Grenoble Team Comes Close to Winning Igem

Total Page:16

File Type:pdf, Size:1020Kb

Grenoble Team Comes Close to Winning Igem NEWSLETTER Event Innovation Silicon photonics: Leti creates Grenoble two 300-mm testers eti has made a major step forward in the field of optical and electro-optical measurements with L two new testers for photonic components on team comes 300-mm wafers. Until now, there was simply no tester available on the market for wafers of this diameter. Leti made the new devices by replacing the probes on two conventional testers with fiber optics. The probe close to holders are controlled step-by-step using motors and Leti algorithms that automatically align the probes to within a micron. The modified testers underwent several months of testing; the researchers using them are more winning than happy with their performance. Several years ago Leti made similar modifications to 200 mm testers, so the lab now boasts a truly exceptional range of photonic testers, with two 200-mm testers and iGEM two 300-mm testers that are available for use by other research centers. A team of Grenoble students participated in Contact: [email protected] MIT’s prestigious iGEM (International Genetically Engineered Machine) competition in Boston on A high-precision, three-axis November 5–7, 2011. The team didn’t bring home accelerometric signal a trophy this time, but the experience was a eti has designed an addressing electronic circuit memorable one. offering accuracy to within a thousandth of the L full dynamic scale. The circuit’s accuracy was measured in tests conducted by Thales Avionics. While he eleven-member team of mathematics and single-axis sensors commonly offer comparable degrees biology students had been working since of accuracy—especially in aerospace and defense January on a mercury biosensor concept inspired applications—this Leti-designed circuit marks the new T state of the art for three-dimensional signals. by a series of meetings with chemical-industry giant Arkema. They took the new idea to the proof-of-concept The circuit is intended for use in a Tronics Microsystems stage and carried out an initial series of tests. iGEM gave three-axis accelerometric MEMS, and offers substantial them an opportunity to present their findings before 59 electronic noise optimization and very high heat stability. other finalists from around the globe, and to meet with It is able to withstand changes in its environment, and researchers and manufacturers like NASA and Autodesk. is suitable for applications in fields such as aerospace, geotechnical instrumentation, and high-performance Modeling concept garners attention automotive testing. The judges gave the team points for their excellent Contact: [email protected] modeling work. Frustratingly, this year’s iGEM finals did not include a modeling prize—unlike the European semi-finals in Amsterdam. Current sensors: Although the multidisciplinary team failed to bring home a win, they can be proud to have made it to the finals of big magnetoresistance, such a prestigious international competition. They also gained valuable experience and got an insider look at small price potential future careers. Third-year Grenoble Institute eti has developed a low-cost, compact, 16-channel of Technology-Phelma engineering student Geoffrey current sensor offering excellent linearity, Bouchage said, “I was planning to go on to get a PhD, but L resolution, and isolation properties (with more this experience has steered me more towards project than 1kV between the processor and sensor). This management.” Other team members plan to pursue advancement uses giant magnetoresistance (GMR) research in synthetic biology. systems and direct deposition of the current lines on the read circuit. Leti developed the sensor in response iGEM opened team members’ eyes to the world of to current measurement needs for fuel cell applications. No 17 opportunities out there for them. As for their mercury The use of GMR compensates for external magnetic Dec ’11 biosensor, Arkema could be interested in the technology. fields and ensures consistent measurements in unstable However, other researchers will have to take development environments. The sensor could also be used for a bit further first. automotive battery monitoring. Contact: [email protected] Contact: [email protected] Newsletter Innovation Infrared retinas inspired Ethera introduces by the human eye formaldehyde sensors eti has achieved a world first by obtaining infrared images from a hemispheric— thera, a start-up created in March 2010, launched rather than flat—retina. This retina is based on an ultra-thin (25 to 50 micron) its first product line in late September of this year: silicon substrate that is flexible enough to curve without folding or splitting. The a range of formaldehyde sensors to measure L2 E 1 cm retina (320 x 250 pixels spaced 30µm) has a radius of 80 mm. indoor air pollution in residential, commercial, and public This breakthrough technology will make the field curvature correction lenses that flat buildings. Simple enough to be used by anyone, the retinas require obsolete, thereby shrinking the size of large telescopes by a third. And the sensors can detect very low pollutant concentrations, reduced size will benefit other fields, as well; the new retina will likely be used in space with the readings displayed directly on the device. These systems, drones, and mobile telephone optics. And, as an added bonus, reducing the sensors mark a vast improvement over conventional number of lenses also improves image quality. systems; until now, samples had to be collected in test tubes and analyzed using gas chromatography. Contact: [email protected] Manufactured in Saclay, France, the sensors come in two versions: one measuring immediate exposure and one measuring long-term exposure. Ethera plans to introduce MRAM: additional sensors next year to measure other indoor air New pathways pollutants like aldehydes, benzene, toluene, and xylene. for electric current Contact: [email protected] pintec, a joint CEA/INAC-CNRS/UJF research unit, has developed a new MRAM structure with research partners in Spain. Manufacturers have already shown AtMol develops novel S interest in the new development, which was published in Nature magazine. The MRAM structure consists of a layer of cobalt between two platinum and aluminum oxide technological objects electrodes, and could revolutionize memory technology. The electric current follows he European Union AtMol project on molecular new read/write pathways that optimize the properties of the materials through which it electronics is spurring the development of travels at each stage, eliminating contradictory demands. T unprecedented technological objects at Leti, The MRAM structure is also faster and could cut the amount of current required tenfold. including surfaces of several hundred nanometers per Just how the new structure works is not yet clear; the Rashba effect and the spin Hall side on silicon substrates. These virtually-perfect surfaces effect are two possible explanations. (with a roughness of under 1 nm) are protected using temporary packaging. Leti is also using focused ion beam Contact: [email protected] (FIB) technology to mill 40 nm nanovias spaced at 300 nm to allow for electrical contacts on the substrates. The objects will be sent to research partners including All-electric spintronics: AtMol project coordinator CEMES (a Toulouse-based CNRS lab) for integration. Ultimately the chips, which will Never say never! offer vacuum levels ten million times greater than MEMS n INAC lab is now one of world’s select few capable of producing a spin current technology, will enable the electric characterization of using neither a magnetic field nor ferromagnetic materials. Their secret? A catalogued molecular components. lateral 50 nm platinum nanowire device in which the injector and detector are A Contact: [email protected] connected by a central channel. The system measures just 200 nm x 100 nm, and a 100 microampere current generates a spin current of around 1 microvolt. The next step will be to increase the conversion yield to 20% to meet market demands. Notable number The INAC lab, which is working in association with Albert Fert’s CNRS lab, has now turned rimary technology its focus to using two-material combinations and doped materials to achieve better research rarely delivers yields. P high production yields Contact: [email protected] immediately, especially for functional products. And % yet, yields of 87% were Single photon sources 87 recently achieved on 3D circuit demonstrators for wireless applications. Compared with conventional 2D demonstrators for come out of the fridge the same circuits, these 3D demonstrators incorporate hile current semiconductor single photon sources operate at 220 K at best, several technological advancements developed by researchers at INAC have achieved 300 K operation using II–IV semiconductor- STMicroelectronics and Leti—including the stacking and W based quantic boxes. The structure is made of 10-nn-diameter zinc selenium partitioned design of the two components and backside (ZnSe) nanowires, into which 3-nm- to 4-nm-thick cadmium selenium (CdSe) quantic interconnect vias and routing, all using a 65 nm CMOS boxes are inserted. The nanowires are grown on a zinc selenium substrate that allows process. accurate control of nanowire direction. These results come thanks to Leti’s long-standing With their extremely high emission rates, these devices could enable repetition successful collaboration with Brewer Science, EVG, frequencies
Recommended publications
  • Grenoble Isere, France the Smart Move! March 11 Th , 2010
    Grenoble Isere, France the smart move! March 11 th , 2010 grenoble - isere - france A powerful industrial region in the heart of Europe Gen ève Rhône -Alpes Lyon Grenoble Is ère With a sizable market and labor pool • Rhône-Alpes 1/10 of France’s population & 2 nd economic region in term of GDP • Isere 1,203,050 inhabitants • Grenoble area 700,000 inhabitants 2 grenoble-isere-france le logo de l’AEPI est indissociable de cette présentation - aucune modification ne peut être apportée à ce document sans l’accord préalable de l’AEPI with public policy makers and industrial players addressing together today’s society’s challenges Be more energy efficient Communicate Stay healthy 3 grenoble-isere-france le logo de l’AEPI est indissociable de cette présentation - aucune modification ne peut être apportée à ce document sans l’accord préalable de l’AEPI Actualisation 2008 Born in Grenoble … Hydroelectricity (19th century ) 1st French scanner (1972) Airbag sensors (1985) 1st video decoder and LCD displays (1993) Smallest worldwide transistor (1999) Arva system (2005) Biochip for avian flu detection (2006) 4 grenoble-isere-france le logo de l’AEPI est indissociable de cette présentation - aucune modification ne peut être apportée à ce document sans l’accord préalable de l’AEPI Actualisation 2008 Born in Grenoble … • Grenoble number one for cooperation between public & private research in France • 79 projects financed by OSEO in 2008, representing an input of +20 million € • €13,7 million raised Dec 2008 Success stories • Acquisition of US Californian company and • new US Texas based production facility in 2008 • Movea (motion sensors), a spin off from LETI, acquires US company Gyration in 2008 • And others….
    [Show full text]
  • NEWS RELEASE Grenoble, June 10, 2015
    NEWS RELEASE Grenoble, June 10, 2015 Clinatec Chairman Alim-Louis Benabid Honored by International Neuromodulation Society ‘Giant of Neuromodulation Award’ Recognizes Benabid’s Pioneering Work In Treating Symptoms of Parkinson’s Disease, Essential Tremor and Dystonia The International Neuromodulation Society (INS) today presented its third annual “Giant of Neuromodulation Award” to Prof. Alim-Louis Benabid, board chairman of Clinatec – The Edmond J. Safra Biomedical Research Center in Grenoble, France. Meeting at its 12th World Congress in Montreal, the society recognized Benabid for clinical work in the 1980s that helped usher in the modern era of using deep brain stimulation (DBS) to manage motor symptoms of Parkinson’s disease, essential tremor and dystonia. Benabid, who co-founded Clinatec in 2006, is the first award recipient who is renowned for work in neuromodulation for movement disorder. Clinatec – The Edmond J. Safra Biomedical Research Center conducts research on the frontier of health care and micro- and nanoelectronics. Its teams of medical doctors, biologists, mathematicians, engineers and other specialists bring a unique, multidisciplinary approach to diagnosis and treatment of neurodegenerative diseases, cancer and motor disabilities, and development of innovative biomedical devices to improve patient lives. “Prof. Benabid’s pioneering role in developing deep brain stimulation for treating Parkinson’s disease and other neurological disorders demonstrates the potential benefits that can be achieved by applying advanced technologies to medicine,” said Marie-Noëlle Semeria, CEO of CEA-Leti, the French microelectronics research institute that helped launch Clinatec. “This vision drives the research at Clinatec, where clinicians work hand in hand with experts in advanced technologies to discover new treatments for some of humanity’s most serious diseases.” The Giant of Neuromodulation Award has been presented at biennial congresses of the nonprofit International Neuromodulation Society since 2011, reflecting the growth and maturity of the field.
    [Show full text]
  • Monte Carlo Calculations of Pressure Profiles in Particle Accelerator Storage Rings R
    Monte Carlo Calculations of Pressure Profiles in Particle Accelerator Storage Rings R. Kersevan*, ESRF, Grenoble, France [email protected] – Tel.: +33 4 76 88 22 06 Agenda: Intro: Particle Accelerators - Where and What For? Beam Loss Mechanisms Pressure Profiles Why MC? Framework Examples Conclusions References 1 * On behalf of the Vacuum Group, Technical Services Division, ESRF - 6 Rue Jules Horowitz, Grenoble F-38043 Cedex 09 1. Intro: Particle Accelerators - Where and What For? Where: •The total number of particle accelerators, all categories included, in operation in the world as of today is practically impossible to know with precision. The are recent estimates which list at about 1,500 the number used in industrial applications, 5,000 in the medical field (radiotherapy and production of radio-isotopes), and ~200 for basic research (particle physics, synchrotron radiation). In addition, about 7,000 units are used as ion implanters or to modify the state of surfaces, and 1,000 more for non- nuclear research. The grand total is approximately 15,000 accelerators [1]; •They are located on the 5 continents, although Africa unfortunately barely makes it on the list; •Total world investment can be estimated at several billions €/year; Ex.: the ILC (Internation Linear Collider, an international project under study now) would need approximately 14 billion $US to complete in 7 years, if built now with present technology. Its vacuum system is one of the major contributors to the total budget, and a possible show-stopper for the entire project. Innovative vacuum technology solutions make the top ten list in terms of R&D [2]; 2 Monte Carlo Calculations of Pressure Profiles in Particle Accelerator Storage Rings - R.
    [Show full text]
  • Grenoble Alpes University Hospital
    GRENOBLE ALPES UNIVERSITY HOSPITAL Grenoble Alpes University Hospital CHUGA (CHU Grenoble Alpes) Grenoble Alpes University Hospital is the reference hospital in the alpine region. Population of the region : 2 million people Grenoble is located: • 1h from Lyon • 1h30 from Geneva • 3h from Paris • 4h from Milano 2 At the heart of a unique health ecosystem in France Centre Hospitalier Universitaire Grenoble Alpes Grenoble: a unique health ecosystem in the heart of the Alps 4 Grenoble: a unique health ecosystem in the heart of the Alps 5th most inventive city in the World (Forbes, July 2013) Strongest focus on research in France A UNIQUE ENVIRONMENT IN MEDICAL TECHNOLOGIES Computer- Clusters for assisted medical medical research interventions and innovation Medical software Silver economy expertise World firsts « made in Grenoble » : First neurosurgery robot First navigation of total knee surgery 5 A Hospital in partnership with a world-class University 2019 Shanghai ranking : French top 7 / World top 200 2019 Reuters’ ranking - Europe most innovative universities : # 33 • In 2016, Grenoble Alpes University was granted the IDEX Label - Excellence Initiatives – by an international jury. This label, granted to only 10 French Universities, aims to create world-class teaching and research centers of excellence. 2019: Grenoble in French top 5 of « Best city to study » • Medical and pharmacy schools : at the edge of innovation in education A culture of innovation in education : Problem-based education, tutoring, flipped education, digital
    [Show full text]
  • GUI+ Structure of the Idex Partnership
    IDEX CALL FOR PROPOSALS GUI+ IDEX 2 | SELECTION PHASE SUBMISSION FORM Acronym of the project GUI+ Titre du projet en Initiative d’excellence français Grenoble-Alpes Université de l’Innovation Project title in Excellence Initiative English Grenoble-Alps University of Innovation Name: Yannick Vallée Address: [email protected] Project manager PRES Université de Grenoble bât. les Taillées - 271 rue de la Houille Blanche 38400 Saint Martin d'Hères – France Institution leading the project (Project Name: GUI+ Committee leader) Capital grant 908 million Euros requested Structure of the Idex partnership Higher education institutions Research institutes Other Université Joseph Fourier CNRS CHUG (Grenoble University Hospital) Université Pierre Mendes-France CEA Université Stendhal INRIA Institut Polytechnique de Grenoble Cemagref IEP Grenoble INSERM Université de Savoie Ecole Nationale Supérieure d’Architecture de Grenoble Grenoble École de Management GUI+ | Grenoble-Alps University of Innovation 1/87 IDEX CALL FOR PROPOSALS GUI+ IDEX 2 | SELECTION PHASE SUBMISSION FORM 1 CONTENTS 2 ADDITIONAL FILE: OPERATIONAL MEASURES ............................................................................ 3 3 EXECUTIVE SUMMARY ........................................................................................................... 12 4 DELTA DOCUMENT ................................................................................................................ 18 4.1 The legal status of the structure carrying the Idex ..................................................................18
    [Show full text]
  • REPORT2019-LETI-Web
    TECHNOLOGY RESEARCH INSTITUTE 2019 SCIENTIFIC REPORT 2019 SCIENTIFIC REPORT TECHNOLOGY RESEARCH INSTITUTE LETI 2019 Scientific Report LETI 2019 Scientific Report “CREATIVITY Emmanuel IS INTELLIGENCE Sabonnadière HAVING FUN.” Chief Executive Officer Albert Einstein As one of France’s leading research institutes in the fields of micro and nanoelectronics, CEA-Leti actively supports society’s digital transition—in energy, the environment, and the future of medicine—driven Thomas Ernst by the French Alternative Energies and Atomic Energy VP for Science © Benjamin Zwarts © CEA-Leti Commission (CEA). and Technology he digital transition, which aligns closely with CEA-Leti’s Our last two programs are integrated LiDAR and 5G. They are With the digital revolution well underway, the core expertise, underpins advances in all of these fields, rooted in the cyber-physical systems domain, an area in which use of information technology is expanding faster Tand the institute is running a far-reaching program on we have a long history of early-stage research with our industrial than ever before in fields like transportation, embedded artificial intelligence that will accelerate/boost partners. These technologies are mature, and our R&D is tailored the digital transition. This program is foundational in that it to specific market applications. Here, we leverage the power of telecommunications, healthcare, and augmented will bring the groundbreaking semiconductor technologies our cleanrooms outfitted with the most advanced More-than- reality. The challenge now is to achieve much finer we have developed with our partners over the past several Moore production equipment and the passion for innovation integration. This means inventing new system and years to the forefront.
    [Show full text]
  • IDEX Grenoble
    APPEL A PROJETS IDEX GUI+ 2010 DOCUMENT B Phase de présélection Acronyme du projet GUI+ d’Idex Titre du projet en Initiative d’excellence français Grenoble Alpes Université de l’Innovation Excellence Initiative Project title in English Grenoble Alps University of Innovation Nom : Yannick Vallée Personne en charge de Coordonnées : [email protected] la coordination du PRES Université de Grenoble – projet bât. les Taillées - 271 rue de la Houille Blanche - 38400 Saint Martin d'Hères - France Institution portant le Nom : Comité GUI+ projet (le porteur) Dotation en capital 1,2 milliard d’euros demandée (a) Composition du groupement constituant l’Idex Etablissements Organismes de recherche Autres d’enseignement supérieur et de recherche Université Joseph Fourier CNRS CHU de Grenoble Université Pierre Mendes-France CEA Université Stendhal INRIA Institut Polytechnique de Grenoble Cemagref IEP Grenoble INSERM Université de Savoie Ecole Nationale Supérieure d’Architecture de Grenoble Grenoble École de Management 1/59 APPEL A PROJETS IDEX GUI+ 2010 DOCUMENT B Sommaire 1. AMBITION ET STRATEGIE DU PROJET ................................................................................... 3 2. STRUCTURE ET CARACTERISATION DE L’INITIATIVE D’EXCELLENCE ............................................... 6 2.1. Présentation du porteur du projet ........................................................................................... 6 2.2. Candidature aux actions du Programme « Investissements d’avenir » .............................................. 6 2.3. Périmètre d’excellence, environnement, perspectives et valeur ajoutée ............................................ 8 2.3.1 L’excellence en recherche : au service de la société 8 2.3.2 L’excellence en formation : des actions de formation en relation avec le périmètre d’excellence recherche 10 2.3.3 La valorisation 13 2.3.4 Partenaires 14 2.3.5 Positionnement européen et international 14 3.
    [Show full text]
  • Bilan 2006-2009
    UMR 5821 Université Grenoble I - CNRS/IN2P3 - Grenoble INP Documents préparatoires pour le quadriennal ______________ Bilan 2006-2009 Présentation du bilan scientifique du LPSC (UMR 5821) 1. Présentation générale du laboratoire Introduction Le Laboratoire de Physique Subatomique et de Cosmologie est actuellement une UMR tripartite entre le CNRS (IN2P3 et ST2I) et deux Universités de Grenoble (UJF et INPG). L’effectif du laboratoire varie ces dernières années entre 200 et 210 agents (90 ITA, 65 chercheurs - CNRS et Universitaires -, une trentaine de doctorants et une vingtaine de postdocs/ATER et CDD). Outre leur travail en recherche fondamentale qui est la première de leurs missions, nos personnels assument de nombreuses responsabilités dans l’enseignement universitaire et mènent une action importante de formation par la recherche (accueil d’environ 60 stagiaires par an). Il faut aussi souligner notre implication soutenue et historique dans la valorisation de nos acquis technologiques et scientifiques, et notre effort pour la diffusion de la connaissance scientifique. Notre budget annuel avoisine les 13 M€ (masse salariale incluse) dont en moyenne 4 M€ financent les besoins de fonctionnement et les projets scientifiques du laboratoire. Ces dernières années une part grandissante de nos ressources est abondée par l’ANR (à ce jour, une quinzaine de nos projets sont ou ont été soutenus par cette agence) et par des fonds alloués par l’Europe (avec 4 nouveaux contrats dans le 7ieme PCRD) ou la région (CPER et MIRA). L’activité des groupes du LPSC est soutenue par plusieurs “Progamme International de Collaboration Scientifique” (PICS) et accords pour ce qui est des relations internationales.
    [Show full text]
  • Projet D™Avis Sur /Projet De Contribution Sur
    Erreur ! Insertion automatique non définie. L'Usine du futur 2ème partie : Les fiches variables 7 Juillet 2015 Conseil économique, social et environnemental régional Rhône-Alpes L'Usine du futur 2ème partie : Les fiches variables Rapporteur M. Jean-Pierre CLAVERANNE Président de la section Prospective Rapport n° 2015-11 7 Juillet 2015 Les Avis et Contributions Le CESER en quelques mots… Le CESER concourt à l’administration de la région aux côtés du Conseil régional et de son Président. Il s’agit d’une assemblée consultative qui émet des avis (saisines) et contributions (autosaisines). Elle est représentative de la vie économique et sociale de la région. Expression de la société civile dans toute sa diversité, les propositions du CESER éclairent les choix des décideurs régionaux. Vous souhaitez suivre l’actualité du CESER Rhône-Alpes, inscrivez-vous à la [email protected] ou retrouvez les informations sur le site Internet de la Région Rhône-Alpes : www.ceser.rhonealpes.fr Ce rapport a donné lieu à un débat sans vote lors de l’Assemblée plénière du CESER Rhône-Alpes du 7 juillet 2015 Les Avis et Contributions Sommaire Pages 2EME PARTIE : LES FICHES VARIABLES 7 VARIABLES DE CONTEXTE 10 VARIABLES ACTIVITES ECONOMIQUE – RECHERCHE – INNOVATION 33 VARIABLES PROXIMITE DE L’ENTREPRISE 49 VARIABLES ENVIRONNEMENT 67 VARIABLES TERRITOIRES 93 VARIABLES FORMATION – EMPLOI 109 VARIABLES FONCTIONNEMENT DE L’USINE 131 Bibliographie générale 171 L'Usine du futur_2ème partie : Les fiches variables • CESER Rhône-Alpes • 7 Juillet 2015 6 L'Usine du futur_2ème
    [Show full text]
  • Deep Brain Stimulation of the Subthalamic Nucleus in Obsessive
    J Neurol Neurosurg Psychiatry: first published as 10.1136/jnnp-2020-323421 on 8 October 2020. Downloaded from Neurosurgery ORIGINAL RESEARCH Deep brain stimulation of the subthalamic nucleus in obsessive–compulsives disorders: long- term follow- up of an open, prospective, observational cohort Stephan Chabardes ,1,2,3 Paul Krack,4,5 Brigitte Piallat,3 Thierry Bougerol,6 Eric Seigneuret,2 Jerome Yelnik,7 Sara Fernandez Vidal,7 Olivier David,3 Luc Mallet,7,8,9 Alim- Louis Benabid,1 Mircea Polosan3,6 ► Additional material is ABSTRACT aggressive, sexual and other that will lead to asso- published online only. To view Background Obsessive–compulsive disorder (OCD) ciated compulsions such as counting, checking, please visit the journal online (http:// dx. doi. org/ 10. 1136/ is a major cause of disability in western country and hoarding, washing, symmetry and precision. These jnnp- 2020- 323421). responsible for severe impairment of quality of life. About symptoms are supported by different neuronal 10% of patients present with severe OCD symptoms networks4 5 that may be of therapeutic interest and For numbered affiliations see and require innovative treatment such as deep brain the variability of symptoms mirror their heteroge- end of article. stimulation (DBS). Among possible targets, the non- neity in response to conventional treatment. About motor subthalamic nucleus (STN) is a key node of the 30%–40% of patients present with severe (Yale Correspondence to Pr Stephan Chabardes, basal ganglia circuitry, strongly connected to limbic and Brown Obsessive Compulsive Scale (YBOCS) neurochirurgie, Centre cortical areas known to be involved in OCD. 24–31) to very severe (YBOCS 32–40) OCD symp- Hospitalier Universitaire Method We analysed, in a prospective, observational, toms.5 6 Grenoble Alpes Hôpital monocentric, open label cohort, the effect of chronic OCD usually tends to be chronic and might Michallon, La Tronche, Rhône- non-motor STN-DBS in 19 patients with treatment- require long- term medication and cognitive- Alpes, France; schabardes@ chu- grenoble.
    [Show full text]
  • Leti Sensors Used in Future Bio-Artificial Liver
    NEWSLETTER Top news Innovation Smart car windshields Leti sensors in full color EA-Leti researchers are working with Optys (a Nexter company) to improve smart car C windshield technology and get it ready for manufacturing. used in Smart windshields display information useful to drivers for an augmented-reality experience at the wheel. The helmet-based system in development includes both data acquisition and projection capabilities. Originally intended for military applications, the system could be of interest to the security, emergency response, and future construction markets. The researchers are currently working on an alternative to the monochromatic hologram system implemented for the research demonstrator that would enable full- color images and lower manufacturing costs. bio-artifi cial Contact: [email protected] Zero-energy elevators liver just over the horizon odimas, France’s leading elevator manufacturer, is The EU FP7 d-LIVER project aims to develop a bio- teaming up with Schneider Electric and Grenoble artifi cial liver (BAL) support system for patients S Institute of Technology to develop a smart-grid- connected elevator that is powered both by the grid and suffering from liver failure or awaiting a transplant. by alternative energy sources. The R&D is taking place The project, launched in 2011, brings together under the EU Arrowhead project. CEA-Leti is also involved in the project, supplying a a dozen partners, including CEA-Leti, which is virtual platform to coordinate communication between the elevator’s command-control system and a Schneider supplying sensors for the real-time monitoring of Electric energy optimization module. The system ammonium ions.
    [Show full text]
  • Recherche CERI 2016 -Volume 1 Synthèse
    CERI Centre de recherches internationales Rapport soutenu par Institut CDC pour la Recherche, Caisse des Dépôts Décentralisation énergétique et innovations territoriales Une comparaison européenne dans les secteurs de l’éolien, de la biomasse et du photovoltaïque VOLUME 1 Synthèse Sous la direction de François Bafoil et Gilles Lepesant Auteurs : Francois Bafoil, Amélie Bonnet, Rachel Guyet, Gilles Lepesant Paris – 4 février 2016 2 TABLE DES MATIÈRES Synthèse générale Introduction…………………………………………………………………………………….3 Régions périphériques, traditions industrielles et villes en crise ............................................... 4 Infrastructures et politiques en matière d'innovation ................................................................. 6 Les mobilisation politiques ........................................................................................................ 8 Les innovations territoriales ..................................................................................................... 10 Les engagements des municipalités ......................................................................................... 13 Transition énergétique et rénovation urbaine ........................................................................... 14 L’autonomie énergétique ......................................................................................................... 16 Conclusion. .............................................................................................................................. 21 Synthèse
    [Show full text]