Product Name: FAM76B Polyclonal Antibody, FITC Conjugated Catalog No

Total Page:16

File Type:pdf, Size:1020Kb

Product Name: FAM76B Polyclonal Antibody, FITC Conjugated Catalog No Product Name: FAM76B Polyclonal Antibody, FITC Conjugated Catalog No. : TAP01-90341R-FITC Intended Use: For Research Use Only. Not for used in diagnostic procedures. Size 100ul Concentration 1ug/ul Gene ID 143684 ISO Type Rabbit IgG Clone N/A Immunogen Range Conjugation FITC Subcellular Locations Applications IF(IHC-P) Cross Reactive Species Human, Mouse, Rat Source KLH conjugated synthetic peptide derived from human FAM76B Applications with IF(IHC-P)(1:50-200) Dilutions Purification Purified by Protein A. Background With approximately 135 million base pairs and 1,400 genes, chromosome 11 makes up around 4% of human genomic DNA and is considered a gene and disease association dense chromosome. The chromosome 11 encoded Atm gene is important for regulation of cell cycle arrest and apoptosis following double strand DNA breaks. Atm mutation leads to the disorder known as ataxia-telangiectasia. The blood disorders Sickle cell anemia and β thalassemia are caused by HBB gene mutations. Wilms' tumors, WAGR syndrome and Denys-Drash syndrome are associated with mutations of the WT1 gene. Jervell and Lange-Nielsen syndrome, Jacobsen syndrome, Niemann-Pick disease, hereditary angioedema and Smith-Lemli-Opitz syndrome are also associated with defects in chromosome 11. The FAM76Bgene product has been provisionally designated FAM76B pending further characterization. Synonyms Family with sequence similarity 76 member B; Hypothetical protein LOC143684; MGC33371; FA76B_HUMAN. Storage Aqueous buffered solution containing 1% BSA, 50% glycerol and 0.09% sodium azide. Store at 4°C for 12 months. If unexpected results are observed which cannot be explained by variations in laboratory procedures and a problem with the reagent is suspected, contact Technical Support at [email protected] or your distributor service. .
Recommended publications
  • Integrated Bioinformatics Analysis of Aberrantly-Methylated
    Shen et al. BMC Ophthalmology (2020) 20:119 https://doi.org/10.1186/s12886-020-01392-2 RESEARCH ARTICLE Open Access Integrated bioinformatics analysis of aberrantly-methylated differentially- expressed genes and pathways in age- related macular degeneration Yinchen Shen1,2†,MoLi3†, Kun Liu1,2, Xiaoyin Xu1,2, Shaopin Zhu1,2, Ning Wang1,2, Wenke Guo4, Qianqian Zhao4, Ping Lu4, Fudong Yu4 and Xun Xu1,2* Abstract Background: Age-related macular degeneration (AMD) represents the leading cause of visual impairment in the aging population. The goal of this study was to identify aberrantly-methylated, differentially-expressed genes (MDEGs) in AMD and explore the involved pathways via integrated bioinformatics analysis. Methods: Data from expression profile GSE29801 and methylation profile GSE102952 were obtained from the Gene Expression Omnibus database. We analyzed differentially-methylated genes and differentially-expressed genes using R software. Functional enrichment and protein–protein interaction (PPI) network analysis were performed using the R package and Search Tool for the Retrieval of Interacting Genes online database. Hub genes were identified using Cytoscape. Results: In total, 827 and 592 genes showed high and low expression, respectively, in GSE29801; 4117 hyper-methylated genes and 511 hypo-methylated genes were detected in GSE102952. Based on overlap, we categorized 153 genes as hyper-methylated, low-expression genes (Hyper-LGs) and 24 genes as hypo-methylated, high-expression genes (Hypo-HGs). Four Hyper-LGs (CKB, PPP3CA, TGFB2, SOCS2) overlapped with AMD risk genes in the Public Health Genomics and Precision Health Knowledge Base. KEGG pathway enrichment analysis indicated that Hypo-HGs were enriched in the calcium signaling pathway, whereas Hyper-LGs were enriched in sphingolipid metabolism.
    [Show full text]
  • Noelia Díaz Blanco
    Effects of environmental factors on the gonadal transcriptome of European sea bass (Dicentrarchus labrax), juvenile growth and sex ratios Noelia Díaz Blanco Ph.D. thesis 2014 Submitted in partial fulfillment of the requirements for the Ph.D. degree from the Universitat Pompeu Fabra (UPF). This work has been carried out at the Group of Biology of Reproduction (GBR), at the Department of Renewable Marine Resources of the Institute of Marine Sciences (ICM-CSIC). Thesis supervisor: Dr. Francesc Piferrer Professor d’Investigació Institut de Ciències del Mar (ICM-CSIC) i ii A mis padres A Xavi iii iv Acknowledgements This thesis has been made possible by the support of many people who in one way or another, many times unknowingly, gave me the strength to overcome this "long and winding road". First of all, I would like to thank my supervisor, Dr. Francesc Piferrer, for his patience, guidance and wise advice throughout all this Ph.D. experience. But above all, for the trust he placed on me almost seven years ago when he offered me the opportunity to be part of his team. Thanks also for teaching me how to question always everything, for sharing with me your enthusiasm for science and for giving me the opportunity of learning from you by participating in many projects, collaborations and scientific meetings. I am also thankful to my colleagues (former and present Group of Biology of Reproduction members) for your support and encouragement throughout this journey. To the “exGBRs”, thanks for helping me with my first steps into this world. Working as an undergrad with you Dr.
    [Show full text]
  • Molecular Evolutionary Analysis of Plastid Genomes in Nonphotosynthetic Angiosperms and Cancer Cell Lines
    The Pennsylvania State University The Graduate School Department or Biology MOLECULAR EVOLUTIONARY ANALYSIS OF PLASTID GENOMES IN NONPHOTOSYNTHETIC ANGIOSPERMS AND CANCER CELL LINES A Dissertation in Biology by Yan Zhang 2012 Yan Zhang Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy Dec 2012 The Dissertation of Yan Zhang was reviewed and approved* by the following: Schaeffer, Stephen W. Professor of Biology Chair of Committee Ma, Hong Professor of Biology Altman, Naomi Professor of Statistics dePamphilis, Claude W Professor of Biology Dissertation Adviser Douglas Cavener Professor of Biology Head of Department of Biology *Signatures are on file in the Graduate School iii ABSTRACT This thesis explores the application of evolutionary theory and methods in understanding the plastid genome of nonphotosynthetic parasitic plants and role of mutations in tumor proliferations. We explore plastid genome evolution in parasitic angiosperms lineages that have given up the primary function of plastid genome – photosynthesis. Genome structure, gene contents, and evolutionary dynamics were analyzed and compared in both independent and related parasitic plant lineages. Our studies revealed striking similarities in changes of gene content and evolutionary dynamics with the loss of photosynthetic ability in independent nonphotosynthetic plant lineages. Evolutionary analysis suggests accelerated evolution in the plastid genome of the nonphotosynthetic plants. This thesis also explores the application of phylogenetic and evolutionary analysis in cancer biology. Although cancer has often been likened to Darwinian process, very little application of molecular evolutionary analysis has been seen in cancer biology research. In our study, phylogenetic approaches were used to explore the relationship of several hundred established cancer cell lines based on multiple sequence alignments constructed with variant codons and residues across 494 and 523 genes.
    [Show full text]
  • Mouse Fam76b Knockout Project (CRISPR/Cas9)
    https://www.alphaknockout.com Mouse Fam76b Knockout Project (CRISPR/Cas9) Objective: To create a Fam76b knockout Mouse model (C57BL/6J) by CRISPR/Cas-mediated genome engineering. Strategy summary: The Fam76b gene (NCBI Reference Sequence: NM_176836 ; Ensembl: ENSMUSG00000037808 ) is located on Mouse chromosome 9. 10 exons are identified, with the ATG start codon in exon 1 and the TGA stop codon in exon 10 (Transcript: ENSMUST00000059579). Exon 3~8 will be selected as target site. Cas9 and gRNA will be co-injected into fertilized eggs for KO Mouse production. The pups will be genotyped by PCR followed by sequencing analysis. Note: Exon 3 starts from about 15.04% of the coding region. Exon 3~8 covers 66.47% of the coding region. The size of effective KO region: ~7248 bp. The KO region does not have any other known gene. Page 1 of 9 https://www.alphaknockout.com Overview of the Targeting Strategy Wildtype allele 5' gRNA region gRNA region 3' 1 3 4 5 6 7 8 10 Legends Exon of mouse Fam76b Knockout region Page 2 of 9 https://www.alphaknockout.com Overview of the Dot Plot (up) Window size: 15 bp Forward Reverse Complement Sequence 12 Note: The 900 bp section upstream of Exon 3 is aligned with itself to determine if there are tandem repeats. No significant tandem repeat is found in the dot plot matrix. So this region is suitable for PCR screening or sequencing analysis. Overview of the Dot Plot (down) Window size: 15 bp Forward Reverse Complement Sequence 12 Note: The 2000 bp section downstream of Exon 8 is aligned with itself to determine if there are tandem repeats.
    [Show full text]
  • Supplementary Information Contents
    Supplementary Information Contents Supplementary Methods: Additional methods descriptions Supplementary Results: Biology of suicidality-associated loci Supplementary Figures Supplementary Figure 1: Flow chart of UK Biobank participants available for primary analyses (Ordinal GWAS and PRS analysis) Supplementary Figure 2: Flow chart of UK Biobank participants available for secondary analyses. The flow chart of participants is the same as Supplementary Figure 1 up to the highlighted box. Relatedness exclusions were applied for A) the DSH GWAS considering the categories Controls, Contemplated self-harm and Actual self-ham and B) the SIA GWAS considering the categories Controls, Suicidal ideation and attempted suicide. Supplementary Figure 3: Manhattan plot of GWAS of ordinal DSH in UK Biobank (N=100 234). Dashed red line = genome wide significance threshold (p<5x10-5). Inset: QQ plot for genome-wide association with DSH. Red line = theoretical distribution under the null hypothesis of no association. Supplementary Figure 4: Manhattan plot of GWAS of ordinal SIA in UK Biobank (N=108 090). Dashed red line = genome wide significance threshold (p<5x10-5). Inset: QQ plot for genome-wide association with SIA. Red line = theoretical distribution under the null hypothesis of no association. Supplementary Figure 5: Manhattan plot of gene-based GWAS of ordinal suicide in UK Biobank (N=122 935). Dashed red line = genome wide significance threshold (p<5x10-5). Inset: QQ plot for genome-wide association with suicidality in UK Biobank. Red line = theoretical distribution under the null hypothesis of no association. Supplementary Figure 6: Manhattan plot of gene-based GWAS of ordinal DSH in UK Biobank (N=100 234).
    [Show full text]
  • FAM76B Polyclonal Antibody Catalog No. : TAP01-90341R Intended Use: for Research Use Only
    Product Name: FAM76B Polyclonal Antibody Catalog No. : TAP01-90341R Intended Use: For Research Use Only. Not for used in diagnostic procedures. Size 100ul Concentration 1ug/ul Gene ID 143684 ISO Type Rabbit IgG Clone N/A Immunogen Range Conjugation Unconjugated Subcellular Locations Applications WB, IHC-P, IF(IHC-P) Cross Reactive Species Human, Mouse, Rat Source KLH conjugated synthetic peptide derived from human FAM76B Applications with WB(1:100-1000), IHC-P(1:100-500), IF(IHC-P)(1:50-200) Dilutions Purification Purified by Protein A. Background With approximately 135 million base pairs and 1,400 genes, chromosome 11 makes up around 4% of human genomic DNA and is considered a gene and disease association dense chromosome. The chromosome 11 encoded Atm gene is important for regulation of cell cycle arrest and apoptosis following double strand DNA breaks. Atm mutation leads to the disorder known as ataxia-telangiectasia. The blood disorders Sickle cell anemia and β thalassemia are caused by HBB gene mutations. Wilms' tumors, WAGR syndrome and Denys-Drash syndrome are associated with mutations of the WT1 gene. Jervell and Lange-Nielsen syndrome, Jacobsen syndrome, Niemann-Pick disease, hereditary angioedema and Smith-Lemli-Opitz syndrome are also associated with defects in chromosome 11. The FAM76Bgene product has been provisionally designated FAM76B pending further characterization. Synonyms Family with sequence similarity 76 member B; Hypothetical protein LOC143684; MGC33371; FA76B_HUMAN. Storage Aqueous buffered solution containing 1% BSA, 50% glycerol and 0.09% sodium azide. Store at -20°C for 12 months. If unexpected results are observed which cannot be explained by variations in laboratory procedures and a problem with the reagent is suspected, contact Technical Support at [email protected] or your distributor service.
    [Show full text]
  • PDF Output of CLIC (Clustering by Inferred Co-Expression)
    PDF Output of CLIC (clustering by inferred co-expression) Dataset: Num of genes in input gene set: 7 Total number of genes: 16493 CLIC PDF output has three sections: 1) Overview of Co-Expression Modules (CEMs) Heatmap shows pairwise correlations between all genes in the input query gene set. Red lines shows the partition of input genes into CEMs, ordered by CEM strength. Each row shows one gene, and the brightness of squares indicates its correlations with other genes. Gene symbols are shown at left side and on the top of the heatmap. 2) Details of each CEM and its expansion CEM+ Top panel shows the posterior selection probability (dataset weights) for top GEO series datasets. Bottom panel shows the CEM genes (blue rows) as well as expanded CEM+ genes (green rows). Each column is one GEO series dataset, sorted by their posterior probability of being selected. The brightness of squares indicates the gene's correlations with CEM genes in the corresponding dataset. CEM+ includes genes that co-express with CEM genes in high-weight datasets, measured by LLR score. 3) Details of each GEO series dataset and its expression profile: Top panel shows the detailed information (e.g. title, summary) for the GEO series dataset. Bottom panel shows the background distribution and the expression profile for CEM genes in this dataset. Overview of Co-Expression Modules (CEMs) with Dataset Weighting Scale of average Pearson correlations Num of Genes in Query Geneset: 7. Num of CEMs: 1. 0.0 0.2 0.4 0.6 0.8 1.0 Med14 Med21 Med6 Cdk8 Ccnc Med10 Med23 Med14 Med21
    [Show full text]
  • Tissue-Specific Disallowance of Housekeeping Genes
    Downloaded from genome.cshlp.org on September 29, 2021 - Published by Cold Spring Harbor Laboratory Press Tissue-specific disallowance of housekeeping genes: the other face of cell differentiation Lieven Thorrez1,2,4, Ilaria Laudadio3, Katrijn Van Deun4, Roel Quintens1,4, Nico Hendrickx1,4, Mikaela Granvik1,4, Katleen Lemaire1,4, Anica Schraenen1,4, Leentje Van Lommel1,4, Stefan Lehnert1,4, Cristina Aguayo-Mazzucato5, Rui Cheng-Xue6, Patrick Gilon6, Iven Van Mechelen4, Susan Bonner-Weir5, Frédéric Lemaigre3, and Frans Schuit1,4,$ 1 Gene Expression Unit, Dept. Molecular Cell Biology, Katholieke Universiteit Leuven, 3000 Leuven, Belgium 2 ESAT-SCD, Department of Electrical Engineering, Katholieke Universiteit Leuven, 3000 Leuven, Belgium 3 Université Catholique de Louvain, de Duve Institute, 1200 Brussels, Belgium 4 Center for Computational Systems Biology, Katholieke Universiteit Leuven, 3000 Leuven, Belgium 5 Section of Islet Transplantation and Cell Biology, Joslin Diabetes Center, Harvard University, Boston, MA 02215, US 6 Unité d’Endocrinologie et Métabolisme, University of Louvain Faculty of Medicine, 1200 Brussels, Belgium $ To whom correspondence should be addressed: Frans Schuit O&N1 Herestraat 49 - bus 901 3000 Leuven, Belgium Email: [email protected] Phone: +32 16 347227 , Fax: +32 16 345995 Running title: Disallowed genes Keywords: disallowance, tissue-specific, tissue maturation, gene expression, intersection-union test Abbreviations: UTR UnTranslated Region H3K27me3 Histone H3 trimethylation at lysine 27 H3K4me3 Histone H3 trimethylation at lysine 4 H3K9ac Histone H3 acetylation at lysine 9 BMEL Bipotential Mouse Embryonic Liver Downloaded from genome.cshlp.org on September 29, 2021 - Published by Cold Spring Harbor Laboratory Press Abstract We report on a hitherto poorly characterized class of genes which are expressed in all tissues, except in one.
    [Show full text]
  • Autocrine IFN Signaling Inducing Profibrotic Fibroblast Responses By
    Downloaded from http://www.jimmunol.org/ by guest on September 23, 2021 Inducing is online at: average * The Journal of Immunology , 11 of which you can access for free at: 2013; 191:2956-2966; Prepublished online 16 from submission to initial decision 4 weeks from acceptance to publication August 2013; doi: 10.4049/jimmunol.1300376 http://www.jimmunol.org/content/191/6/2956 A Synthetic TLR3 Ligand Mitigates Profibrotic Fibroblast Responses by Autocrine IFN Signaling Feng Fang, Kohtaro Ooka, Xiaoyong Sun, Ruchi Shah, Swati Bhattacharyya, Jun Wei and John Varga J Immunol cites 49 articles Submit online. Every submission reviewed by practicing scientists ? is published twice each month by Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts http://jimmunol.org/subscription Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html http://www.jimmunol.org/content/suppl/2013/08/20/jimmunol.130037 6.DC1 This article http://www.jimmunol.org/content/191/6/2956.full#ref-list-1 Information about subscribing to The JI No Triage! Fast Publication! Rapid Reviews! 30 days* Why • • • Material References Permissions Email Alerts Subscription Supplementary The Journal of Immunology The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2013 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. This information is current as of September 23, 2021. The Journal of Immunology A Synthetic TLR3 Ligand Mitigates Profibrotic Fibroblast Responses by Inducing Autocrine IFN Signaling Feng Fang,* Kohtaro Ooka,* Xiaoyong Sun,† Ruchi Shah,* Swati Bhattacharyya,* Jun Wei,* and John Varga* Activation of TLR3 by exogenous microbial ligands or endogenous injury-associated ligands leads to production of type I IFN.
    [Show full text]
  • Inbred Mouse Strains Expression in Primary Immunocytes Across
    Downloaded from http://www.jimmunol.org/ by guest on September 28, 2021 Daphne is online at: average * The Journal of Immunology published online 29 September 2014 from submission to initial decision 4 weeks from acceptance to publication Sara Mostafavi, Adriana Ortiz-Lopez, Molly A. Bogue, Kimie Hattori, Cristina Pop, Daphne Koller, Diane Mathis, Christophe Benoist, The Immunological Genome Consortium, David A. Blair, Michael L. Dustin, Susan A. Shinton, Richard R. Hardy, Tal Shay, Aviv Regev, Nadia Cohen, Patrick Brennan, Michael Brenner, Francis Kim, Tata Nageswara Rao, Amy Wagers, Tracy Heng, Jeffrey Ericson, Katherine Rothamel, Adriana Ortiz-Lopez, Diane Mathis, Christophe Benoist, Taras Kreslavsky, Anne Fletcher, Kutlu Elpek, Angelique Bellemare-Pelletier, Deepali Malhotra, Shannon Turley, Jennifer Miller, Brian Brown, Miriam Merad, Emmanuel L. Gautier, Claudia Jakubzick, Gwendalyn J. Randolph, Paul Monach, Adam J. Best, Jamie Knell, Ananda Goldrath, Vladimir Jojic, J Immunol http://www.jimmunol.org/content/early/2014/09/28/jimmun ol.1401280 Koller, David Laidlaw, Jim Collins, Roi Gazit, Derrick J. Rossi, Nidhi Malhotra, Katelyn Sylvia, Joonsoo Kang, Natalie A. Bezman, Joseph C. Sun, Gundula Min-Oo, Charlie C. Kim and Lewis L. Lanier Variation and Genetic Control of Gene Expression in Primary Immunocytes across Inbred Mouse Strains Submit online. Every submission reviewed by practicing scientists ? is published twice each month by http://jimmunol.org/subscription http://www.jimmunol.org/content/suppl/2014/09/28/jimmunol.140128 0.DCSupplemental Information about subscribing to The JI No Triage! Fast Publication! Rapid Reviews! 30 days* Why • • • Material Subscription Supplementary The Journal of Immunology The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2014 by The American Association of Immunologists, Inc.
    [Show full text]
  • Clinical Efficacy and Immune Regulation with Peanut Oral
    Clinical efficacy and immune regulation with peanut oral immunotherapy Stacie M. Jones, MD,a Laurent Pons, PhD,b Joseph L. Roberts, MD, PhD,b Amy M. Scurlock, MD,a Tamara T. Perry, MD,a Mike Kulis, PhD,b Wayne G. Shreffler, MD, PhD,c Pamela Steele, CPNP,b Karen A. Henry, RN,a Margaret Adair, MD,b James M. Francis, PhD,d Stephen Durham, MD,d Brian P. Vickery, MD,b Xiaoping Zhong, MD, PhD,b and A. Wesley Burks, MDb Little Rock, Ark, Durham, NC, New York, NY, and London, United Kingdom Background: Oral immunotherapy (OIT) has been thought to noted during OIT resolved spontaneously or with induce clinical desensitization to allergenic foods, but trials antihistamines. By 6 months, titrated skin prick tests and coupling the clinical response and immunologic effects of peanut activation of basophils significantly declined. Peanut-specific OIT have not been reported. IgE decreased by 12 to 18 months, whereas IgG4 increased Objective: The study objective was to investigate the clinical significantly. Serum factors inhibited IgE–peanut complex efficacy and immunologic changes associated with OIT. formation in an IgE-facilitated allergen binding assay. Secretion Methods: Children with peanut allergy underwent an OIT of IL-10, IL-5, IFN-g, and TNF-a from PBMCs increased over protocol including initial day escalation, buildup, and a period of 6 to 12 months. Peanut-specific forkhead box protein maintenance phases, and then oral food challenge. Clinical 3 T cells increased until 12 months and decreased thereafter. In response and immunologic changes were evaluated. addition, T-cell microarrays showed downregulation of genes in Results: Of 29 subjects who completed the protocol, 27 ingested apoptotic pathways.
    [Show full text]
  • UNIVERSITY of CALIFORNIA Los Angeles Big Data Discovery Of
    UNIVERSITY OF CALIFORNIA Los Angeles Big data discovery of cancer immunotherapy targets arising from alternative splicing A dissertation submitted in partial satisfaction of the requirements for the degree Doctor of Philosophy in Bioinformatics by Yang Pan 2020 © Copyright by Yang Pan 2020 ABSTRACT OF THE DISSERTATION Big data discovery of cancer immunotherapy targets arising from alternative splicing by Yang Pan Doctor of Philosophy in Bioinformatics University of California, Los Angeles, 2020 Professor Yi Xing, Chair Alternative pre-mRNA splicing (AS) is a prevalent mechanism and a main source of transcriptomic and proteomic complexity in cells. Dysregulation of AS is widespread in tumor transcriptomes. Cancer immunotherapies have transformed the treatment of aggressive tumors, but identification of novel tumor antigens remains challenging. Petabytes of sequencing data in public domains presents unprecedented opportunities to exploit AS-derived peptides as a new category in the tumor antigen repertoire. In this dissertation, novel computational methods were developed to detect AS variations in cancers with significant biological or therapeutic implications. Utilizing these new tools, we demonstrated that we can characterize the key AS changes responding to oncogenic signals alterations, and more importantly, systematically identify splicing events that are potential tumor antigens for targeted immunotherapies. The first part of the dissertation describes Pathway Enrichment-Guided Activity Study of Alternative Splicing (PEGASAS), a novel computational framework identifying ii key splicing changes associated with oncogenic signals during disease progression from large-scale RNA-seq data. Although aberrant AS are widely detected in cancer, causes and consequences of AS dysregulations during cancer progression remain elusive. PEGASAS uses a pathway-guided approach for examining the effects of oncogenic signaling on splicing.
    [Show full text]