Synthesis of Poly(Vinylcatechols). Saad Moulay Louisiana State University and Agricultural & Mechanical College

Total Page:16

File Type:pdf, Size:1020Kb

Synthesis of Poly(Vinylcatechols). Saad Moulay Louisiana State University and Agricultural & Mechanical College Louisiana State University LSU Digital Commons LSU Historical Dissertations and Theses Graduate School 1986 Synthesis of Poly(vinylcatechols). Saad Moulay Louisiana State University and Agricultural & Mechanical College Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_disstheses Recommended Citation Moulay, Saad, "Synthesis of Poly(vinylcatechols)." (1986). LSU Historical Dissertations and Theses. 4197. https://digitalcommons.lsu.edu/gradschool_disstheses/4197 This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Historical Dissertations and Theses by an authorized administrator of LSU Digital Commons. For more information, please contact [email protected]. INFORMATION TO USERS While the most advanced technology has been used to photograph and reproduce this manuscript, the quality of the reproduction is heavily dependent upon the quality of the material submitted. For example: • Manuscript pages may have indistinct print. In such cases, the best available copy has been filmed. • Manuscripts may not always be complete. In such cases, a note will indicate that it is not possible to obtain missing pages. • Copyrighted material may have been removed from the manuscript. In such cases, a note will indicate the deletion. Oversize materials (e.g., maps, drawings, and charts) are photographed by sectioning the original, beginning at the upper left-hand comer and continuing from left to right in equal sections with small overlaps. Each oversize page is also filmed as one exposure and is available, for an additional charge, as a standard 35mm slide or as a 17”x 23” black and white photographic print. Most photographs reproduce acceptably on positive microfilm or microfiche but lack the clarity on xerographic copies made from the microfilm. For an additional charge, 35mm slides of 6”x 9” black and white photographic prints are available for any photographs or illustrations that cannot be reproduced satisfactorily by xerography. 8625348 Moulay, Saad SYNTHESIS OF POLY(VINYLCATECHOLS) The Louisiana State University and Agricultural and Mechanical Col. Ph.D. 1986 University Microfilm s International 300 N. Zeeb Road, Ann Arbor, Ml 48106 PLEASE NOTE: In all cases this material has been filmed in the best possible way from the available copy. Problems encountered with this document have been identified here with a check mark V . 1. Giossy photographs or p a g e s _____ 2. Colored illustrations, paper or print _______ 3. Photographs with dark background _____ 4. Illustrations are poor copy _______ 5. Pages with black marks, not original copy ______ 6. Print shows through as there is text on both sides of page _______ 7. Indistinct, broken or small print on several pages "J 8. Print exceeds margin requirements ______ 9. Tightly bound copy with print lost in spine _______ 10. Computer printout pages with indistinct print _______ 11. Page(s)____________ lacking when material received, and not available from school or author. 12. P age(s)____________ seem to be missing in numbering only as text follows. 13. Two pages numbered . Text follows. 14. Curling and wrinkled pages ______ 15. Dissertation contains pages with print at a slant, filmed as received __________ 16 . Other ___________________________________________________________________________ University M icrofilm s International SYNTHESIS OF POLY(VINYLCATECHOLS) A Dissertation Submitted to the Graduate Faculty of the Louisiana State University and Agricultural and Mechanical College in partial fulfillment of the requirements for the degree of Doctor of Philosophy in The department of Chemistry by Saad Moulay B.S., University d'Alger (U.S.T.A.), 1979 August 1986 ACKNOWLEDGMENTS The author wishes to express his sincere gratitude to his major Professor, Dr.William H.Daly for his special guidance, understanding, and encouragement. His kindness, his help, and his patience will never be forgotten. The author acknowledges Dr.R.J.Gale for his helpful discussion and his assistance. Many thanks are extended to the faculty of the chemistry department from whom I learned the science of chemistry. The financial assistance received from Louisiana State University, Baton Rouge and from Dr. Charles E. Coates Memorial Foundation for the preparation of this dissertation is gratefully acknowl edged. The author also wishes to extend his gratitude to his beloved parents, his wife, and his children who patiently waited for the completion of this work. i i TABLE OF CONTENTS Page ACKNOWLEDGMENTS................................................................................................. i i LIST OF TABLES.................................................................................................. v i i i LIST OF FIGURES................................................................................................ X LIST OF SCHEMES...................................................................................... x i i i ABSTRACT................................................................................................................. xv INTRODUCTION......................................................................................... 1 A. Polymer Reagents in Organic Synthesis ............................ 1 I. Polymer Transfer Agents ................................................ 4 II. Polymer Catalysts ............................... 9 1. Polymer-bound transition metal complexes ...................................................................... 11 2. Immobilized enzymes ............................................... 19 III. Polymers as Protecting Groups .................................. 17 B. Redox Polymers ................................................................................. 22 I. Synthesis of Redox Polymers..... ........................... 24 1. Condensation polymers .......................................... 24 2. Attachment of redox units onto preformed polymers ................................................. 33 3. Vinyl polymers .......................................................... 40 II. Properties of Redox Polymers .................................... 54 1. Condensation polymers .......................................... 34 2. Vinyl polymers .......................................................... 36 III. Applications ......................................................................... 50 C. Objectives .......................................................................................... 60 RESULTS AND DISCUSSION................................................................................. 62 A. Monomer Syntheses ............................................................................ 6 ? B. Polymerization Reactions of Monomers ................................. 69 I. Homopolymerization ................... 69 1. Free radical initiation ..................................... 69 2. Dilatometric study of the homopolymerization of monomer 30................ 71 3. Cationic polymerization ..................................... 73 4. Anionic polymerization ........................................ 74 i i i II. Copolymerization Reactions of Monomers 30 and 31 with Styrene and Methyl Methacrylate.. 77 III. Graft Copolymerization on Poly( vinyl catechol) Precursors ................................... 90 C. Thermal Stability of the Poly(vinyl catechol) Precursors ........................................................................................... 94 D. Chemical Modification of Poly(vinyl catechol) Precursors ........................................................................................... 99 I. Chloromethylation Reaction ......................................... 100 II. Quaternization of Chloromethylated Poly(6-vi ny 1 -1 ,4-benzodi oxane) ................................. ■) q 2 III. Synthesis and Chloromethylation of Model Compounds ................................................................................. 103 IV. Lithiation Reaction ......................................................... 104 V. Bromination Reaction ........................................................ 105 VI. Cyanogenation Reaction ................................................... 116 VII. Ami nomethyl ation Reaction ............................................ 123 VIII. Sulfonation Reaction ........................................................ 128 IX. Sulfomethylation Reaction ............................................ 130 E. Removal of the Blocking Groups ........................................... 131 F. Oxidation of Poly(vinylcatechols) to the Corresponding Poly(benzoquinones) ...................................... 140 G. Potentiometric Titration of Poly(3-vinylcatechol). 141 EXPERIMENTAL METHODS...................................................................................... 1 54 A. General Information .................................................................... 154 B. Syntheses of Monomers. ............................................................. 155 Method A: Dehydration of 5-(l'-hydroxyethyl)- 1,3-benzodioxole 158 a. Preparation of 5-(l'-hydroxyethyl)- 1.3-benzodioxole ............................................... 158 b. Dehydration of 5-(l'-hydroxyethyl)- 1.3-benzodioxol e ...................................................... 158 Method B: Decarboxylation of 3,4- methyl enedioxycinnamic acid .......................... 159 Method C: Wittig methenation ofpiperonal 159 i v Method D: Wittig reaction
Recommended publications
  • ANTHRAQUINONE and ANTHRONE SERIES Part IX
    ANTHRAQUINONE AND ANTHRONE SERIES Part IX. Chromatographic Adsorption of Aminoanthraquinones on Alumina BY N. R. RAo, K. H. SHAH AND K. VENKATARAMAN, F.A.Sc. (Department of Chemical Technology. University of Bombay, Bombay) Received November 10, 1951 CORRELATIONS between chemical constitution and chromatograpl~c behaviour can only be attempted in molecales of the same or similar types and under specified conditions of chromatographic treatment, since complex solvent- adsorbent, solute-solvent and solute-adsorbent relationships are involved. Changes in the sequence of adsorption of the constituents in a mixture have been observed, ooth when the adsorbent is changed and when the deve- loping solvent is changed. Thus Strain was able tc separate some ternary mixtures in four of the six pessible sequences by changing the solvent1; and LeRosen found that cryptoxanthin is aloove lycopene on alumina and on calcium carbonate columns, but the order is inverted on a column of calcium hydroxide, using benzene as developer with all the three adsoroents. 2 An inversion of the sequence of adsorption of N-ethyl-N, N'-diphenylurea and 4-nitro-N-ethylaniline was observed by Schroeder when a slight alteration in the composition of the developer (2 or 5~o of ethyl acetate in light petro- leum) was made. 3 LeRosen has defined the adsorption affinity R as the rate of movement of the adsorptive zone (mm./min.) divided by the rate of flow of developing solvent. 2 R values have been used for standardizing adsorbents and for determining the efficiency of developers; using the same adsorbent and solvent, R values provide a quantitative measure of the adsorption affinities of a series of compounds which can then be correlated with their chemical constitution.
    [Show full text]
  • Bimetallic Catalyst Catalyzed Carbonylation of Methanol to Acetic Acid
    materials Article Study on Rh(I)/Ru(III) Bimetallic Catalyst Catalyzed Carbonylation of Methanol to Acetic Acid Shasha Zhang 1, Wenxin Ji 1,2,*, Ning Feng 2, Liping Lan 1, Yuanyuan Li 1,2 and Yulong Ma 1,2 1 College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China; [email protected] (S.Z.); [email protected] (L.L.); [email protected] (Y.L.); [email protected] (Y.M.) 2 State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, Ningxia University, Yinchuan 750021, China; [email protected] * Correspondence: [email protected]; Tel.: +86-135-1957-9989; Fax: +86-951-206-2323 Received: 13 July 2020; Accepted: 3 September 2020; Published: 11 September 2020 Abstract: In this study, a Rh(I)/Ru(III) catalyst with a bimetallic space structure was designed and synthesized. The interaction between the metals of the bimetallic catalyst and the structure of the bridged dimer can effectively reduce the steric hindrance effect and help speed up the reaction rate while ensuring the stability of the catalyst. X-ray photoelectron spectroscopy (XPS) results show that rhodium accepts electrons from chlorine, thereby increasing the electron-rich nature of rhodium and improving the catalytic activity. This promotes the nucleophilic reaction of the catalyst with methyl iodide and reduces the reaction energy barrier. The methanol carbonylation performance of the Rh/Ru catalyst was evaluated, and the results show that the conversion rate of methyl acetate and the yield of acetic acid are 96.0% under certain conditions. Furthermore, during the catalysis, no precipitate is formed and the amount of water is greatly reduced.
    [Show full text]
  • Step-By-Step Guide to Better Laboratory Management Practices
    Step-by-Step Guide to Better Laboratory Management Practices Prepared by The Washington State Department of Ecology Hazardous Waste and Toxics Reduction Program Publication No. 97- 431 Revised January 2003 Printed on recycled paper For additional copies of this document, contact: Department of Ecology Publications Distribution Center PO Box 47600 Olympia, WA 98504-7600 (360) 407-7472 or 1 (800) 633-7585 or contact your regional office: Department of Ecology’s Regional Offices (425) 649-7000 (509) 575-2490 (509) 329-3400 (360) 407-6300 The Department of Ecology is an equal opportunity agency and does not discriminate on the basis of race, creed, color, disability, age, religion, national origin, sex, marital status, disabled veteran’s status, Vietnam Era veteran’s status or sexual orientation. If you have special accommodation needs, or require this document in an alternate format, contact the Hazardous Waste and Toxics Reduction Program at (360)407-6700 (voice) or 711 or (800) 833-6388 (TTY). Table of Contents Introduction ....................................................................................................................................iii Section 1 Laboratory Hazardous Waste Management ...........................................................1 Designating Dangerous Waste................................................................................................1 Counting Wastes .......................................................................................................................8 Treatment by Generator...........................................................................................................12
    [Show full text]
  • Chapter -1 Introduction, Review of Literature And
    CHAPTER -1 INTRODUCTION, REVIEW OF LITERATURE AND SCOPE OF THE PRESENT WORK 1 INTRODUCTION The heterocycles play an important part in the metabolism of all living cells and find important applications in industry.1 Among these important substances, such vitamins and coenzymes precursors as thiamine, riboflavin, nicotinic acid, adenine, biotin, vitamin Bi2, vitamin E, photosynthesizing pigment chlorophyll, the oxygen-transporting pigment haemoglobin, the purine and pyrimidine which are the components of the nucleic acids, and their metabolic products such as uric acid, allantoin, and alloxan to the amino-acids like histidine, tryptophan, proline, and the harmones such as kinetin, zeatin, heteroauxin and histamine contain heterocyclic ring system in them. Many of the drugs, natural as well as synthetic, which are in regular use are heterocyclic compounds. The several natural drugs such as alkaloids, the cardiac glycosides and antibiotics such as penicillin contain heterocyclic ring in them. Some other synthetic heterocyclic compounds are numerous and include barbiturates, thiouracil, carbimazole, 9-aminoacridine, 8-hydroxyquinoline, and vasoprassor modifiers. Polyvinylpyrrolidone are used as a replacement for serum lost in haemorrhage and shock. Many pesticides and weed killers such as paraquat, diquat and simazine; insecticides such as rotenone, diazinon, menazon; anthelminitics such as phenothiazine, thiabendazoles; rodenticides such as warfarin are heterocyclic compounds. The heterocycles are acting as the antidotes for poisoning due to the phosphorus insecticides, such as pyridine-2-aldoxime methiodide. The current use of the heterocycles in drugs and pesticides is due to the high resistance of heterocyclic substances to biological degradation. In addition to the drug value the synthetic heterocyclic compounds acts as chemotherapeutic agents, dyestuffs and co-polymers.
    [Show full text]
  • Surface Characterization and Reactivity of Methylammionium Lead Iodide
    Surface Characterization and Reactivity of Methylammionium Lead Iodide by Kenneth Zielinski A Thesis Submitted to the Faculty of the WORCESTER POLYTECHNIC INSTITUTE in partial fulfillment of the requirements for the Master of Science Degree in Chemistry October 2018 APPROVED: Assistant Professor Ronald L. Grimm, Advisor Associate Professor N. Aaron Deskins, Committee Member Associate Teaching Professor Christopher Lambert, Committee Member Associate Professor Shawn Burdette, Committee Member Professor Arne Gericke, Department Head 1 Abstract We quantify the chemical species present at and reactivity of the tetragonal (100) face of single-crystal methylammonium lead iodide, MAPbI3(100). MAPbI3 is an ABX3 perovskite, experiments utilized the orthogonal reactivity of the A+-site cation, the B2+-site – cation, and the X -site halide anion. Ambient-pressure exposure to BF3 solutions probe the reactivity of interfacial halides. Reactions with p-trifluoromethylanilinium chloride probe the exchange reactivity of the A+-site cation. The ligand 4,4’-bis(trifluoromethyl)- 2,2’-bipyridine probe for interfacial B2+-site cations. Fluorine features in x-ray photoelectron spectroscopy (XPS) quantify reaction extents with each solution-phase species. XP spectra reveals adsorption of BF3 indicating surface-available halide anions on tetragonal MAPbI3(100) and preliminary examinations on the (112), (110), and thin- film surfaces. Temperature-programmed desorption (TPD) established a ~200 kJ mol–1 desorption activation energy from tetragonal MAPbI3(100). Adsorption of the fluorinated anilinium cation includes no concomitant adsorption of chlorine as revealed by the absence of Cl 2p features within the limits of XPS detection on the tetragonal (100) and (112) faces with no discernable exchange in preliminary experiments on tetragonal (110).
    [Show full text]
  • Organic Chemistry – Ii
    MANONMANIAM SUNDARANAR UNIVERSITY DIRECTORATE OF DISTANCE & CONTINUING EDUCATION, TIRUNELVELI III Year Major 1 – ORGANIC CHEMISTRY – II CONTENTS Unit I STEREOCHEMISTRY Unit II POLYNUCLEAR HYDROCARBONS Unit III HETEROCYCLIC COMPOUNDS Unit IV ALKALOIDS AND TERPENOIDS Unit V ORGANIC SPECTROSCOPY Page 1 MANONMANIAM SUNDARANAR UNIVERSITY DIRECTORATE OF DISTANCE & CONTINUING EDUCATION, TIRUNELVELI UNIT – I STEREOCHEMISTRY Stereoisomerism – definition – classification into optical and geometrical isomerism. Projection Formulae – Fischer, Sawhorse and Newman projection formulae – Notation of Optical isomers – D-L notation – Cahn – Ingold – Prelog rules – R-S notations for optical isomers. Optical isomerism – optical activity- optical and specific rotations – conditions for optical activity – asymmetric centre – chirality – achiral molecules – meaning of (+) and (-) Elements of symmetry – Racemisation – methods of recamisation. Resolution – methods of resolution (mechanical, seeding, biochemical and conversion to diastereoisomers). Optical activity in compounds not containing asymmetric carbon atoms.Biphenyls.allenes and spiranes. Geometrical isomerism – cis-trans, and E-Z notations – Geomertical isomerism in maleic and fumaric acids – Methods of distinguishing geometrical isomers using melting point, dipole moment, dehydration and cyclisation. UNIT – II POLYNUCLEAR HYDROCARBONS Isolatedsystems Preparation of dipheny1, dipheny1 methane, tri phenyl methane and stilbene. Condensed system Page 2 MANONMANIAM SUNDARANAR UNIVERSITY DIRECTORATE OF DISTANCE
    [Show full text]
  • AMINE HYDROHALIDE EXTRACTION STUDIES by W
    Wmm lili mS U t 2!582.e anni EUROPEAUJfJtLAiNN A1UJYLLLATOMIC. LLINJIJKATENERGYI ^UMJYLUINCOMMUNITl 1 Yï ­- EURATO.E,UJ\A1<^IVM1 ¡ty» *PiB'!«tflfc*'lni!" Γ· · if .'"TJ­'f ΙΒ^',",·Ρ* i*""j(jM >'*>>ι·4· ΦΙΐΡτ mmé iiii «HRPS MINE HYDROHALIDE EXTRACTION &âW Transplutonium Elements Program lia Report UCRL No. 16254 Lawrence Radiation Laboratory - University of California Berkeley, Cal. - USA Euratom/Université de Liège Contract No. 003-61-2 TPUB AEC Contract No. W-7405-eng-48 Paper presented at the ir&mi Sì«»·» Gordon Research Conference on Ion Exchange -M New London, New Hampshire, USA - August 2-6, 1965 mm-, it:m. This document was prepared under the sponsorship of the Commission of the European Atomic Energy Community Neither the EURATOM Commission, its contractors nor any person acting on their behalf : Turi Make any warranty or representation, express or implied, with respect to the accuracy, completeness, or usefulness of the information, contained in this document, or that the use of any information, apparatus, method, or process disclosed in this document may not infringe privately owned rights ; or Assume any liability with respect to the use of, or for damages resulting from the use of any information, apparatus, method or process disclosed in this document. M·. EUR 2582.e AMINE HYDROHALIDE EXTRACTION STUDIES by W. MÜLLER (Euratom) European Atomic Energy Community - EURATOM Transplutonium Elements Program Report UCRL No. 16254, Lawrence Radiation Laboratory University of California, Berkeley, Cal. (USA) Euratom/Université de Liège Contract No. 003-61-2 TPUB AEC Contract No. W-7405-eng-48 Paper presented at the "Gordon Research Conference on Ion Exchange" New London, New Hampshire, USA - August 2-6, 1965 Brussels, December 1965 - 22 Pages - 10 Figures - FB 40 Equilibria between trilaurylamine dissolved in different organic diluents and aqueous dilute hydrohalic acids (HCl, HBr, HI) have been studied.
    [Show full text]
  • Reduction of the Nitro Group to Amine by Hydroiodic Acid to Synthesize O-Aminophenol Derivatives As Putative Degradative Markers of Neuromelanin
    Molecules 2014, 19, 8039-8050; doi:10.3390/molecules19068039 OPEN ACCESS molecules ISSN 1420-3049 www.mdpi.com/journal/molecules Article Reduction of the Nitro Group to Amine by Hydroiodic Acid to Synthesize o-Aminophenol Derivatives as Putative Degradative Markers of Neuromelanin Kazumasa Wakamatsu 1,*, Hitomi Tanaka 1, Keisuke Tabuchi 1, Makoto Ojika 2, Fabio A. Zucca 3, Luigi Zecca 3 and Shosuke Ito 1 1 Department of Chemistry, Fujita Health University School of Health Sciences, Toyoake, Aichi 470-1192, Japan; E-Mails: [email protected] (H.T.); [email protected] (K.T.); [email protected] (S.I.) 2 Department of Applied Molecular Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan; E-Mail: [email protected] 3 Institute of Biomedical Technologies, National Research Council of Italy, Via Cervi, 93, Segrate, Milano 20090, Italy; E-Mails: [email protected] (F.A.Z.); [email protected] (L.Z.) * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +81-562-93-2518; Fax: +81-562-93-4595. Received: 4 May 2014; in revised form: 5 June 2014 / Accepted: 6 June 2014 / Published: 16 June 2014 Abstract: Neuromelanin (NM) is produced in dopaminergic neurons of the substantia nigra (SN) and in noradrenergic neurons of the locus coeruleus (LC). The synthesis of NM in those neurons is a component of brain aging and there is the evidence that this pigment can be involved in the pathogenesis of neurodegenerative diseases such as Parkinson’s disease.
    [Show full text]
  • Opinion on the SCCNFP on Disperse Violet 1 Impurified with Disperse Red
    SCCNFP/0504/01, final OPINION OF THE SCIENTIFIC COMMITTEE ON COSMETIC PRODUCTS AND NON-FOOD PRODUCTS INTENDED FOR CONSUMERS CONCERNING DISPERSE VIOLET 1 IMPURIFIED WITH DISPERSE RED 15 Colipa n° C64 & C61 adopted by the SCCNFP during the 19th Plenary meeting of 27 February 2002 SCCNFP/0504/01, final Evaluation and opinion on : Disperse Violet 1 impurified with Disperse Red 15 ____________________________________________________________________________________________ 1. Terms of Reference 1.1 Context of the question The adaptation to technical progress of the Annexes to Council Directive 76/768/EEC of 27 July 1976 on the approximation of the laws of the Member States relating to cosmetic products. 1.2 Request to the SCCNFP The SCCNFP is requested to answer the following questions : * Is Disperse Violet 1 impurified with Disperse Red 15 safe for use in cosmetic products? * Does the SCCNFP propose any restrictions or conditions for its use in cosmetic products? 1.3 Statement on the toxicological evaluation The SCCNFP is the scientific advisory body to the European Commission in matters of consumer protection with respect to cosmetics and non-food products intended for consumers. The Commission’s general policy regarding research on animals supports the development of alternative methods to replace or to reduce animal testing when possible. In this context, the SCCNFP has a specific working group on alternatives to animal testing which, in co-operation with other Commission services such as ECVAM (European Centre for Validation of Alternative Methods), evaluates these methods. The extent to which these validated methods are applicable to cosmetic products and its ingredients is a matter of the SCCNFP.
    [Show full text]
  • Chemical Compatibility Guide - Polyethylene for Ultratech Spill Containment Products
    Chemical Compatibility Guide - Polyethylene For UltraTech Spill Containment Products This listing was prepared to provide guidance to the chemical compatibility When considering an UltraTech polyethylene product for use in secondary of UltraTech Spill Containment Products which are manufactured and containment applications, it is important to note that most secondary constructed of a molded polyethylene. containment products are designed to hold leaked chemicals for only hours, Polyethylene is susceptible to attack by some chemicals which may cause a day, at most a week. stress cracking, swelling, oxidation or may permeate the polyethylene. These secondary containment units would then be cleaned of any chemical. These reactions may reduce the physical properties of polyethylene. In these short term applications, a greater variety of chemicals may be used with the polyethylene since the exposure time of the chemical to the polyethylene is limited. A = Suitable for long term storage at 100 degrees Fahrenheit or less. B = Suitable for short term storage less than one year. C = Do NOT store these chemicals in UltraTech containment products. User testing may prove some of these chemicals are suitable for secondary containment applications with an exposure time of one week or less. Acetaldehyde (40%) ������������������������������������������A Ascetic Acid (50%) ���������������������������������������������A Carbon Bisulfide ������������������������������������������������C Acetamide ����������������������������������������������������������A
    [Show full text]
  • 95[.95]Functionalizable Glyconanoparticles for A
    nanomaterials Communication Functionalizable Glyconanoparticles for a Versatile Redox Platform Marie Carrière 1,2, Paulo Henrique M. Buzzetti 1 , Karine Gorgy 1, Muhammad Mumtaz 2, Christophe Travelet 2 , Redouane Borsali 2,* and Serge Cosnier 1,* 1 UMR 5250, Département de Chimie Moléculaire, CNRS, Université Grenoble Alpes, CEDEX 09, 38058 Grenoble, France; [email protected] (M.C.); [email protected] (P.H.M.B.); [email protected] (K.G.) 2 CERMAV, UPR 5301, CNRS, Université Grenoble Alpes, CEDEX 09, 38058 Grenoble, France; [email protected] (M.M.); [email protected] (C.T.) * Correspondence: [email protected] (R.B.); [email protected] (S.C.) Abstract: A series of new glyconanoparticles (GNPs) was obtained by self-assembly by direct nano- precipitation of a mixture of two carbohydrate amphiphilic copolymers consisting of polystyrene- block-β-cyclodextrin and polystyrene-block-maltoheptaose with different mass ratios, respectively 0–100, 10–90, 50–50 and 0–100%. Characterizations for all these GNPs were achieved using dynamic light scattering, scanning and transmission electron microscopy techniques, highlighting their spher- ical morphology and their nanometric size (diameter range 20–40 nm). In addition, by using the inclusion properties of cyclodextrin, these glyconanoparticles were successfully post-functionalized using a water-soluble redox compound, such as anthraquinone sulfonate (AQS) and characterized by cyclic voltammetry. The resulting glyconanoparticles exhibit the classical electroactivity of free AQS in solution. The amount of AQS immobilized by host–guest interactions is proportional to the percentage of polystyrene-block-β-cyclodextrin entering into the composition of GNPs.
    [Show full text]
  • Structural Changes and Dynamic Behaviour of Vanadium Oxide‐Based Catalysts for Gas‐Phase Selective Oxidations
    Alma Mater Studiorum ‐ Università di Bologna Facoltà di Chimica Industriale Dipartimento di Chimica Industriale e dei Materiali Structural changes and dynamic behaviour of vanadium oxide‐based catalysts for gas‐phase selective oxidations Tesi di Dottorato di Ricerca Presentata da: Relatore: Dott.ssa Silvia Luciani Prof. Fabrizio Cavani Co‐relatore: Dott. Nicola Ballarini Coordinatore: Chiar.mo Prof. Luigi Angiolini Dottorato di Ricerca in Chimica Industriale (settore CHIM/04) ciclo XXI Esame finale anno 2009 Index INDEX ABSTRACT 1 PART A 5 1 Introduction 7 1.1 Maleic Anhydride: production and uses 7 1.1.1 Maleic Anhydride uses 8 1.1.2 Maleic Anhydride production 9 1.2 Catalytic System 16 1.2.1 Synthesis of vanadyl pyrophosphate 16 1.2.2 P/V ratio 21 1.2.3 The role of the different V species 21 1.2.4 Supported systems 22 1.2.5 Recent developments to improve the catalytic system 25 1.3 Reaction scheme and mechanism 28 1.3.1 Reaction scheme 28 1.3.2 Reaction mechanism 30 1.3.3 Nature of active sites 31 1.4 References 34 2 Experimental 41 2.1 Catalysts synthesis 41 2.1.1 Synthesis of vanadyl pyrophosphate, (VO)2P2O7 41 2.1.2 Synthesis of supported catalysts 42 2.2 Samples characterization 42 2.3 Catalytic tests 43 2.3.1 Bench scale plant 43 2.3.2 Analytical system 45 2.3.3 Elaboration of catalytic data 46 I Index 3 Surface dynamic of V/P/O catalyst 47 3.1 Introduction 47 3.2 Experimental 48 3.3 Results and discussion 49 3.3.1 “In‐situ” calcination 49 3.3.2 Ex‐situ characterization 52 3.3.3 “In‐situ” Raman spectroscopy 55 3.3.4 Steady state
    [Show full text]