Multiplets, XMCD
Total Page:16
File Type:pdf, Size:1020Kb
the united nations educational, scientific abdus salam and cultural organization international centre for theoretical physics international atomic energy agency SCHOOL ON SYNCHROTRON RADIATION AND APPLICATIONS In memory of J.C. Fuggle & L. Fonda 19 April - 21 May 2004 Miramare - Trieste, Italy 1561/21 ____________________________________________________________ Multiplets, XMCD F. De Groot strada costiera, 11 - 34014 trieste italy - tel. +39 040 2240111 fax +39 040 224163 - [email protected] - www.ictp.trieste.it Multiplets in X-ray Spectroscopy lectures ICTP 2004, by Frank de Groot 1. X-RAYS ................................................................................................................................................ 2 1.1. INTERACTION OF X-RAYS WITH MATTER ....................................................................................... 3 1.1.1 X-ray absorption spectroscopy ................................................................................................ 6 1.1.2 Basics of XAFS Spectroscopy ................................................................................................11 1.2. THE ELECTRONIC STRUCTURE OF SOLIDS ................................................................................... 13 1.2.1. Orbitals in One dimension..................................................................................................... 13 1.2.2. Bloch Functions, Band Structures and k................................................................................ 14 1.2.3. Electronic states in two dimensions.......................................................................................17 1.2.4. Density of States .................................................................................................................... 23 1.2.5. Density Functional Theory and the local spin density approximation ................................. 24 1.3. XANES....................................................................................................................................... 26 1.3.1. Many Body Effects in the ground state .................................................................................. 28 1.3.2 Core hole effects .................................................................................................................... 28 1.3.3. Multiplet effects ..................................................................................................................... 29 1.3.4. The influence of the Matrix element ...................................................................................... 29 1.3.5. Calculations over a large energy range ................................................................................ 29 1.3.6. Approximations in the potential............................................................................................. 30 1.3.7. Real Space versus Reciprocal space calculations ................................................................. 30 1.4. XANES SPECTRAL SHAPE ANALYSIS .......................................................................................... 31 1.4.1. The energy position of X-ray absorption edges ..................................................................... 32 1.4.2. The intensity of the white line ................................................................................................ 35 1.4.3. Peaks at higher energies in the XANES region ..................................................................... 36 1.4.4. The pre-edge region............................................................................................................... 36 2. MULTIPLET EFFECTS................................................................................................................... 38 2.1. WHY IS MULTIPLET THEORY NEEDED? ........................................................................................ 38 2.2. ATOMIC MULTIPLETS.................................................................................................................. 41 2.2.1. Term symbols......................................................................................................................... 41 2.2.2. Matrix elements ..................................................................................................................... 45 2.3. ATOMIC MULTIPLET GROUND STATES OF 3DN SYSTEMS ............................................................... 47 2.3.1. jj coupling.............................................................................................................................. 48 2.4. X-RAY ABSORPTION SPECTRA DESCRIBED WITH ATOMIC MULTIPLETS. ..................................... 49 2.4.1. 2p XAS of 3d transition metals ..............................................................................................49 2.4.2. 3d XAS of rare earths ............................................................................................................ 55 2.4.3. 1s XAS of 3d trnition metls: the pre-edge ............................................................................. 61 3. CRYSTAL FIELD THEORY........................................................................................................... 62 3.1. A SHORT OUTLINE OF GROUP THEORY........................................................................................ 62 3.1.1. Total Symmetry and Multiplication Tables............................................................................ 62 3.2. THE CRYSTAL FIELD MULTIPLET HAMILTONIAN ........................................................................ 63 3.3. CUBIC CRYSTAL FIELDS............................................................................................................... 64 3.3.1. The definitions of the Crystal Field parameters .................................................................... 67 N 3.4. THE ENERGIES OF THE 3D CONFIGURATIONS.............................................................................. 68 3.4.1. The effect of the 3d spin-orbit coupling ................................................................................. 72 3.4.2. The effects on the x-ray absorption calculations ................................................................... 75 3.4.3. 3d0 systems in octahedral symmetry....................................................................................... 76 3.4.4. X-ray absorption spectra of 3dN systems ............................................................................... 82 4. CHARGE TRANSFER EFFECTS................................................................................................... 84 4.1. INITIAL STATE EFFECTS .............................................................................................................. 84 4.2. FINAL STATE EFFECTS ................................................................................................................. 89 4.3. THE X-RAY ABSORPTION SPECTRUM WITH CHARGE TRANSFER EFFECTS...................................... 90 1 Multiplets in X-ray Spectroscopy lectures ICTP 2004, by Frank de Groot 1. X-rays X-rays are defined as the electromagnetic radiation with a wavelength between Ultraviolet radiation and gamma radiation. The border between Ultraviolet radiation and X-rays is not clearly defined but usually set around 10-8meter, i.e. 10 nm. The upper limit of x-rays is usually set at 10-12 meter, i.e. 1 pm, although radiation with an energy above 10-11 meter is also called gamma radiation, in particular if it is created with a radioactive element. X- rays are sub-divided into soft x-rays, between 10 nm and 100 pm and hard x-rays between 100 pm and 1 pm. Soft x-rays are called 'soft' because they do not penetrate air and as such are relatively safe to work with. We will discuss the penetration length of x-rays below. Because of historical reasons, x-rays are often given in Angstroms, where 1 Å equals 10-10 meter or 100 pm. The bottom two axes in the figure give the frequency and the energy of the electromagnetic radiation, using the inverse proportionality between frequency and wavelength , i.e. =c/ , where c is the speed of light 3·108 m/s. This yields x-ray frequencies between 1016 and 1021 Hertz. It is more common to indicate x-rays with their energies E, using E=h , with the energy given in electron volts (eV) or kilo electron volts (keV), where they range between 100 eV and 106 eV. Calculate the energy in electron volt for a x-ray with 1 Å wavelength. Use: E= h = hc/ , with c=3·108 m/s, h=6.6·10-34 and 1 eV = 1.6·10-19 J E (1 Å)= 6.6·10-34 3·108 / 10-10 = 2·10-15 J /1.6·10-19 = 1.2·104 eV=12.4 keV It can be checked in the figure that a wavelength of 10-10meter corresponds to energy slightly above 104 eV. The wavelength of x-rays are of the same size as molecules, which range from 100 pm for small molecule such as water to 10 nm for macromolecules such as enzymes. In particular the distance of 1 Å is important in matter, because it corresponds to a typical interatomic distance. This makes diffraction with x-rays of approximately 1 Å an important technique to determine the interatomic distances and, in general, the structure of matter. X-rays are traditionally produced using x-ray tubes. In a x-ray tube, electrons are accelerated between the anode and the cathode. When they hit the cathode with high energy, they are decelerated through inelastic collisions with atoms in the target material. If the energy of the electrons is high enough this produces a continuous spectrum of