ARMADA Finalr Eview
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Gnc 2021 Abstract Book
GNC 2021 ABSTRACT BOOK Contents GNC Posters ................................................................................................................................................... 7 Poster 01: A Software Defined Radio Galileo and GPS SW receiver for real-time on-board Navigation for space missions ................................................................................................................................................. 7 Poster 02: JUICE Navigation camera design .................................................................................................... 9 Poster 03: PRESENTATION AND PERFORMANCES OF MULTI-CONSTELLATION GNSS ORBITAL NAVIGATION LIBRARY BOLERO ........................................................................................................................................... 10 Poster 05: EROSS Project - GNC architecture design for autonomous robotic On-Orbit Servicing .............. 12 Poster 06: Performance assessment of a multispectral sensor for relative navigation ............................... 14 Poster 07: Validation of Astrix 1090A IMU for interplanetary and landing missions ................................... 16 Poster 08: High Performance Control System Architecture with an Output Regulation Theory-based Controller and Two-Stage Optimal Observer for the Fine Pointing of Large Scientific Satellites ................. 18 Poster 09: Development of High-Precision GPSR Applicable to GEO and GTO-to-GEO Transfer ................. 20 Poster 10: P4COM: ESA Pointing Error Engineering -
Real-Time On-Orbit Calibration of Angles Between Star Sensor and Earth Observation Camera for Optical Surveying and Mapping Satellites
ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume IV-2/W5, 2019 ISPRS Geospatial Week 2019, 10–14 June 2019, Enschede, The Netherlands REAL-TIME ON-ORBIT CALIBRATION OF ANGLES BETWEEN STAR SENSOR AND EARTH OBSERVATION CAMERA FOR OPTICAL SURVEYING AND MAPPING SATELLITES Wei Liu 1*, Hui Wang 2, Weijiao Jiang 2, Fangming Qian 3, Leiming Zhu 4 1 Xi’an Research Institute of Surveying and Mapping, No.1 Middle Yanta Road, Xi’an, China - [email protected] 2 State Key Laboratory of Integrated Service Network, Xidian University, Xi’an, China - [email protected] 2 State Key Laboratory of Integrated Service Network, Xidian University, Xi’an, China - [email protected] 3 Information Engineering University, Zhengzhou, China - [email protected] 4 Centre of TH-Satellite of China, Beijing, China - [email protected] Commission I, WG I/4 KEY WORDS: Star Sensor, Attitude Measurement, Error Analysis, On-Orbit Calibration, Angle between Cameras, On-orbit Monitoring Device ABSTRACT: On space remote sensing stereo mapping field, the angle variation between the star sensor’s optical axis and the earth observation camera’s optical axis on-orbit affects the positioning accuracy, when optical mapping is without ground control points (GCPs). This work analyses the formation factors and elimination methods for both the star sensor’s error and the angles error between the star sensor’s optical axis and the earth observation camera’s optical axis. Based on that, to improve the low attitude stability and long calibration time necessary of current satellite cameras, a method is then proposed for real-time on-orbit calibration of the angles between star sensor’s optical axis and the earth observation camera’s optical axis based on the principle of auto-collimation. -
Space Policy Directive 1 New Shepard Flies Again 5
BUSINESS | POLITICS | PERSPECTIVE DECEMBER 18, 2017 INSIDE ■ Space Policy Directive 1 ■ New Shepard fl ies again ■ 5 bold predictions for 2018 VISIT SPACENEWS.COM FOR THE LATEST IN SPACE NEWS INNOVATION THROUGH INSIGNT CONTENTS 12.18.17 DEPARTMENTS 3 QUICK TAKES 6 NEWS Blue Origin’s New Shepard flies again Trump establishes lunar landing goal 22 COMMENTARY John Casani An argument for space fission reactors 24 ON NATIONAL SECURITY Clouds of uncertainty over miltary space programs 26 COMMENTARY Rep. Brian Babin and Rep. Ami Ber We agree, Mr. President,. America should FEATURE return to the moon 27 COMMENTARY Rebecca Cowen- 9 Hirsch We honor the 10 Paving a clear “Path” to winners of the first interoperable SATCOM annual SpaceNews awards. 32 FOUST FORWARD Third time’s the charm? SpaceNews will not publish an issue Jan. 1. Our next issue will be Jan. 15. Visit SpaceNews.com, follow us on Twitter and sign up for our newsletters at SpaceNews.com/newsletters. ON THE COVER: SPACENEWS ILLUSTRATION THIS PAGE: SPACENEWS ILLUSTRATION FOLLOW US @SpaceNews_Inc Fb.com/SpaceNewslnc youtube.com/user/SpaceNewsInc linkedin.com/company/spacenews SPACENEWS.COM | 1 VOLUME 28 | ISSUE 25 | $4.95 $7.50 NONU.S. CHAIRMAN EDITORIAL CORRESPONDENTS ADVERTISING SUBSCRIBER SERVICES Felix H. Magowan EDITORINCHIEF SILICON VALLEY BUSINESS DEVELOPMENT DIRECTOR TOLL FREE IN U.S. [email protected] Brian Berger Debra Werner Paige McCullough Tel: +1-866-429-2199 Tel: +1-303-443-4360 [email protected] [email protected] [email protected] Fax: +1-845-267-3478 +1-571-356-9624 Tel: +1-571-278-4090 CEO LONDON OUTSIDE U.S. -
Outstanding Expertise at the Service of Your Ambitions
OUTSTANDING EXPERTISE AT THE SERVICE OF YOUR AMBITIONS #enablingyourambitions MILLION TURNOVER IN 2017 ambitions your EMPLOYEES INCLUDING ING 60% ENGINEERS OUR GOAL: L 70+ TO COMBINE‘‘ ENAB TECHNOLOGICAL EXCELLENCE AND 360 COMPETITIVENESS SODERN TO TRANSFORM OUR CUSTOMERS’ AMBITIONS 2 INTO REALITIES.‘‘ OUR DNA Franck Poirrier, CEO of Sodern We rely on more than 50 years of experience sharehoLDers: ArianeGroUP (90%) in optronics and neutron technology AND CEA (10%) 16600 to develop innovative and competitive solutions for our commercial and institutional customers. M2 OF FACILITIES 2 KEY AREAS As a subsidiary of the We preserve and enhance To meet the expectations of OF KNOW-HOW: European leader in access this exceptional technological changing markets, we set high OPTRONIC, to space, ArianeGroup, know-how by participating in competitive requirements for NEUtron we are operationally scientific programs that push ourselves: the implementation technoLOGY independent. the limits of the state of the of lean management, perfect art: the caesium atom clock understanding of our We are also a historical and Pharao, the seismometer of customers’ needs, agility and strategic defence supplier, a the Mars mission InSight, cells optimisation of production characteristic that guarantees of Pockels for the Megajoule costs are the commitments us a solid base of industrial laser, etc. that allow us to maintain a activities, thereby affirming competitive edge with a very durability and reliability. Sodern’s core business is the high level of customer Our institutional clients’ high series production of star satisfaction, and to consolidate level of requirements has led trackers that enable satellites our position as a world leader us to develop an extraordinary to orient themselves precisely in in several markets. -
IASI: a Review of Instrument Performance and Characterizations
IASI: a Review of Instrument Performance and Characterizations D. Siméonia, D. Blumsteinb, P. Astruca, C. Degrellea, B. Chetritea, B. Tournierd, G. Chalonb, T. Carlierb, G. Kayalc a ALCATEL SPACE -10 Bd du Midi BP99-06156 Cannes La Bocca Cedex - France, b CNES - 18 avenue Edouard Belin – 31401 Toulouse Cedex 9 – France c EUMETSAT – Am Kavalleriesant 31, D-64295 Darmstadt – Germany d NOVELTIS-Parc Tech du Canal – 2, av. de l’Europe – 31526 Ramonville St Agne Cedex-France Corporate Communications IASI Payload of the European Meteorological Polar-Orbit Satellites METOP Mains missions: weather predictions and climate studies. Program led by the French National Space Agency CNES in association with the European Meteorological Satellite Organization EUMETSAT. Prime Contractor: Thales Alenia Space Dimensions of sounder : 1.1x1.1x1.2 m3 Mass sounder < 200 Kg Stiffness > 55Hz during launch Power consumption < 200 Watt Reliability > 0.8 Availability > 97.5 % over 5 years 2 All rights reserved © 2007, Thales Alenia Space IASI Payload of the European Meteorological Polar-Orbit Satellites METOP Mains missions: weather predictions and climate studies. Program led by the French National Space Agency CNES in association with the European Meteorological Satellite Organization EUMETSAT. Prime Contractor: Thales Alenia Space Dimensions of sounder : 1.1x1.1x1.2 m3 Mass sounder < 200 Kg Stiffness > 55Hz during launch Power consumption < 200 Watt Reliability > 0.8 Availability > 97.5 % over 5 years Status : - EM delivered in Dec 2001 - PFM delivered in July -
Determination of Optimal Earth-Mars Trajectories to Target the Moons Of
The Pennsylvania State University The Graduate School Department of Aerospace Engineering DETERMINATION OF OPTIMAL EARTH-MARS TRAJECTORIES TO TARGET THE MOONS OF MARS A Thesis in Aerospace Engineering by Davide Conte 2014 Davide Conte Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science May 2014 ii The thesis of Davide Conte was reviewed and approved* by the following: David B. Spencer Professor of Aerospace Engineering Thesis Advisor Robert G. Melton Professor of Aerospace Engineering Director of Undergraduate Studies George A. Lesieutre Professor of Aerospace Engineering Head of the Department of Aerospace Engineering *Signatures are on file in the Graduate School iii ABSTRACT The focus of this thesis is to analyze interplanetary transfer maneuvers from Earth to Mars in order to target the Martian moons, Phobos and Deimos. Such analysis is done by solving Lambert’s Problem and investigating the necessary targeting upon Mars arrival. Additionally, the orbital parameters of the arrival trajectory as well as the relative required ΔVs and times of flights were determined in order to define the optimal departure and arrival windows for a given range of date. The first step in solving Lambert’s Problem consists in finding the positions and velocities of the departure (Earth) and arrival (Mars) planets for a given range of dates. Then, by solving Lambert’s problem for various combinations of departure and arrival dates, porkchop plots can be created and examined. Some of the key parameters that are plotted on porkchop plots and used to investigate possible transfer orbits are the departure characteristic energy, C3, and the arrival v∞. -
Los Motores Aeroespaciales, A-Z
Sponsored by L’Aeroteca - BARCELONA ISBN 978-84-608-7523-9 < aeroteca.com > Depósito Legal B 9066-2016 Título: Los Motores Aeroespaciales A-Z. © Parte/Vers: 1/12 Página: 1 Autor: Ricardo Miguel Vidal Edición 2018-V12 = Rev. 01 Los Motores Aeroespaciales, A-Z (The Aerospace En- gines, A-Z) Versión 12 2018 por Ricardo Miguel Vidal * * * -MOTOR: Máquina que transforma en movimiento la energía que recibe. (sea química, eléctrica, vapor...) Sponsored by L’Aeroteca - BARCELONA ISBN 978-84-608-7523-9 Este facsímil es < aeroteca.com > Depósito Legal B 9066-2016 ORIGINAL si la Título: Los Motores Aeroespaciales A-Z. © página anterior tiene Parte/Vers: 1/12 Página: 2 el sello con tinta Autor: Ricardo Miguel Vidal VERDE Edición: 2018-V12 = Rev. 01 Presentación de la edición 2018-V12 (Incluye todas las anteriores versiones y sus Apéndices) La edición 2003 era una publicación en partes que se archiva en Binders por el propio lector (2,3,4 anillas, etc), anchos o estrechos y del color que desease durante el acopio parcial de la edición. Se entregaba por grupos de hojas impresas a una cara (edición 2003), a incluir en los Binders (archivadores). Cada hoja era sustituíble en el futuro si aparecía una nueva misma hoja ampliada o corregida. Este sistema de anillas admitia nuevas páginas con información adicional. Una hoja con adhesivos para portada y lomo identifi caba cada volumen provisional. Las tapas defi nitivas fueron metálicas, y se entregaraban con el 4 º volumen. O con la publicación completa desde el año 2005 en adelante. -Las Publicaciones -parcial y completa- están protegidas legalmente y mediante un sello de tinta especial color VERDE se identifi can los originales. -
Esa Broch Envisat 2.Xpr Ir 36
ENVISAT-1 Mission & System Summary ENVISAT-1 ENVISAT-1 Mission & System Summary Issue 2 Table of contents Table Table of contents 1 Introduction 3 Mission 4 System 8 Satellite 16 Payload Instruments 26 Products & Simulations 62 FOS 66 PDS 68 Overall Development and Verification Programme 74 Industrial Organization 78 Introduction Introduction 3 The impacts of mankind’s activities on the Earth’s environment is one of the major challenges facing the The -1 mission constists of three main elements: human race at the start of the third millennium. • the Polar Platform (); • the -1 Payload; The ecological consequences of human activities is of • the -1 Ground Segment. major concern, affecting all parts of the globe. Within less than a century, induced climate changes The development was initiated in 1989 as may be bigger than what those faced by humanity over a multimission platform; the -1 payload the last 10000 years. The ‘greenhouse effect’, acid rain, complement was approved in 1992 with the final the hole in the ozone layer, the systematic destruction decision concerning the industrial consortium being of forests are all triggering passionate debates. taken in March 1994. The -1 Ground Concept was approved in September 1994. This new awareness of the environmental and climatic changes that may be affecting our entire planet has These decisions resulted in three parallel industrial considerably increased scientific and political awareness developments, together producing the overall -1 of the need to analyse and understand the complex system. interactions between the Earth’s atmosphere, oceans, polar and land surfaces. The development, integration and test of the various elements are proceeding leading to a launch of the The perspective being able to make global observations -1 satellite planned for the end of this decade. -
SPACE EXPLORATION SYMPOSIUM (A3) Mars Exploration – Part 2 (3B)
64th International Astronautical Congress 2013 Paper ID: 18039 oral SPACE EXPLORATION SYMPOSIUM (A3) Mars Exploration { Part 2 (3B) Author: Mr. Gilles Lamour Sodern, France, [email protected] Mr. Jean-Baptiste Meurisse Sodern, France, [email protected] Mr. Christophe Stenvot Sodern, France, [email protected] Mr. Gilles Corlay Sodern, France, [email protected] Mr. S´ebastiende Raucourt Institut de Physique du Globe de Paris, France, [email protected] Mr. Philippe Laudet Centre National d'Etudes Spatiales (CNES), France, [email protected] Mr. Ren´ePerez Centre National d'Etudes Spatiales (CNES), France, [email protected] VBB SEISMOMETER FOR INSIGHT MISSION Abstract Sodern, as the industrial partner of IPGP (Institut de Physique du Globe de Paris) and CNES (French Space Agency), is developing the sensitive part of a new seismometer dedicated to Mars mission. This seismometer is a Very Broad Band seismometer to measure the Martian seismic activity. Sodern provides an inverted mechanical pendulum, called VBB pendulum, the movement of which being detected thanks to very accurate capacitive sensors. Three similar VBB axes are incorporated in the same package; the package is a sphere under vacuum to allow the best quality factor of the pendulum. Severe constraints of mass as far as hard environmental conditions have required a very thorough optimisation of the design. Breadboards have been manufactured and tested. They allow demonstrating the capability of the sphere to be embarked with the SEIS instrument onboard the NASA/JPL INSIGHT mission. This paper describes the architecture of the VBB and the Sphere and gives the performances as measured on ground and expected on Mars. -
Automated Trajectory Design for Impulsive and Low Thrust Interplanetary Mission Analysis Samuel Arthur Wagner Iowa State University
Iowa State University Capstones, Theses and Graduate Theses and Dissertations Dissertations 2014 Automated trajectory design for impulsive and low thrust interplanetary mission analysis Samuel Arthur Wagner Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/etd Part of the Aerospace Engineering Commons, and the Applied Mathematics Commons Recommended Citation Wagner, Samuel Arthur, "Automated trajectory design for impulsive and low thrust interplanetary mission analysis" (2014). Graduate Theses and Dissertations. 14238. https://lib.dr.iastate.edu/etd/14238 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. Automated trajectory design for impulsive and low thrust interplanetary mission analysis by Samuel Arthur Wagner A dissertation submitted to the graduate faculty in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Major: Aerospace Engineering Program of Study Committee: Bong Wie, Major Professor John Basart Ran Dai Ping Lu Ambar Mitra Iowa State University Ames, Iowa 2014 Copyright © Samuel Arthur Wagner, 2014. All rights reserved. ii DEDICATION I would like to thank my parents and all my family and friends who have helped me through- out my time as a student. Without their support I wouldn't have been able to make it. iii TABLE OF CONTENTS DEDICATION . ii LIST OF TABLES . vii LIST OF FIGURES . x ACKNOWLEDGEMENTS . xiii CHAPTER 1. -
Grid-Search Applications for Trajectory Design in Presence of Flybys
i “output” — 2020/1/23 — 8:24 — page 1 — #1 i i i POLITECNICO DI MILANO DEPARTMENT OF AEROSPACE SCIENCE AND TECHNOLOGY DOCTORAL PROGRAMME IN AEROSPACE ENGINEERING GRID-SEARCH APPLICATIONS FOR TRAJECTORY DESIGN IN PRESENCE OF FLYBYS Doctoral Dissertation of: Davide Menzio Supervisor: Prof. Camilla Colombo Tutor: Prof. Biggs James Douglas The Chair of the Doctoral Program: Prof. Pierangelo Masarati Academic year 2018/19 – cycle XXXII i i i i i “output” — 2020/1/23 — 8:24 — page 2 — #2 i i i i i i i i “output” — 2020/1/23 — 8:24 — page I — #3 i i i Dedicated to the love of my life, Sara, who gave me the joy of my life, Ilyas. I i i i i i “output” — 2020/1/23 — 8:24 — page II — #4 i i i i i i i i “output” — 2020/1/23 — 8:24 — page III — #5 i i i Abstract N the design process of a deep-space exploration mission, two phases can be distin- guished: an interplanetary cruise and a final phase in planetary moon-system. In I both cases the flyby manoeuvres have a positive impact on the overall mission cost and the scientific return. This doctoral dissertation focuses on methods, techniques, and tools for modeling the trajectory in presence of flybys. Depending on the gravitational model used and the mission scenario foreseen, various part of the search space can be analysed and different insights derived about the nature of the third-body interaction. The ability of one method to reveal insights on the dynamics depends on the choice of the perfor- mance parameters and control variables used to study the trajectory evolution under the effect of the dynamics. -
Porkchop Plot
Porkchop plot Porkchop plot (also pork-chop plot) is a chart that depicts orbital trajectories for spacecraft. It is named for the characteristically porkchop-shaped contours that display combinations of launch date and arrival date characteristics of an interplanetary flight path for a given launch opportunity to Mars or any other planet.cite web author=Goldman, Elliot url=http://ccar.colorado.edu/asen5050/projects/projects_2003/goldman/ title=Launch Window Optimization: The 2005 Mars Reconnaissance Orbiter (MRO) Mission" publisher=. Representative porkchop plot for the 2005 Mars launch opportunity. What a porkchop plot really represents, says Johnston, is a solution to some orbital mechanics equations known as Lambert's theorem, which he sums up thusly: "If I know where the Earth is and where Mars is on some given day, and I know how long I would like to take to get to Mars, then I can compute the departure conditions I. Porkchop plot (also pork-chop plot) is a chart that shows contours of equal characteristic energy (C3) against combinations of launch date and arrival date for a particular interplanetary flight.[1]. By examining the results of the porkchop plot, engineers can determine when launch opportunities exist (a launch window) that is compatible with the capabilities of a particular spacecraft.[2] A given contour, called a porkchop curve, represents constant C3, and the center of the porkchop the optimal minimum C3. A porkchop plot is a data visualization tool used in interplanetary mission design which displays contours of various quantities as a function of departure and arrival date. Example pork chop plots for 2016 Earth-Mars transfers are shown here.