurian Roadian 275.8 270.55 -0.1609 Neostreptognathodus Kungurian Wordian 275.8 266.95 0.0331 sulcoplicatus Oepikodus communis Floian Floian 473.85 473.85 -0.4456 Oepikodus evae Floian Floian 473.85 473.85 -0.3572 Oepikodus intermedius Floian Floian 473.85 473.85 -0.3299 Oistodus lanceolatus Floian Floian 473.85 473.85 -0.3708 Oneotodus nakamurai Age 10 Tremadocian 487.45 481.55 0.0371 jeannae Telychian Telychian 435.95 435.95 -0.0312 Oulodus oregonia Katian Hirnantian 449.1 444.3 -0.0477 Oulodus robustus Katian Hirnantian 449.1 444.3 -0.0416 Oulodus serratus Darriwilian Katian 449.1 449.1 -0.0494

258 FAD Age LAD Age Size Species FAD Stage LAD Stage (Ma) (Ma) (log10 mm) Oulodus ulrichi Sandbian Hirnantian 455.7 444.3 0.1216 Oulodus velicuspis Sandbian Katian 455.7 449.1 -0.0611 Ozarkodina asymmetrica Lochkovian Emsian 415 415 0.0613 Ozarkodina bidentata Eifelian Givetian 390.5 385.2 -0.5342 Ozarkodina bohemica Ludfordian Pridolian 424.3 421.1 -0.1717 Ozarkodina buchanensis Emsian Emsian 400.45 400.45 -0.1078 Ozarkodina brevis Givetian Frasnian 385.2 377.45 0.1245 Ozarkodina carinthiaca Emsian Emsian 400.45 400.45 0.0425 Ozarkodina confluens Gorstian Emsian 426.5 400.45 0.1809 Ozarkodina crispa Lochkovian Lochkovian 415 415 0.2026 Ozarkodina douroensis Ludfordian Ludfordian 424.3 424.3 0.0908 Ozarkodina eurekaensis Lochkovian Emsian 415 415 -0.0342 Ozarkodina excavata excavata Rhuddanian Emsian 442.1 400.45 0.0104 Ozarkodina excavata hamata Gorstian Ludfordian 426.5 424.3 -0.4871 Ozarkodina excavata inflata Gorstian Ludfordian 426.5 424.3 -0.3043 Ozarkodina excavata Gorstian Ludfordian 426.5 424.3 -0.1292 posthamata Ozarkodina hadra Telychian Sheinwoodian 435.95 431.95 0.1973 Ozarkodina johnsoni Lochkovian Emsian 415 400.45 0.0517 Ozarkodina linearis Emsian Emsian 400.45 400.45 0.1522 Ozarkodina paucidentata Pridolian Emsian 421.1 415 -0.0394 Ozarkodina polinclinata Telychian Sheinwoodian 435.95 431.95 -0.1699 Ozarkodina raaschi Eifelian Eifelian 390.5 390.5 -0.4721 Ozarkodina remscheidensis Pridolian Emsian 421.1 400.45 0.1881 remscheidensis Ozarkodina remscheidensis Gorstian Pridolian 424.3 421.1 -0.1448 eosteinhornensis Ozarkodina remscheidensis Lochkovian Lochkovian 415 415 -0.1009 repetitor Ozarkodina sagitta rhenana Homerian Homerian 428.95 428.95 -0.0491 Ozarkodina sagitta sagitta Homerian Homerian 428.95 428.95 -0.1078 Ozarkodina semialternans Givetian Givetian 385.2 385.2 -0.0470 Ozarkodina snajdri Gorstian Gorstian 424.3 424.3 -0.0210 Ozarkodina stygia Lochkovian Emsian 415 400.45 -0.1358 Ozarkodina transitans Lochkovian Lochkovian 415 415 -0.0038 crepida Frasnian Famennian 365.55 365.55 0.1324 Palmatolepis delicatula Frasnian Frasnian 377.45 377.45 -0.2005 delicatula Palmatolepis delicatula clarki Frasnian Frasnian 377.45 377.45 -0.0047 Palmatolepis delicatula Frasnian Famennian 365.55 365.55 -0.1932 protohomboidea Palmatolepis disparalvea Givetian Frasnian 377.45 377.45 0.1496 Palmatolepis gigas Frasnian Frasnian 377.45 377.45 0.1877 Palmatolepis glabra acuta Frasnian Famennian 365.55 365.55 0.4184 Palmatolepis glabra distorta Frasnian Famennian 365.55 365.55 0.0188 Palmatolepis glabra glabra Frasnian Frasnian 365.55 365.55 0.2470 Palmatolepis glabra lepta Frasnian Famennian 365.55 365.55 0.1091 Palmatolepis glabra pectinata Frasnian Famennian 365.55 365.55 0.1100 Palmatolepis glabra prima Frasnian Famennian 365.55 365.55 0.0728 Palmatolepis gracilis Famennian Famennian 365.55 365.55 0.0301 gonioclymeniae

259 FAD Age LAD Age Size Species FAD Stage LAD Stage (Ma) (Ma) (log10 mm) Palmatolepis gracilis gracilis Famennian Famennian 365.55 365.55 0.1020 Palmatolepis gracilis manca Frasnian Famennian 365.55 365.55 0.0315 Palmatolepis gracilis Famennian Famennian 365.55 365.55 -0.0932 sigmoidalis Palmatolepis hassi Givetian Frasnian 377.45 377.45 0.1915 Palmatolepis klapperi Frasnian Famennian 365.55 365.55 0.0760 Palmatolepis linguiformis Givetian Frasnian 377.45 377.45 0.2328 Palmatolepis marginifera Frasnian Famennian 365.55 365.55 0.0536 duplicata Palmatolepis marginifera Frasnian Famennian 365.55 365.55 0.0402 marginifera Palmatolepis minuta loba Frasnian Famennian 365.55 365.55 0.1763 Palmatolepis minuta minuta Frasnian Famennian 377.45 365.55 -0.0555 Palmatolepis minuta schelizia Frasnian Frasnian 365.55 365.55 0.2214 Palmatolepis minuta subgracilis Frasnian Famennian 365.55 365.55 0.0149

Palmatolepis minuta wolskae Frasnian Frasnian 365.55 365.55 0.1389 Palmatolepis perlobata grossi Famennian Famennian 365.55 365.55 0.2445 Palmatolepis perlobata helmsi Famennian Famennian 365.55 365.55 0.1213 Palmatolepis perlobata maxima Famennian Famennian 365.55 365.55 0.3798 Palmatolepis perlobata Frasnian Famennian 377.45 365.55 0.3156 perlobata Palmatolepis perlobata postera Famennian Famennian 365.55 365.55 0.0519 Palmatolepis perlobata Frasnian Famennian 365.55 365.55 0.2736 schindewolfi Palmatolepis perlobata Frasnian Frasnian 365.55 365.55 0.1390 sigmoidea Palmatolepis pooli Frasnian Frasnian 365.55 365.55 0.0128 Palmatolepis proversa Frasnian Frasnian 377.45 377.45 0.1498 Palmatolepis punctata Frasnian Frasnian 377.45 377.45 0.2403 Palmatolepis quadrantinodosa Frasnian Frasnian 365.55 365.55 0.2730 inflexa Palmatolepis quadrantinodosa Frasnian Frasnian 365.55 365.55 0.2648 inflexoidea Palmatolepis quadrantinodosa Frasnian Frasnian 365.55 365.55 0.1076 quadrantinodosa Palmatolepis Frasnian Famennian 365.55 365.55 0.1289 quadrantinodosalobata Palmatolepis rhomboidea Frasnian Famennian 365.55 365.55 -0.1622 Palmatolepis rugosa ampla Famennian Famennian 365.55 365.55 0.2524 Palmatolepis rugosa rugosa Famennian Famennian 365.55 365.55 0.2378 Palmatolepis rugosa trachytera Frasnian Famennian 365.55 365.55 0.0862 Palmatolepis stoppeli Frasnian Famennian 365.55 365.55 0.0476 Palmatolepis transitans Frasnian Frasnian 377.45 377.45 0.2907 Palmatolepis wolskajae Frasnian Famennian 365.55 365.55 0.0888 Paltodus deltifer Tremadocian Tremadocian 481.55 481.55 -0.2680 Paltodus jemtlandicus Dapingian Darriwilian 462.85 462.85 -0.3029 Paltodus quinquecostatus Floian Floian 473.85 468.65 -0.0896 Paltodus subaequalis Tremadocian Floian 481.55 473.85 -0.4235 Paltodus variabilis Tremadocian Floian 481.55 473.85 -0.2060 Pandorinellina exigua exigua Emsian Emsian 400.45 400.45 0.0047

260 FAD Age LAD Age Size Species FAD Stage LAD Stage (Ma) (Ma) (log10 mm) Pandorinellina exigua philipi Lochkovian Emsian 415 400.45 0.1053 Pandorinellina expansa Emsian Eifelian 400.45 390.5 0.0238 Pandorinellina insita Givetian Frasnian 385.2 377.45 -0.1630 Pandorinellina optima Lochkovian Pragian 415 409.2 -0.0121 Pandorinellina steinhornensis Emsian Emsian 400.45 400.45 -0.0233 gracilis Floian Floian 473.85 473.85 -0.2077 Paroistodus numarcuatus Tremadocian Floian 481.55 473.85 -0.2198 Paroistodus parallelus Floian Floian 473.85 473.85 -0.4926 Paroistodus proteus Tremadocian Floian 481.55 473.85 -0.5131 Pedavis biexoramus Lochkovian Emsian 415 415 0.0135 Pedavis brevicauda Pragian Emsian 409.2 409.2 0.0910 Pedavis latialata Ludfordian Ludfordian 424.3 424.3 -0.0138 Pedavis mariannae Emsian Emsian 409.2 409.2 0.1260 Pedavis pesavis breviramus Lochkovian Pragian 415 409.2 -0.0132 Pedavis pesavis pesavis Pragian Pragian 409.2 409.2 0.2429 Pedavis sherryae Emsian Emsian 400.45 400.45 0.1738 Pedavis thorsteinssoni Lochkovian Lochkovian 424.3 421.1 0.1484 Pelekysgnathus arcticus Lochkovian Lochkovian 424.3 421.1 -0.4143 Pelekysgnathus elevatus Givetian Givetian 385.2 385.2 -0.1457 Pelekysgnathus furnishi Emsian Emsian 400.45 400.45 -0.1403 Pelekysgnathus glenisteri Emsian Emsian 400.45 400.45 -0.0854 Pelekysgnathus inclinatus Famennian Famennian 365.55 365.55 -0.1415 Pelekysgnathus index Ludfordian Pridolian 424.3 421.1 -0.1103 Pelekysgnathus klamathensis Pragian Emsian 409.2 409.2 -0.2748 Pelekysgnathus planus Frasnian Famennian 377.45 415 0.0559 Pelekysgnathus serratus Lochkovian Lochkovian 415 400.45 -0.0942 elongatus aculeatus Floian Darriwilian 473.85 462.85 -0.3563 Periodon flabellum Floian Dapingian 473.85 462.85 -0.4481 Periodon grandis Darriwilian Hirnantian 462.85 444.3 -0.3585 Phragmodus cognitus Darriwilian Katian 449.1 449.1 -0.4262 Phragmodus flexuosus Dapingian Darriwilian 462.85 462.85 -0.0640 Phragmodus inflexus Darriwilian Sandbian 462.85 449.1 -0.2253 Phragmodus primus Darriwilian Sandbian 455.7 449.1 -0.2530 Phragmodus undatus Darriwilian Hirnantian 449.1 444.3 -0.1882 Platyvillosus asperatus Olenekian Olenekian 249.2 249.2 -0.1622 Platyvillosus costatus Olenekian Olenekian 249.2 249.2 -0.4579 Platyvillosus gardenae Olenekian Olenekian 249.2 249.2 0.0757 Plectodina aculeata Darriwilian Katian 462.85 449.1 -0.2274 Plectodina aculeatoides Sandbian Hirnantian 455.7 444.3 -0.2192 Plectodina florida Sandbian Hirnantian 455.7 444.3 -0.0277 Plectodina tenuis Sandbian Hirnantian 449.1 444.3 -0.2664 Polonodus clivosus Dapingian Darriwilian 462.85 462.85 -0.2234 Polygnathus alatus Givetian Givetian 385.2 385.2 0.1394 Polygnathus alveoliposticus Givetian Frasnian 385.2 377.45 0.2273 Polygnathus ansatus Givetian Givetian 385.2 385.2 0.0804 Polygnathus angustipennatus Eifelian Eifelian 390.5 390.5 0.1418 Polygnathus aspelundi Frasnian Frasnian 377.45 377.45 -0.0835 Polygnathus bischoffi Tournaisian Visean 352.8 352.8 0.0272 Polygnathus brevis Frasnian Frasnian 377.45 377.45 0.0040 Polygnathus conradi Eifelian Eifelian 390.5 390.5 0.3434

261 FAD Age LAD Age Size Species FAD Stage LAD Stage (Ma) (Ma) (log10 mm) Polygnathus costatus costatus Eifelian Eifelian 390.5 390.5 0.0700 Polygnathus costatus patulus Eifelian Eifelian 390.5 390.5 0.0152 Polygnathus curtigladius Eifelian Eifelian 390.5 390.5 0.2205 Polygnathus decorosus Frasnian Frasnian 377.45 377.45 0.0382 Polygnathus dehiscens Emsian Emsian 400.45 400.45 0.1811 Polygnathus delicatulus Famennian Famennian 365.55 365.55 0.0334 Polygnathus dengleri Givetian Frasnian 385.2 377.45 0.1731 Polygnathus distortus Tournaisian Serpukhovian 352.8 352.8 0.2503 Polygnathus dubius Givetian Frasnian 385.2 377.45 -0.5357 Polygnathus eiflius Eifelian Givetian 390.5 385.2 0.0561 Polygnathus ettremae Frasnian Frasnian 377.45 377.45 0.1385 Polygnathus experplexus Famennian Famennian 365.55 365.55 0.0766 Polygnathus fallax Famennian Famennian 365.55 365.55 0.2150 Polygnathus flaccidus Frasnian Famennian 365.55 365.55 0.1269 Polygnathus glaber bilobatus Famennian Famennian 365.55 365.55 0.0247 Polygnathus glaber glaber Famennian Famennian 365.55 365.55 0.0154 Polygnathus glaber medius Famennian Famennian 365.55 365.55 0.0731 Polygnathus granulosus Frasnian Famennian 365.55 365.55 0.0268 Polygnathus gronbergi Emsian Emsian 400.45 400.45 0.0176 Polygnathus hassi Frasnian Famennian 365.55 365.55 0.0659 Polygnathus homoirregularis Frasnian Famennian 377.45 365.55 0.1178 Polygnathus incompletus Frasnian Famennian 377.45 365.55 0.0809 Polygnathus inornatus Tournaisian Tournaisian 352.8 352.8 0.1518 Polygnathus intermedius Eifelian Frasnian 390.5 385.2 -0.1796 Polygnathus inversus Emsian Emsian 400.45 400.45 0.0500 Polygnathus kockelianus Eifelian Eifelian 390.5 390.5 0.1486 Polygnathus lagowiensis Famennian Famennian 365.55 365.55 0.1441 Polygnathus laticostatus Emsian Emsian 400.45 400.45 0.0631 Polygnathus latifossatus Givetian Frasnian 385.2 385.2 -0.0153 Polygnathus linguiformis Eifelian Eifelian 390.5 390.5 0.1383 cooperi Polygnathus linguiformis Emsian Givetian 400.45 385.2 0.1614 linguiformis Polygnathus linguiformis Givetian Frasnian 385.2 377.45 0.1035 ovatinodosus Polygnathus longiposticus Tournaisian Tournaisian 352.8 352.8 0.2933 Polygnathus margaritatus Frasnian Famennian 365.55 365.55 0.0879 Polygnathus mehli Tournaisian Visean 352.8 338.8 -0.1117 Polygnathus norrisi Frasnian Frasnian 377.45 377.45 -0.0733 Polygnathus obliquicostatus Frasnian Famennian 365.55 365.55 -0.0184 Polygnathus pacificus Frasnian Frasnian 377.45 377.45 -0.0068 Polygnathus parawebbi Eifelian Givetian 390.5 385.2 -0.0352 Polygnathus pennatulus Famennian Famennian 365.55 365.55 0.1250 Polygnathus pennatus Givetian Frasnian 385.2 377.45 0.1188 Polygnathus perbonus Emsian Emsian 400.45 400.45 -0.0099 Polygnathus pireneae Lochkovian Emsian 409.2 409.2 -0.4153 Polygnathus praehassi Famennian Famennian 365.55 365.55 -0.0384 Polygnathus pseudofoliatus Eifelian Givetian 390.5 385.2 0.1688 Polygnathus rhenanus Givetian Givetian 385.2 385.2 0.0050 Polygnathus robusticostatus Eifelian Eifelian 390.5 390.5 0.2490 Polygnathus semicostatus Famennian Famennian 365.55 365.55 0.0860

262 FAD Age LAD Age Size Species FAD Stage LAD Stage (Ma) (Ma) (log10 mm) Polygnathus serotinus Emsian Emsian 400.45 400.45 -0.0240 Polygnathus spicatus Tournaisian Tournaisian 352.8 352.8 0.3006 Polygnathus strongi Givetian Frasnian 385.2 377.45 -0.1425 Polygnathus styriacus Frasnian Famennian 377.45 365.55 -0.0016 Polygnathus subirregularis Frasnian Frasnian 365.55 365.55 0.0828 Polygnathus symmetricus Tournaisian Tournaisian 352.8 352.8 0.2819 Polygnathus timanicus Frasnian Frasnian 377.45 377.45 -0.1040 Polygnathus timorensis Givetian Frasnian 385.2 385.2 0.2813 Polygnathus trigonicus Eifelian Eifelian 390.5 390.5 -0.0189 Polygnathus unicornis Frasnian Frasnian 377.45 377.45 0.1588 Polygnathus varcus Givetian Givetian 385.2 385.2 0.0564 Polygnathus webbi Frasnian Famennian 377.45 365.55 -0.0180 Polygnathus xylus Givetian Frasnian 385.2 377.45 0.0719 Polygnathus xylus ensensis Eifelian Givetian 390.5 385.2 -0.6896 Polygnathus znepolensis Famennian Famennian 365.55 365.55 0.2158 Polyplacognathus ramosus Darriwilian Darriwilian 462.85 455.7 -0.0250 Polyplacognathus ramosus Darriwilian Darriwilian 462.85 455.7 0.2299 minutus Floian Floian 473.85 473.85 -0.3925 Prioniodus oepiki Floian Floian 473.85 473.85 0.1216 cambricus Age 10 Floian 487.45 481.55 -0.2823 Proconodontus carinatus Age 10 Floian 487.45 481.55 -0.4109 Proconodontus minutus Age 10 Floian 487.45 481.55 -0.3251 Proconodontus milleri milleri Age 10 Age 10 487.45 487.45 -0.1459 Proconodontus milleri serratus Age 10 Age 10 487.45 487.45 -0.0942 Proconodontus notchpeakensis Age 10 Floian 487.45 481.55 -0.2138 collinsoni Famennian Tournaisian 365.55 352.8 -0.0689 Protognathodus cordiformis Tournaisian Visean 352.8 352.8 -0.0404 Protognathodus kockeli Famennian Tournaisian 365.55 352.8 0.0063 Protognathodus kuehni Famennian Tournaisian 365.55 352.8 -0.0846 Protognathodus meischneri Famennian Tournaisian 365.55 352.8 -0.1193 Protognathodus praedelicatus Tournaisian Tournaisian 352.8 352.8 -0.1454 Protopanderodus graeai Dapingian Katian 462.85 455.7 0.0871 Protopanderodus parvibasis Darriwilian Darriwilian 462.85 462.85 -0.5178 Protopanderodus rectus Floian Darriwilian 473.85 462.85 -0.3917 simplicissimus Floian Floian 473.85 473.85 -0.1109

Pseudobelodina adentata Katian Hirnantian 449.1 444.3 -0.5216 Pseudobelodina inclinata Katian Hirnantian 449.1 444.3 -0.2922 Pseudobelodina kirki Sandbian Hirnantian 455.7 444.3 -0.1432 Pseudobelodina obtusa Sandbian Katian 455.7 449.1 -0.3219 Pseudobelodina quadrata Sandbian Hirnantian 455.7 444.3 -0.1900 Pseudobelodina torta Sandbian Katian 455.7 449.1 -0.3786 Pseudobelodina vulgaris ultima Hirnantian Hirnantian 444.3 442.1 -0.3407 Pseudobelodina vulgaris Sandbian Hirnantian 455.7 444.3 -0.1348 vulgaris Pseudofurnishius huddlei Ladinian Carnian 238.5 231.5 -0.2008 Pseudofurnishius murcianus Ladinian Carnian 238.5 231.5 -0.4524 Famennian Famennian 365.55 365.55 0.0130 brevipennatus Pseudopolygnathus Frasnian Famennian 365.55 365.55 -0.0158 controversus

263 FAD Age LAD Age Size Species FAD Stage LAD Stage (Ma) (Ma) (log10 mm) Pseudopolygnathus fusiformis Tournaisian Tournaisian 352.8 352.8 0.1871 Pseudopolygnathus granulosus Frasnian Frasnian 365.55 365.55 0.0886 Pseudopolygnathus Kayseri Famennian Famennian 365.55 365.55 0.0495 Pseudopolygnathus Famennian Famennian 365.55 365.55 0.2835 marburgensis marburgensis Pseudopolygnathus Famennian Famennian 365.55 365.55 0.0292 marburgensis trigonicus Pseudopolygnathus marginatus Tournaisian Tournaisian 352.8 352.8 0.1229 Pseudopolygnathus Frasnian Famennian 365.55 365.55 0.0396 micropunctatus Pseudopolygnathus Tournaisian Tournaisian 352.8 352.8 0.1739 nodomarginatus Pseudopolygnathus primus Famennian Tournaisian 365.55 352.8 -0.3074 Telychian Sheinwoodian 435.95 431.95 0.1349 amorphognathoides Pterospathodus celloni Telychian Telychian 435.95 435.95 -0.1252 Pterospathodus pennatus Telychian Telychian 435.95 435.95 -0.1742 angulatus Pterospathodus pennatus Telychian Sheinwoodian 435.95 431.95 -0.2007 pennatus Pterospathodus pennatus Telychian Sheinwoodian 435.95 431.95 -0.0683 procerus Rhodesognathus elegans Darriwilian Hirnantian 462.85 444.3 -0.1716 Scaliognathus anchoralis Visean Visean 352.8 352.8 -0.0537 anchoralis Scaliognathus anchoralis Visean Visean 352.8 352.8 -0.1806 europensis Scaliognathus anchoralis Visean Visean 352.8 352.8 -0.3199 fairchildi Scaliognathus praeanchoralis Visean Visean 352.8 352.8 -0.0080 Schmidtognathus hermani Givetian Frasnian 385.2 377.45 0.2541 Schmidtognathus peracutus Givetian Frasnian 385.2 377.45 0.2333 Schmidtognathus pietzneri Givetian Frasnian 385.2 377.45 0.1506 Schmidtognathus wittekindti Givetian Frasnian 385.2 377.45 0.2409 Scyphiodus primus Darriwilian Darriwilian 462.85 462.85 -0.0103 Semiacontiodus bicostatus Tremadocian Floian 481.55 481.55 -0.7953 Semiacontiodus nogamii Tremadocian Tremadocian 481.55 481.55 -0.4442 Semiacontiodus sevierensis Tremadocian Floian 481.55 481.55 -0.4773 Semiacontiodus unicostatus Tremadocian Tremadocian 481.55 481.55 -0.5629 Semiacontiodus utahensis Tremadocian Tremadocian 481.55 481.55 -0.6672 crenulata Tournaisian Serpukhovian 352.8 327.05 0.2832 Siphonodella isosticha Tournaisian Serpukhovian 352.8 327.05 -0.0484 Siphonodella lobata Tournaisian Serpukhovian 352.8 352.8 0.1160 Siphonodella obsoleta Tournaisian Visean 352.8 352.8 0.1993 Siphonodella quadruplicata Tournaisian Serpukhovian 352.8 352.8 0.2444 Siphonodella sandbergi Tournaisian Serpukhovian 352.8 352.8 0.0802 Siphonodella sexplicata Tournaisian Serpukhovian 352.8 352.8 0.2396 Stolodus stola Floian Floian 473.85 473.85 -0.6364 cancellosus Bashkirian Kasimovian 319.2 305.35 0.1052 Streptognathodus eccentricus Kasimovian Gzhelian 305.35 297.2 0.0798 Streptognathodus elengatulus Bashkirian Kungurian 319.2 270.55 0.1404

264 FAD Age LAD Age Size Species FAD Stage LAD Stage (Ma) (Ma) (log10 mm) Streptognathodus elongatus Kasimovian Kungurian 305.35 270.55 -0.1823 Streptognathodus excelsus Moscovian Asselian 311.1 297.2 0.0867 Streptognathodus expansus Bashkirian Moscovian 311.1 311.1 0.0257 Streptognathodus gracilis Moscovian Kungurian 311.1 275.8 0.0815 Streptognathodus oppletus Moscovian Kasimovian 311.1 305.35 0.0717 Streptognathodus simulator Kasimovian Kungurian 305.35 270.55 0.2604 Streptognathodus wabaunensis Kasimovian Kungurian 305.35 270.55 0.1721 behnkeni Tremadocian Dapingian 275.8 270.55 -0.0615 Sweetognathus merrilli Asselian Artinskian 297.2 275.8 -0.4719 Sweetognathus whitei Asselian Roadian 297.2 270.55 -0.1375 Xaniognathus abstractus Roadian Roadian 270.55 270.55 -0.2859 Xaniognathus curvatus Induan Induan 251.7 251.7 -0.2103 Xaniognathus deflectens Induan Induan 251.7 251.7 -0.2628 Xaniognathus elongatus Olenekian Olenekian 249.2 249.2 -0.2249 Xaniognathus kockeli Olenekian Anisian 249.2 244.6 -0.3899 Xaniognathus newpassensis Anisian Carnian 244.6 231.5 -0.2620

265 APPENDIX E: Conodont specimen size data from the Great Bank of Guizhou, south China (Chapter 3)

Note: Sample locations are abbreviated as follows: HTC = Hochang, LGC = Guandao.

Size Sample Name Conodont ID Stage Position (m) (log10 mm) LGC 0.0 1-3 Changhsingian 0.0 -0.6054 LGC 0.0 5-3 Changhsingian 0.0 -0.7270 LGC 1.9 2-3 Changhsingian 1.9 -0.2828 LGC 1.9 2-5 Changhsingian 1.9 -0.4267 LGC 3.0 4-4 Changhsingian 3.0 -0.5711 LGC 3.0 4-9 Changhsingian 3.0 -0.7023 LGC 3.0 5-3 Changhsingian 3.0 -0.4704 LGC 3.0 5-4 Changhsingian 3.0 -0.1219 LGC 3.0 5-6 Changhsingian 3.0 -0.5250 LGC 3.0 6-1 Changhsingian 3.0 -0.6041 LGC 3.0 6-5 Changhsingian 3.0 -0.6718 LGC 3.0 7-1 Changhsingian 3.0 -0.0908 LGC 3.0 7-2 Changhsingian 3.0 -0.3326 LGC 3.0 7-3 Changhsingian 3.0 -0.1481 LGC 3.0 7-5 Changhsingian 3.0 -0.4049 LGC 3.0 8-5 Changhsingian 3.0 -0.3170 HTC 29.4 2-1 Induan 29.4 -0.6206 HTC 29.4 2-6 Induan 29.4 -0.6007 HTC 32.5 3-6 Induan 32.5 -0.5646 HTC 32.5 5-3 Induan 32.5 -0.5145 HTC 35.0 1-7 Induan 35.0 -0.5553 HTC 35.0 1-10 Induan 35.0 -0.5934 HTC 35.0 2-2 Induan 35.0 -0.5715 HTC 35.0 2-7 Induan 35.0 -0.6104 HTC 35.0 4-1 Induan 35.0 -0.5163 HTC 35.0 4-2 Induan 35.0 -0.5702 HTC 35.0 4-7 Induan 35.0 -0.4930 HTC 37.0 1-3 Induan 37.0 -0.6231 HTC 37.0 1-7 Induan 37.0 -0.5233 HTC 37.0 1-8 Induan 37.0 -0.3234 HTC 37.0 1-10 Induan 37.0 -0.5735 HTC 37.0 2-2 Induan 37.0 -0.6616 HTC 37.0 2-8 Induan 37.0 -0.2830 HTC 37.0 2-9 Induan 37.0 -0.3829 HTC 37.0 2-10 Induan 37.0 -0.6044 HTC 37.0 2-11 Induan 37.0 -0.4800 HTC 37.0 4-1 Induan 37.0 -0.5007 HTC 37.0 4-2 Induan 37.0 -0.2105 HTC 37.0 4-5 Induan 37.0 -0.2997 HTC 37.0 4-6 Induan 37.0 -0.4643 HTC 37.0 5-5 Induan 37.0 -0.4539 HTC 37.0 6-2 Induan 37.0 -0.5814 HTC 37.0 6-3 Induan 37.0 -0.4842 HTC 39.0 1-1 Induan 39.0 -0.3561

266 Size Sample Name Conodont ID Stage Position (m) (log10 mm) HTC 39.0 1-4 Induan 39.0 -0.4849 HTC 39.0 1-5 Induan 39.0 -0.3081 HTC 39.0 2-1 Induan 39.0 -0.4470 HTC 39.0 2-6 Induan 39.0 -0.3624 HTC 39.0 2-9 Induan 39.0 -0.5411 HTC 39.0 4-2 Induan 39.0 -0.3731 HTC 39.0 4-3 Induan 39.0 -0.5027 HTC 39.0 4-4 Induan 39.0 -0.4478 HTC 39.0 5-1 Induan 39.0 -0.5555 HTC 39.0 6-2 Induan 39.0 -0.5545 HTC 39.0 6-7 Induan 39.0 -0.5104 HTC 39.0 7-1 Induan 39.0 -0.2991 HTC 39.0 7-2 Induan 39.0 -0.3825 HTC 39.0 7-4 Induan 39.0 -0.2781 HTC 39.0 8-1 Induan 39.0 -0.5568 HTC 39.0 8-5 Induan 39.0 -0.3492 HTC 39.0 9-3 Induan 39.0 -0.5145 HTC 39.0 9-7 Induan 39.0 -0.5297 HTC 39.0 10-4 Induan 39.0 -0.3643 HTC 39.0 10-6 Induan 39.0 -0.5466 HTC 39.0 10-10 Induan 39.0 -0.5392 HTC 39.0 11-1 Induan 39.0 -0.3071 HTC 39.0 11-2 Induan 39.0 -0.3850 HTC 39.0 11-3 Induan 39.0 -0.5731 HTC 39.0 11-5 Induan 39.0 -0.4654 HTC 39.0 11-6 Induan 39.0 -0.3541 HTC 39.0 11-7 Induan 39.0 -0.3079 HTC 39.0 12-1 Induan 39.0 -0.5954 HTC 39.0 12-5 Induan 39.0 -0.4306 HTC 39.0 12-6 Induan 39.0 -0.4457 HTC 39.0 12-8 Induan 39.0 -0.4136 HTC 39.0 13-6 Induan 39.0 -0.3929 HTC 39.0 13-8 Induan 39.0 -0.4656 HTC 39.0 14-1 Induan 39.0 -0.5049 HTC 39.0 14-2 Induan 39.0 -0.5150 HTC 39.0 15-4 Induan 39.0 -0.5920 HTC 39.0 15-8 Induan 39.0 -0.4885 HTC 39.0 15-10 Induan 39.0 -0.5240 HTC 39.0 16-3 Induan 39.0 -0.6280 HTC 39.0 17-7 Induan 39.0 -0.4984 HTC 39.0 17-11 Induan 39.0 -0.4294 HTC 39.0 17-12 Induan 39.0 -0.6114 HTC 39.0 18-1 Induan 39.0 -0.2568 HTC 39.0 18-2 Induan 39.0 -0.4306 HTC 39.0 18-4 Induan 39.0 -0.3890 HTC 39.0 19-1 Induan 39.0 -0.5211 HTC 39.0 19-5 Induan 39.0 -0.3478 HTC 39.0 20-3 Induan 39.0 -0.3911 HTC 39.0 20-8 Induan 39.0 -0.3320 HTC 39.0 21-4 Induan 39.0 -0.3789 HTC 39.0 23-2 Induan 39.0 -0.5810

267 Size Sample Name Conodont ID Stage Position (m) (log10 mm) HTC 39.0 23-3 Induan 39.0 -0.4316 HTC 39.0 23-5 Induan 39.0 -0.3646 HTC 39.0 23-8 Induan 39.0 -0.4978 HTC 39.0 24-1 Induan 39.0 -0.5610 HTC 39.0 24-7 Induan 39.0 -0.5421 HTC 39.0 25-9 Induan 39.0 -0.6555 HTC 39.0 27-6 Induan 39.0 -0.5200 HTC 39.0 27-7 Induan 39.0 -0.6126 HTC 39.0 27-9 Induan 39.0 -0.5788 HTC 39.0 30-1 Induan 39.0 -0.2569 HTC 39.0 30-2 Induan 39.0 -0.1899 HTC 39.0 31-3 Induan 39.0 -0.4882 HTC 39.0 31-4 Induan 39.0 -0.4811 HTC 39.0 31-8 Induan 39.0 -0.3557 HTC 39.0 32-1 Induan 39.0 -0.4790 HTC 39.0 32-5 Induan 39.0 -0.4712 HTC 39.0 32-7 Induan 39.0 -0.3818 HTC 39.0 32-8 Induan 39.0 -0.4359 HTC 39.0 32-9 Induan 39.0 -0.5951 HTC 39.0 33-3 Induan 39.0 -0.4444 HTC 39.0 34-1 Induan 39.0 -0.4229 HTC 39.0 34-2 Induan 39.0 -0.5291 HTC 39.0 34-3 Induan 39.0 -0.4850 HTC 39.0 34-12 Induan 39.0 -0.4031 HTC 39.0 35-1 Induan 39.0 -0.4415 HTC 39.0 35-8 Induan 39.0 -0.6292 HTC 39.0 35-10 Induan 39.0 -0.5631 HTC 39.0 37-2 Induan 39.0 -0.5368 HTC 39.0 37-6 Induan 39.0 -0.5672 HTC 39.0 38-9 Induan 39.0 -0.6312 HTC 39.0 39-6 Induan 39.0 -0.4367 HTC 39.0 39-8 Induan 39.0 -0.4522 HTC 39.0 40-1 Induan 39.0 -0.2328 HTC 39.0 40-3 Induan 39.0 -0.2721 HTC 39.0 40-4 Induan 39.0 -0.2399 HTC 39.0 40-5 Induan 39.0 -0.6444 HTC 39.0 41-4 Induan 39.0 -0.4901 HTC 39.0 41-9 Induan 39.0 -0.4799 HTC 39.0 42-3 Induan 39.0 -0.4487 HTC 39.0 42-6 Induan 39.0 -0.3005 HTC 39.0 42-7 Induan 39.0 -0.5273 HTC 39.0 42-8 Induan 39.0 -0.2185 HTC 39.0 43-1 Induan 39.0 -0.3069 HTC 39.0 43-5 Induan 39.0 -0.2546 HTC 39.0 44-3 Induan 39.0 -0.4531 HTC 39.0 44-4 Induan 39.0 -0.3984 HTC 39.0 44-8 Induan 39.0 -0.4797 HTC 39.0 44-9 Induan 39.0 -0.4068 HTC 39.0 45-5 Induan 39.0 -0.4343 HTC 39.0 45-6 Induan 39.0 -0.2431 HTC 39.0 45-7 Induan 39.0 -0.4555

268 Size Sample Name Conodont ID Stage Position (m) (log10 mm) HTC 39.0 46-1 Induan 39.0 -0.5584 HTC 39.0 46-3 Induan 39.0 -0.4184 HTC 39.0 46-4 Induan 39.0 -0.4729 HTC 39.0 47-1 Induan 39.0 -0.3393 HTC 39.0 47-8 Induan 39.0 -0.6420 HTC 39.0 47-10 Induan 39.0 -0.5511 HTC 39.0 48-8 Induan 39.0 -0.6012 HTC 39.0 51-4 Induan 39.0 -0.4148 HTC 39.0 51-6 Induan 39.0 -0.3615 HTC 39.0 52-10 Induan 39.0 -0.5235 HTC 39.0 54-1 Induan 39.0 -0.5076 HTC 39.0 54-10 Induan 39.0 -0.5218 HTC 39.0 54-16 Induan 39.0 -0.4651 HTC 39.0 55-1 Induan 39.0 -0.2974 HTC 39.0 55-2 Induan 39.0 -0.1866 HTC 39.0 55-3 Induan 39.0 -0.1941 HTC 39.0 55-4 Induan 39.0 -0.4283 HTC 39.0 55-5 Induan 39.0 -0.3593 HTC 39.0 55-6 Induan 39.0 -0.2625 HTC 39.0 56-3 Induan 39.0 -0.2428 HTC 39.0 56-5 Induan 39.0 -0.2126 HTC 39.0 56-6 Induan 39.0 -0.4118 HTC 39.0 57-4 Induan 39.0 -0.2864 HTC 39.0 57-5 Induan 39.0 -0.4703 HTC 39.0 57-8 Induan 39.0 -0.3856 HTC 39.0 57-10 Induan 39.0 -0.4460 HTC 39.0 57-12 Induan 39.0 -0.4764 HTC 39.0 59-1 Induan 39.0 -0.5609 HTC 39.0 59-2 Induan 39.0 -0.5222 HTC 39.0 59-3 Induan 39.0 -0.4376 HTC 39.0 59-4 Induan 39.0 -0.5241 HTC 39.0 59-5 Induan 39.0 -0.5805 HTC 39.0 59-8 Induan 39.0 -0.5068 HTC 39.0 59-11 Induan 39.0 -0.4047 HTC 39.0 60-10 Induan 39.0 -0.4015 HTC 39.0 62-1 Induan 39.0 -0.3141 HTC 39.0 63-2 Induan 39.0 -0.3881 HTC 39.0 63-3 Induan 39.0 -0.1090 HTC 39.0 63-4 Induan 39.0 -0.2110 HTC 39.0 63-6 Induan 39.0 -0.3255 HTC 39.0 65-14 Induan 39.0 -0.5600 HTC 39.0 66-1 Induan 39.0 -0.2085 HTC 39.0 66-2 Induan 39.0 -0.2866 HTC 39.0 66-3 Induan 39.0 -0.1681 HTC 39.0 66-4 Induan 39.0 -0.1647 HTC 39.0 67-1 Induan 39.0 -0.2274 HTC 39.0 67-2 Induan 39.0 -0.2256 HTC 39.0 67-3 Induan 39.0 -0.2014 HTC 39.0 67-4 Induan 39.0 -0.3990 HTC 39.0 67-6 Induan 39.0 -0.3684 HTC 39.0 68-1 Induan 39.0 -0.0673

269 Size Sample Name Conodont ID Stage Position (m) (log10 mm) HTC 39.0 69-5 Induan 39.0 -0.5021 HTC 39.0 69-10 Induan 39.0 -0.5189 HTC 39.0 69-13 Induan 39.0 -0.5511 HTC 39.0 69-16 Induan 39.0 -0.5340 HTC 39.0 70-1 Induan 39.0 -0.5351 HTC 39.0 70-2 Induan 39.0 -0.4472 HTC 39.0 70-6 Induan 39.0 -0.3998 HTC 39.0 70-8 Induan 39.0 -0.4761 HTC 39.0 70-13 Induan 39.0 -0.3584 HTC 39.0 70-14 Induan 39.0 -0.4587 HTC 39.0 71-3 Induan 39.0 -0.6258 HTC 39.0 71-13 Induan 39.0 -0.5553 HTC 39.0 72-1 Induan 39.0 -0.3199 HTC 39.0 72-5 Induan 39.0 -0.1325 HTC 39.0 72-7 Induan 39.0 -0.4761 HTC 39.0 72-9 Induan 39.0 -0.4374 HTC 39.0 74-13 Induan 39.0 -0.4530 HTC 39.0 75-1 Induan 39.0 -0.1110 HTC 39.0 75-2 Induan 39.0 -0.0874 HTC 39.0 75-3 Induan 39.0 -0.1506 HTC 39.0 75-4 Induan 39.0 -0.1169 HTC 39.0 76-1 Induan 39.0 -0.0993 HTC 39.0 76-2 Induan 39.0 -0.2045 HTC 39.0 76-4 Induan 39.0 -0.2232 HTC 39.0 76-6 Induan 39.0 -0.4455 HTC 39.0 77-9 Induan 39.0 -0.6371 HTC 39.0 78-2 Induan 39.0 -0.3556 HTC 39.0 78-3 Induan 39.0 -0.5598 HTC 39.0 78-7 Induan 39.0 -0.4052 HTC 39.0 78-8 Induan 39.0 -0.4713 HTC 39.0 78-10 Induan 39.0 -0.4639 HTC 39.0 78-12 Induan 39.0 -0.5368 HTC 39.0 79-1 Induan 39.0 -0.3191 HTC 39.0 79-2 Induan 39.0 -0.3816 HTC 39.0 79-4 Induan 39.0 -0.4135 HTC 39.0 79-6 Induan 39.0 -0.3675 HTC 39.0 79-9 Induan 39.0 -0.3172 HTC 39.0 79-10 Induan 39.0 -0.2971 HTC 39.0 80-1 Induan 39.0 -0.3670 HTC 39.0 81-1 Induan 39.0 -0.4705 HTC 39.0 81-10 Induan 39.0 -0.5417 HTC 39.0 82-8 Induan 39.0 -0.5860 HTC 39.0 82-12 Induan 39.0 -0.5756 HTC 39.0 83-2 Induan 39.0 -0.2609 HTC 39.0 83-6 Induan 39.0 -0.3212 HTC 39.0 83-8 Induan 39.0 -0.3511 HTC 39.0 84-11 Induan 39.0 -0.3662 HTC 39.0 89-5 Induan 39.0 -0.4383 HTC 39.0 89-6 Induan 39.0 -0.4851 HTC 39.0 89-14 Induan 39.0 -0.4354 HTC 41.5 1-5 Induan 41.5 -0.5211

270 Size Sample Name Conodont ID Stage Position (m) (log10 mm) HTC 41.5 2-5 Induan 41.5 -0.5951 HTC 41.5 6-3 Induan 41.5 -0.5782 HTC 41.5 11-6 Induan 41.5 -0.2994 HTC 41.5 19-6 Induan 41.5 -0.4723 HTC 41.5 23-4 Induan 41.5 -0.5036 HTC 41.5 27-1 Induan 41.5 -0.4447 HTC 41.5 29-3 Induan 41.5 -0.2480 HTC 41.5 29-4 Induan 41.5 -0.3715 HTC 41.5 31-6 Induan 41.5 -0.4877 HTC 41.5 32-1 Induan 41.5 -0.3612 HTC 41.5 32-3 Induan 41.5 -0.5065 HTC 41.5 32-4 Induan 41.5 -0.4612 HTC 41.5 34-1 Induan 41.5 -0.3942 HTC 41.5 37-6 Induan 41.5 -0.4183 HTC 41.5 41-5 Induan 41.5 -0.4191 HTC 41.5 43-1 Induan 41.5 -0.4111 HTC 41.5 51-1 Induan 41.5 -0.3521 HTC 41.5 54-2 Induan 41.5 -0.5471 HTC 41.5 61-9 Induan 41.5 -0.4081 HTC 41.5 63-2 Induan 41.5 -0.4900 HTC 41.5 66-5 Induan 41.5 -0.3833 HTC 43.0 1-2 Induan 43.0 -0.4531 HTC 43.0 2-4 Induan 43.0 -0.4287 HTC 43.0 2-8 Induan 43.0 -0.4031 HTC 43.0 3-5 Induan 43.0 -0.3936 HTC 43.0 3-6 Induan 43.0 -0.4452 HTC 43.0 3-7 Induan 43.0 -0.3301 HTC 43.0 3-9 Induan 43.0 -0.4123 HTC 43.0 6-8 Induan 43.0 -0.4338 HTC 43.0 7-1 Induan 43.0 -0.4000 HTC 43.0 7-2 Induan 43.0 -0.3243 HTC 43.0 7-3 Induan 43.0 -0.2446 HTC 43.0 7-5 Induan 43.0 -0.6263 HTC 43.0 7-6 Induan 43.0 -0.3127 HTC 43.0 7-9 Induan 43.0 -0.4531 HTC 43.0 11-6 Induan 43.0 -0.4625 HTC 43.0 13-2 Induan 43.0 -0.2264 HTC 43.0 13-4 Induan 43.0 -0.3539 HTC 43.0 13-5 Induan 43.0 -0.4066 HTC 43.0 14-3 Induan 43.0 -0.3658 HTC 43.0 17-2 Induan 43.0 -0.5555 HTC 43.0 17-4 Induan 43.0 -0.3943 HTC 43.0 18-7 Induan 43.0 -0.3214 HTC 43.0 24-2 Induan 43.0 -0.5239 HTC 43.0 24-6 Induan 43.0 -0.4716 HTC 43.0 26-4 Induan 43.0 -0.3874 HTC 43.0 30-1 Induan 43.0 -0.5927 HTC 43.0 32-4 Induan 43.0 -0.1198 HTC 43.0 33-8 Induan 43.0 -0.2959 HTC 43.0 36-6 Induan 43.0 -0.2946 HTC 43.0 36-7 Induan 43.0 -0.5289

271 Size Sample Name Conodont ID Stage Position (m) (log10 mm) HTC 43.0 38-7 Induan 43.0 -0.5139 HTC 43.0 39-7 Induan 43.0 -0.4677 HTC 43.0 40-1 Induan 43.0 -0.1661 HTC 43.0 40-6 Induan 43.0 -0.4342 HTC 43.0 40-7 Induan 43.0 -0.4201 HTC 43.0 41-8 Induan 43.0 -0.3386 HTC 43.0 42-5 Induan 43.0 -0.5243 HTC 43.0 42-6 Induan 43.0 -0.4480 HTC 43.0 42-10 Induan 43.0 -0.6319 HTC 43.0 43-1 Induan 43.0 -0.4084 HTC 43.0 43-2 Induan 43.0 -0.3679 HTC 43.0 43-8 Induan 43.0 -0.3376 HTC 43.0 44-7 Induan 43.0 -0.3850 HTC 43.0 45-7 Induan 43.0 -0.4028 HTC 43.0 45-10 Induan 43.0 -0.6205 HTC 43.0 47-12 Induan 43.0 -0.3996 HTC 43.0 48-2 Induan 43.0 -0.3344 HTC 43.0 49-6 Induan 43.0 -0.4776 HTC 43.0 50-4 Induan 43.0 -0.2141 HTC 43.0 50-6 Induan 43.0 -0.3920 HTC 43.0 51-3 Induan 43.0 -0.3196 HTC 43.0 51-10 Induan 43.0 -0.3943 HTC 43.0 51-11 Induan 43.0 -0.5062 HTC 43.0 52-6 Induan 43.0 -0.4912 HTC 43.0 53-2 Induan 43.0 -0.2250 HTC 43.0 53-12 Induan 43.0 -0.3813 HTC 43.0 53-13 Induan 43.0 -0.5728 HTC 43.0 59-1 Induan 43.0 -0.2741 HTC 43.0 59-4 Induan 43.0 -0.4319 HTC 43.0 59-7 Induan 43.0 -0.5977 HTC 43.0 60-6 Induan 43.0 -0.5049 HTC 43.0 61-4 Induan 43.0 -0.3646 HTC 43.0 65-6 Induan 43.0 -0.4806 HTC 43.0 68-7 Induan 43.0 -0.5016 HTC 43.0 69-2 Induan 43.0 -0.4394 HTC 43.0 69-3 Induan 43.0 -0.3609 HTC 43.0 69-6 Induan 43.0 -0.4335 HTC 43.0 72-9 Induan 43.0 -0.5615 HTC 43.0 73-3 Induan 43.0 -0.4672 HTC 43.0 77-7 Induan 43.0 -0.6121 HTC 43.0 77-11 Induan 43.0 -0.2737 HTC 43.0 79-1 Induan 43.0 -0.5720 HTC 43.0 79-2 Induan 43.0 -0.5840 HTC 43.0 81-10 Induan 43.0 -0.5520 HTC 45.5 2-3 Induan 45.5 -0.5233 HTC 45.5 2-8 Induan 45.5 -0.5222 HTC 45.5 3-3 Induan 45.5 -0.6597 HTC 45.5 5-10 Induan 45.5 -0.4423 LGC 188.1 1-4 Olenekian 188.1 -0.3701 LGC 188.1 2-2 Olenekian 188.1 -0.2831 LGC 188.1 3-1 Olenekian 188.1 -0.4975

272 Size Sample Name Conodont ID Stage Position (m) (log10 mm) LGC 188.1 3-4 Olenekian 188.1 -0.4338 LGC 188.1 3-9 Olenekian 188.1 -0.7228 LGC 205.3 1-5 Olenekian 205.3 -0.6260 LGC 205.3 1-13 Olenekian 205.3 -0.7448 LGC 254.7 1-2 Olenekian 254.7 -0.3887 LGC 267.3 1-4 Olenekian 267.3 -0.6148 LGC 267.3 2-1 Olenekian 267.3 -0.4913 LGC 267.3 3-2 Olenekian 267.3 -0.6424 LGC 267.3 5-2 Olenekian 267.3 -0.5136 LGC 267.3 6-4 Olenekian 267.3 -0.7132 LGC 267.3 9-2 Olenekian 267.3 -0.6921 LGC 267.3 11-6 Olenekian 267.3 -0.4800 LGC 267.3 11-7 Olenekian 267.3 -0.4889 LGC 267.3 11-8 Olenekian 267.3 -0.6728 LGC 267.3 14-7 Olenekian 267.3 -0.8826 LGC 267.3 15-1 Olenekian 267.3 -0.1945 LGC 267.3 15-7 Olenekian 267.3 -0.3967 LGC 267.3 15-8 Olenekian 267.3 -0.4893 LGC 267.3 16-5 Olenekian 267.3 -0.4302 LGC 267.3 21-3 Olenekian 267.3 -0.4147 LGC 267.3 22-6 Olenekian 267.3 -0.6101 LGC 267.3 23-4 Olenekian 267.3 -0.5536 LGC 267.3 23-6 Olenekian 267.3 -0.3121 LGC 267.3 23-7 Olenekian 267.3 -0.4008 LGC 267.3 23-8 Olenekian 267.3 -0.4597 LGC 267.3 25-3 Olenekian 267.3 -0.5934 LGC 267.3 26-1 Olenekian 267.3 -0.4980 LGC 267.3 26-6 Olenekian 267.3 -0.6158 LGC 267.3 27-1 Olenekian 267.3 -0.6074 LGC 267.3 27-6 Olenekian 267.3 -0.6361 LGC 267.3 29-4 Olenekian 267.3 -0.5501 LGC 267.3 29-8 Olenekian 267.3 -0.5994 LGC 267.3 29-9 Olenekian 267.3 -0.5373 LGC 267.3 32-3 Olenekian 267.3 -0.5163 LGC 267.3 32-5 Olenekian 267.3 -0.2158 LGC 267.3 32-6 Olenekian 267.3 -0.4646 LGC 267.3 32-7 Olenekian 267.3 -0.6304 LGC 267.3 32-10 Olenekian 267.3 -0.6809 LGC 267.3 33-5 Olenekian 267.3 -0.3337 LGC 267.3 33-6 Olenekian 267.3 -0.4593 LGC 267.3 34-3 Olenekian 267.3 -0.5501 LGC 267.3 34-6 Olenekian 267.3 -0.5475 LGC 267.3 34-9 Olenekian 267.3 -0.6658 LGC 267.3 37-5 Olenekian 267.3 -0.6640 LGC 267.3 38-7 Olenekian 267.3 -0.3857 LGC 267.3 39-2 Olenekian 267.3 -0.7395 LGC 267.3 47-2 Olenekian 267.3 -0.6367 LGC 267.3 49-6 Olenekian 267.3 -0.5622 LGC 270.2 1-3 Olenekian 270.2 -0.7186 LGC 270.2 11-1 Olenekian 270.2 -0.7628 LGC 270.2 16-5 Olenekian 270.2 -0.2372

273 Size Sample Name Conodont ID Stage Position (m) (log10 mm) LGC 270.2 18-7 Olenekian 270.2 -0.4652 LGC 270.2 23-4 Olenekian 270.2 -0.4233 LGC 270.2 31-1 Olenekian 270.2 -0.6115 LGC 270.2 32-7 Olenekian 270.2 -0.1457 LGC 270.2 34-1 Olenekian 270.2 -0.2901 LGC 270.2 41-7 Olenekian 270.2 -0.8417 LGC 270.2 43-6 Olenekian 270.2 -0.4508 LGC 271.6 10-2 Olenekian 271.6 -0.1213 LGC 271.6 13-7 Olenekian 271.6 -0.4537 LGC 271.6 14-1 Olenekian 271.6 -0.3742 LGC 272.5 1-10 Olenekian 272.5 -0.5191 LGC 272.5 2-8 Olenekian 272.5 -0.6374 LGC 272.5 2-9 Olenekian 272.5 -0.7799 LGC 272.5 12-5 Olenekian 272.5 -0.7433 LGC 272.5 14-2 Olenekian 272.5 -0.7542 LGC 272.5 14-3 Olenekian 272.5 -0.6329 LGC 272.5 14-6 Olenekian 272.5 -0.6265 LGC 272.5 15-3 Olenekian 272.5 -0.4832 LGC 272.5 17-11 Olenekian 272.5 -0.7325 LGC 273.8 18-5 Olenekian 273.8 -0.5660 LGC 273.8 18-8 Olenekian 273.8 -0.6572 LGC 273.8 18-13 Olenekian 273.8 -0.5120 LGC 273.8 19-6 Olenekian 273.8 -0.5188 LGC 275.2 15-6 Olenekian 275.2 -0.3840 LGC 275.2 31-3 Olenekian 275.2 -0.4215 LGC 276.1 18-1 Olenekian 276.1 -0.4796 LGC 276.1 18-2 Olenekian 276.1 -0.4621 LGC 276.1 30-1 Olenekian 276.1 -0.1886 LGC 276.1 30-5 Olenekian 276.1 -0.3702 LGC 276.1 30-8 Olenekian 276.1 -0.5042 LGC 276.1 37-8 Olenekian 276.1 -0.6115 LGC 276.1 39-1 Olenekian 276.1 -0.5010 LGC 276.1 39-5 Olenekian 276.1 -0.3006 LGC 276.1 39-6 Olenekian 276.1 -0.6200 LGC 276.1 56-1 Olenekian 276.1 -0.2673 LGC 276.1 56-7 Olenekian 276.1 -0.6344 LGC 276.1 69-3 Olenekian 276.1 -0.5331 LGC 276.1 69-5 Olenekian 276.1 -0.2103 LGC 276.1 70-12 Olenekian 276.1 -0.3237 LGC 276.1 81-12 Olenekian 276.1 -0.3750 LGC 276.1 83-1 Olenekian 276.1 -0.4582 LGC 276.1 89-6 Olenekian 276.1 -0.6031 LGC 276.1 91-1 Olenekian 276.1 -0.4151 LGC 276.1 93-5 Olenekian 276.1 -0.4144 LGC 276.1 108-4 Olenekian 276.1 -0.6090 LGC 276.1 108-6 Olenekian 276.1 -0.2090 LGC 284.0 2-4 Olenekian 284.0 -0.7735 LGC 284.9 6-4 Olenekian 284.9 -0.7011 LGC 284.9 6-7 Olenekian 284.9 -0.4544 LGC 286 9-9 Olenekian 286.0 -0.3846 LGC 286 11-3 Olenekian 286.0 -0.4072

274 Size Sample Name Conodont ID Stage Position (m) (log10 mm) LGC 286 13-2 Olenekian 286.0 -0.3995 LGC 286 13-10 Olenekian 286.0 -0.3033 LGC 286 14-6 Olenekian 286.0 -0.5569 LGC 286 18-4 Olenekian 286.0 -0.3403 LGC 286 18-6 Olenekian 286.0 -0.4529 LGC 286 18-7 Olenekian 286.0 -0.5029 LGC 286 19-2 Olenekian 286.0 -0.3538 LGC 286 19-4 Olenekian 286.0 -0.4532 LGC 286 19-7 Olenekian 286.0 -0.6321 LGC 286 19-9 Olenekian 286.0 -0.3259 LGC 286 22-5 Olenekian 286.0 -0.4144 LGC 286 22-7 Olenekian 286.0 -0.5927 LGC 286 24-7 Olenekian 286.0 -0.3662 LGC 286 25-2 Olenekian 286.0 -0.7071 LGC 286 25-5 Olenekian 286.0 -0.3705 LGC 286 28-2 Olenekian 286.0 -0.6202 LGC 287.4 4-10 Olenekian 287.4 -0.0763 LGC 287.4 17-1 Olenekian 287.4 -0.3496 LGC 287.4 26-7 Olenekian 287.4 -0.7005 LGC 287.4 52-6 Olenekian 287.4 -0.5702 LGC 287.4 74-5 Olenekian 287.4 -0.2461 LGC 287.4 79-1 Olenekian 287.4 -0.7408 LGC 289.2 2-7 Olenekian 289.2 -0.4299 LGC 289.2 3-3 Olenekian 289.2 -0.2369 LGC 289.2 6-3 Olenekian 289.2 -0.2281 LGC 289.2 7-7 Olenekian 289.2 -0.4656 LGC 289.2 9-1 Olenekian 289.2 -0.3069 LGC 289.2 10-2 Olenekian 289.2 -0.2870 LGC 289.2 11-2 Olenekian 289.2 -0.3501 LGC 290.5 10-7 Olenekian 290.5 -0.3700 LGC 290.5 10-8 Olenekian 290.5 -0.5645 LGC 290.5 12-5 Olenekian 290.5 -0.5234 LGC 292.0 1-4 Anisian 292.0 -0.6777 LGC 292.0 1-5 Anisian 292.0 -0.5998 LGC 292.0 3-9 Anisian 292.0 -0.6172 LGC 292.0 7-2 Anisian 292.0 -0.1795 LGC 292.0 8-6 Anisian 292.0 -0.5769 LGC 292.0 8-7 Anisian 292.0 -0.6275 LGC 292.0 11-3 Anisian 292.0 -0.6312 LGC 292.0 14-2 Anisian 292.0 -0.5854 LGC 292.0 14-5 Anisian 292.0 -0.7142 LGC 292.0 14-10 Anisian 292.0 -0.3521 LGC 292.0 15-1 Anisian 292.0 -0.5851 LGC 292.0 15-3 Anisian 292.0 -0.4422 LGC 292.0 15-6 Anisian 292.0 -0.5615 LGC 292.0 15-7 Anisian 292.0 -0.6548 LGC 292.0 15-9 Anisian 292.0 -0.4457 LGC 292.0 16-2 Anisian 292.0 -0.6634 LGC 292.0 16-4 Anisian 292.0 -0.8125 LGC 292.0 17-7 Anisian 292.0 -0.7441 LGC 292.8 22-6 Anisian 292.8 -0.3597

275 Size Sample Name Conodont ID Stage Position (m) (log10 mm) LGC 293.6 26-8 Anisian 293.6 -0.7100 LGC 296.7 33-3 Anisian 296.7 -0.4601 LGC 296.7 33-11 Anisian 296.7 -0.3697 LGC 297.6 1-1 Anisian 297.6 -0.6956 LGC 297.6 1-3 Anisian 297.6 -0.2410 LGC 297.6 3-1 Anisian 297.6 -0.7321 LGC 297.6 5-4 Anisian 297.6 -0.1860 LGC 298.9 3-4 Anisian 298.9 -0.6154 LGC 298.9 6-1 Anisian 298.9 -0.1993 LGC 301.8 1-2 Anisian 301.8 -0.3312 LGC 305.5 1-3 Anisian 305.5 -0.5555 LGC 305.5 1-6 Anisian 305.5 -0.5884 LGC 305.5 1-13 Anisian 305.5 -0.8198 LGC 305.5 3-1 Anisian 305.5 -0.3747 LGC 305.5 3-3 Anisian 305.5 -0.2809 LGC 305.5 3-4 Anisian 305.5 -0.3863 LGC 312.1 2-1 Anisian 312.1 -0.5718

276