Leucine Kinetics During Feeding in Normal Newborns

Total Page:16

File Type:pdf, Size:1020Kb

Leucine Kinetics During Feeding in Normal Newborns 003 1-3998191/3001-0023$03.00/0 PEDIATRIC RESEARCH Vol. 30, No. 1, 1991 Copyright O 1991 International Pediatric Research Foundation, Inc. Printed in (I.S. A. Leucine Kinetics during Feeding in Normal Newborns SCOTT C. DENNE, ELENA M. ROSSI, AND SATISH C. KALHAN Division of Neonatology, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana 46202-5210 and Case Western Reserve University School of Medicine, Cleveland, Ohio 44106 ABSTRACT. To examine how leucine and protein metab- We have previously determined leucine kinetics in fasting olism is affected by feeding, leucine kinetics were deter- normal term newborns and demonstrated higher rates of leucine mined in 11 normal term newborns during feeding using a flux and oxidation compared to normal fasting adults (8). In prime constant tracer infusion of 1-13C leucine combined addition, a significant correlation between newborn birth weight with respiratory calorimetry. Fed newborns were compared and leucine flux was demonstrated, suggesting a relationship with previously studied fasting newborns. Feeding and between birth weight and fasting protein metabolism. fasting newborns had similar rates of leucine oxidation (34 The purpose of our present study was to determine the effect + 3 pmol/kg/h versus 31 f 4 pmol/kg/h) and leucine release of feeding on leucine kinetics in normal term newborns and to from existing protein (156 + 16 pmol/kg/h versus 164 f 8 examine the relationship between birth weight and leucine ki- pmol/kg/h). In contrast, nonoxidative disposal rates of netics during feeding. By comparing leucine kinetics during leucine (a reflection of protein synthesis) were significantly feeding with those previously measured during fasting, some greater in feeding newborns (170 f 13 ~mol/kg/hversus insight into the normal process of protein accumulation in 129 f 9 pmol/kg/h). A significant positive correlation newborns could be gained. In addition, leucine oxidation meas- between birth weight and leucine flux was demonstrated in urements obtained in both feeding and fasting provide a quan- both feeding and fasting newborns. These results suggest titative basis to estimate leucine requirements in normal new- that 1) newborns may accomplish protein accretion pri- borns. marily by increases in protein synthesis rather than suppression of protein breakdown; 2) an estimate can be MATERIALS AND METHODS made of the minimal leucine intake required to replace irreversible leucine oxidative losses (816 pmol/kg/d, 107 Study protocol. Eleven normal newborns were studied for 7 to mg/kg/d); and 3) the positive correlation between birth 8 h during the first 3 d of life. All babies were full term, had not weight and leucine flux in both feeding and fasting new- experienced birth asphyxia, had not received antibiotics, and had borns may be a result of differences in previous protein normal physical examinations with no apparent clinical prob- and energy supplies. (Pediatr Res 30: 23-27, 1991) lems. Studies were begun 3 to 4 h after the babies' last normal feeding. Clinical characteristics of the study subjects are shown Abbreviations in Table 1. All infants were studied under neurothermal condi- tions, and a skin temperature of 36°C was maintained under a KIC, a-ketoisocaproate servo-controlled radiant warmer. Beginning 3 to 4 h before the MPE, moles percent excess isotope infusion, 4 mL/kg of standard infant formula (Enfamil; Mead Johnson, Evansville, IN) were carefully measured, placed in a small bottle, and fed to the baby orally every hour. This amount of formula corresponds to 1.44 g/kg/d of protein, 64 kcal/kg/d, and 47 pmol/kg/h of leucine. This rate of feeding was In addition to providing specific information about the metab- chosen because it provides a quantity of leucine that approxi- olism of an essential amino acid, leucine kinetic measurements mates estimated infant requirements (-150 mg/kg/d) (9). The may also reflect how different circumstances affect overall pro- bottle was weighed before and after each feeding to determine tein kinetics (1). In particular, these measurements have been the actual intake. After 3 to 4 h of feeding, an indwelling needle used to assess the changes in proteolysis and protein synthesis in was placed in a superficial vein of each arm to infuse the isotopic response to feeding after a period of fasting (2-7). Although the tracer in one and draw blood samples from the other. After a 4- effects of feeding and fasting on leucine kinetics have been pmol/kg priming dose, 1-I3C leucine (99 atom percent excess examined in normal adults (2-7), how feeding affects leucine 13C; Merck Sharp and Dohme, Quebec, Canada) was infused at metabolism in normal newborns has not been determined. a constant rate of 6 pmol/kg/h for the next 5 h. At the end of Adults during feeding must accrete protein in sufliicient quantity each study, the actual rate of infusion was measured using the to replenish protein losses during fasting; in contrast, newborns same syringe, i.v. tubing, and butterfly needle used with that must not only replace fasting losses but accumulate additional particular study. The infusate concentration was also measured. protein to accomplish growth. Therefore, feeding may result in Blood samples were obtained at 0.5- to 1.0-h intervals. Steady different protein kinetic responses in newborns than in adults. state determinations of I3C enrichment of bicarbonate and Received August 28, 1990; accepted February 22, 199 1. plasma leucine, obtained in the last 2 h of the study, were used Correspondenceand reprint requests: Scott C. Denne, M.D., Indiana University for calculation of leucine kinetics. We have previously deter- School of Medicine, Department of Pediatrics, Section of Neonatal-Perinatal Med- mined that I3C enrichment measurements in bicarbonate and icine, 702 Barnhill Dr., RR208, Indianapolis, IN 46202-5210. Supported in part by Diabetes Research Training Center NIH Grant PHS breath C02yield equivalent results (10). P60DK20542-13 and NIH Grant K08HD840-03, HD 11089, and by The James The plasma enrichment of leucine was used in these studies to Whitcomb Riley Memorial Association. calculate rates of leucine flux and oxidation. Plasma enrichment 2:3 24 DENNE ET AL Table 1. Clinical characteristics Age at Gestation Birth wt Study wt study end Apgar Subject M/F (wk) (kg) Percentile (kg) (h) Delivery at 5 min - - 1 Vaginal 2 Vaginal 3 Vaginal 4 CS* 5 Vaginal 6 Vaginal 7 Vaginal 8 Vaginal 9 Vaginal 10 Vaginal 11 Vaginal Mean SEM * CS, cesarean section. of KIC instead of leucine has been suggested for the calculation of oxidation (1 I), and some authors have advocated the use of KIC enrichment for the determination of leucine flux as an index of intracellular leucine enrichment (12). Because KIC enrich- where Q is leucine turnover or flux (pmol/kg/h), Ep is I3C ment is lower than leucine enrichment, the use of plasma leucine enrichment of leucine in plasma at steady state (MPE), and I is enrichment may underestimate total body leucine flux. However, rate of tracer infusion (pmol/kg/h). the constant infusion of 1-I3Cleucine over a wide range of dietary Oxygen consumption and C02production were calculated by intake and clinical circumstances has been shown to result in a multiplying the gradients and the flow rates of air across the face constant ratio of KIC to leucine enrichment of approximately using Haldane transformation and corrected to the stp. The basal 0.77 (1 1, 13). Most pertinently, the KIC to leucine enrichment caloric expenditure was calculated from the RQ and oxygen ratio was similar in adult humans studied during feeding and consumption data (20). fasting (1 1). However, in studies of starved and fed rats, the ratio The fraction of leucine oxidized (F) was assessed by determin- of plasma KIC to leucine enrichment was slightly (but not ing the amount of infused label that appeared in CO2. The statistically) lower in the fed state (0.72 versus 0.76) (14). Relative following equation was used (16): to fasting, this would slightly increase leucine oxidation in the fed state if based on KIC rather than leucine enrichment. Never- theless, the use of KIC instead of leucine for calculating flux and oxidation in the present study would probably result-in a pro- where VCO~is the carbon dioxide production and the constant portional increase in values but would likely alter none of the 0.8 represents the fractional recovery of I3CO2(2 1, 22). Leucine relative findings. oxidation was then calculated by multiplying the leucine flux by Resting oxygen consumption and C02production were meas- the fraction of leucine flux oxidized. ured using open circuit indirect respiratory calorimetry as pre- A single value for the fractional I3CO2recovery has been used viously described (8, 10). combustion of absolute ethyl alcohol here. However, in parenterally fed premature newborns, a range in the system gave results within 5% of expected values. Respi- of recovery of labeled C02has been obtained (0.70-0.84) and a ratory calorimetry was performed throughout the study, and correlation observed between 13C02recovery rates and energy values obtained in the last 2 h were used for analyses. Subjects intake. If the same relationship exists for fed and fasted normal were quiet or sleeping for all measurements. The protocol was term newborns, it is possible that using a constant value for approved by the hospital committee on human investigation, recovery may slightly underestimate leucine oxidation in the and written informed consent was obtained from the babies' fasted state and overestimate oxidation in the fed state. If these parents after fully explaining the procedure. errors exist, protein synthesis estimates would be undervalued Analytical procedures. I3C enrichment of plasma leucine was during feeding and overvalued during fasting.
Recommended publications
  • Effects of Single Amino Acid Deficiency on Mrna Translation Are Markedly
    www.nature.com/scientificreports OPEN Efects of single amino acid defciency on mRNA translation are markedly diferent for methionine Received: 12 December 2016 Accepted: 4 May 2018 versus leucine Published: xx xx xxxx Kevin M. Mazor, Leiming Dong, Yuanhui Mao, Robert V. Swanda, Shu-Bing Qian & Martha H. Stipanuk Although amino acids are known regulators of translation, the unique contributions of specifc amino acids are not well understood. We compared efects of culturing HEK293T cells in medium lacking either leucine, methionine, histidine, or arginine on eIF2 and 4EBP1 phosphorylation and measures of mRNA translation. Methionine starvation caused the most drastic decrease in translation as assessed by polysome formation, ribosome profling, and a measure of protein synthesis (puromycin-labeled polypeptides) but had no signifcant efect on eIF2 phosphorylation, 4EBP1 hyperphosphorylation or 4EBP1 binding to eIF4E. Leucine starvation suppressed polysome formation and was the only tested condition that caused a signifcant decrease in 4EBP1 phosphorylation or increase in 4EBP1 binding to eIF4E, but efects of leucine starvation were not replicated by overexpressing nonphosphorylatable 4EBP1. This suggests the binding of 4EBP1 to eIF4E may not by itself explain the suppression of mRNA translation under conditions of leucine starvation. Ribosome profling suggested that leucine deprivation may primarily inhibit ribosome loading, whereas methionine deprivation may primarily impair start site recognition. These data underscore our lack of a full
    [Show full text]
  • Electrochemical Studies of Dl-Leucine, L-Proline and L
    ELECTROCHEMICAL STUDIES OF DL -LEUCINE, 60 L-PROLINE AND L-TRYPTOPHAN AND THEIR INTERACTION WITH COPPER AND IRON 30 c b A) M. A. Jabbar, R. J. Mannan, S. Salauddin and B. µ a Rashid 0 Department of Chemistry, University of Dhaka, ( Current Dhaka-1000, Bangladesh -30 Introduction -60 In vitro study of the charge transfer reactions coupled -800 -400 0 400 800 with chemical reactions can give important indication of Potential vs. Ag/AgCl (mV) about actual biological processes occurring in human Fig.1. Comparison of the cyclic voltammogram of system. Understanding of such charge-transfer 5.0mM (a) DL -Leucine, (b) Cu-DL -Leucine ion and mechanism will help to determine the effectiveness of (c) [Fe-DL -Leucine] in 0.1M KCl solution at a Pt- nutrition, metabolism and treatment of various biological button electrode. Scan rates 50 mV/s. disorders. In the previous research, the redox behaviour of 40 various amino acids and biochemically important compounds and their charge transfer reaction and their b interaction of metal ions were studied [1,2]. In the present 20 ) a c research, the redox behavior and the charge transfer µΑ kinetics of DL -Leucine, L-Proline and L-Tryptophan in 0 the presence and absence of copper and iron will be investigated. Current ( -20 Experimental A computerized electrochemistry system developed by -40 -800 -400 0 400 800 Advanced Analytics, Virginia, USA, (Model-2040) Potential vs. Ag/AgCl (mV) consisting of three electrodes micro-cell with a saturated Ag/AgCl reference, a Pt-wire auxiliary and a pretreated Fig.2 . Comparison of the cyclic voltammogram of Pt-button working electrode is employed to investigate 5.0mM (a) L-Proline, (b) Cu-L-Proline and (c) Fe-L- Proline in 0.1M KCl solution at a Pt-button different amino acids and metal-amino acid systems.
    [Show full text]
  • Amino Acid Chemistry
    Handout 4 Amino Acid and Protein Chemistry ANSC 619 PHYSIOLOGICAL CHEMISTRY OF LIVESTOCK SPECIES Amino Acid Chemistry I. Chemistry of amino acids A. General amino acid structure + HN3- 1. All amino acids are carboxylic acids, i.e., they have a –COOH group at the #1 carbon. 2. All amino acids contain an amino group at the #2 carbon (may amino acids have a second amino group). 3. All amino acids are zwitterions – they contain both positive and negative charges at physiological pH. II. Essential and nonessential amino acids A. Nonessential amino acids: can make the carbon skeleton 1. From glycolysis. 2. From the TCA cycle. B. Nonessential if it can be made from an essential amino acid. 1. Amino acid "sparing". 2. May still be essential under some conditions. C. Essential amino acids 1. Branched chain amino acids (isoleucine, leucine and valine) 2. Lysine 3. Methionine 4. Phenyalanine 5. Threonine 6. Tryptophan 1 Handout 4 Amino Acid and Protein Chemistry D. Essential during rapid growth or for optimal health 1. Arginine 2. Histidine E. Nonessential amino acids 1. Alanine (from pyruvate) 2. Aspartate, asparagine (from oxaloacetate) 3. Cysteine (from serine and methionine) 4. Glutamate, glutamine (from α-ketoglutarate) 5. Glycine (from serine) 6. Proline (from glutamate) 7. Serine (from 3-phosphoglycerate) 8. Tyrosine (from phenylalanine) E. Nonessential and not required for protein synthesis 1. Hydroxyproline (made postranslationally from proline) 2. Hydroxylysine (made postranslationally from lysine) III. Acidic, basic, polar, and hydrophobic amino acids A. Acidic amino acids: amino acids that can donate a hydrogen ion (proton) and thereby decrease pH in an aqueous solution 1.
    [Show full text]
  • Nucleotide Base Coding and Am1ino Acid Replacemients in Proteins* by Emil L
    VOL. 48, 1962 BIOCHEMISTRY: E. L. SAIITH 677 18 Britten, R. J., and R. B. Roberts, Science, 131, 32 (1960). '9 Crestfield, A. M., K. C. Smith, and F. WV. Allen, J. Biol. Chem., 216, 185 (1955). 20 Gamow, G., Nature, 173, 318 (1954). 21 Brenner, S., these PROCEEDINGS, 43, 687 (1957). 22 Nirenberg, M. WV., J. H. Matthaei, and 0. WV. Jones, unpublished data. 23 Crick, F. H. C., L. Barnett, S. Brenner, and R. J. Watts-Tobin, Nature, 192, 1227 (1961). 24 Levene, P. A., and R. S. Tipson, J. Biol. Ch-nn., 111, 313 (1935). 25 Gierer, A., and K. W. Mundry, Nature, 182, 1437 (1958). 2' Tsugita, A., and H. Fraenkel-Conrat, J. Mllot. Biol., in press. 27 Tsugita, A., and H. Fraenkel-Conrat, personal communication. 28 Wittmann, H. G., Naturwissenschaften, 48, 729 (1961). 29 Freese, E., in Structure and Function of Genetic Elements, Brookhaven Symposia in Biology, no. 12 (1959), p. 63. NUCLEOTIDE BASE CODING AND AM1INO ACID REPLACEMIENTS IN PROTEINS* BY EMIL L. SMITHt LABORATORY FOR STUDY OF HEREDITARY AND METABOLIC DISORDERS AND THE DEPARTMENTS OF BIOLOGICAL CHEMISTRY AND MEDICINE, UNIVERSITY OF UTAH COLLEGE OF MEDICINE Communicated by Severo Ochoa, February 14, 1962 The problem of which bases of messenger or template RNA' specify the coding of amino acids in proteins has been largely elucidated by the use of synthetic polyri- bonucleotides.2-7 For these triplet nucleotide compositions (Table 1), it is of in- terest to examine some of the presently known cases of amino acid substitutions in polypeptides or proteins of known structure.
    [Show full text]
  • Amino Acid Transport Pathways in the Small Intestine of the Neonatal Rat
    Pediat. Res. 6: 713-719 (1972) Amino acid neonate intestine transport, amino acid Amino Acid Transport Pathways in the Small Intestine of the Neonatal Rat J. F. FITZGERALD1431, S. REISER, AND P. A. CHRISTIANSEN Departments of Pediatrics, Medicine, and Biochemistry, and Gastrointestinal Research Laboratory, Indiana University School of Medicine and Veterans Administration Hospital, Indianapolis, Indiana, USA Extract The activity of amino acid transport pathways in the small intestine of the 2-day-old rat was investigated. Transport was determined by measuring the uptake of 1 mM con- centrations of various amino acids by intestinal segments after a 5- or 10-min incuba- tion and it was expressed as intracellular accumulation. The neutral amino acid transport pathway was well developed with intracellular accumulation values for leucine, isoleucine, valine, methionine, tryptophan, phenyl- alanine, tyrosine, and alanine ranging from 3.9-5.6 mM/5 min. The intracellular accumulation of the hydroxy-containing neutral amino acids threonine (essential) and serine (nonessential) were 2.7 mM/5 min, a value significantly lower than those of the other neutral amino acids. The accumulation of histidine was also well below the level for the other neutral amino acids (1.9 mM/5 min). The basic amino acid transport pathway was also operational with accumulation values for lysine, arginine and ornithine ranging from 1.7-2.0 mM/5 min. Accumulation of the essential amino acid lysine was not statistically different from that of nonessential ornithine. Ac- cumulation of aspartic and glutamic acid was only 0.24-0.28 mM/5 min indicating a very low activity of the acidic amino acid transport pathway.
    [Show full text]
  • Leucine Meal Increases Glutamine and Total Nitrogen Release from Forearm Muscle
    Leucine meal increases glutamine and total nitrogen release from forearm muscle. T T Aoki, … , G F Fitzpatrick, D C Knight J Clin Invest. 1981;68(6):1522-1528. https://doi.org/10.1172/JCI110406. Research Article To assess the consequences of elevated branched chain amino acid levels on alanine, glutamine, and ammonia metabolism in muscle, L-leucine meals (14.7 g) were consumed by six normal postabsorptive individuals. Bilateral forearm studies were performed, and the dominant arm was subjected to 15 min of light exercise, using a calibrated dynamometer, beginning 45 min after the ingestion of the meal. Large uptakes of leucine were seen across both forearm muscle beds within 30 min of the meal. After exercise, blood flow in the dominant arm increased from 3.1 +/- 0.4 to 5.2 +/- 0.9 ml/100 ml forearm per minute (mean +/- SEM, P less than 0.005). Glutamine flux out of the dominant forearm increased threefold after the ingestion of the leucine meal and increased eightfold over base line after exercise. Less marked changes (significant only at 90 min) in the nonexercised, nondominant arm were also seen. Alanine flux out of the dominant forearm muscle bed increased modestly at 75 and 90 min. No significant change in ammonia flux across either forearm muscle bed was noted. Unexpectedly, large and significant net nitrogen loss from both forearm muscle beds was documented. Thus, following the ingestion of a leucine meal and light exercise, the primary means by which excess nitrogen is routed out of muscle is via glutamine formation and release with alanine […] Find the latest version: https://jci.me/110406/pdf Leucine Meal Increases Glutamine and Total Nitrogen Release from Forearm Muscle THOMAS T.
    [Show full text]
  • Amino Acid Degradation
    BI/CH 422/622 OUTLINE: OUTLINE: Protein Degradation (Catabolism) Digestion Amino-Acid Degradation Inside of cells Protein turnover Dealing with the carbon Ubiquitin Fates of the 29 Activation-E1 Seven Families Conjugation-E2 nitrogen atoms in 20 1. ADENQ Ligation-E3 AA: Proteosome 2. RPH 9 ammonia oxidase Amino-Acid Degradation 18 transamination Ammonia 2 urea one-carbon metabolism free transamination-mechanism to know THF Urea Cycle – dealing with the nitrogen SAM 5 Steps Carbamoyl-phosphate synthetase 3. GSC Ornithine transcarbamylase PLP uses Arginino-succinate synthetase Arginino-succinase 4. MT – one carbon metabolism Arginase 5. FY – oxidase vs oxygenase Energetics Urea Bi-cycle 6. KW – Urea Cycle – dealing with the nitrogen 7. BCAA – VIL Feeding the Urea Cycle Glucose-Alanine Cycle Convergence with Fatty acid-odd chain Free Ammonia Overview Glutamine Glutamate dehydrogenase Overall energetics Amino Acid A. Concepts 1. ConvergentDegradation 2. ketogenic/glucogenic 3. Reactions seen before The SEVEN (7) Families B. Transaminase (A,D,E) / Deaminase (Q,N) Family C. Related to biosynthesis (R,P,H; C,G,S; M,T) 1.Glu Family a. Introduce oxidases/oxygenases b. Introduce one-carbon metabolism (1C) 2.Pyruvate Family a. PLP reactions 3. a-Ketobutyric Family (M,T) a. 1-C metabolism D. Dedicated 1. Aromatic Family (F,Y) a. oxidases/oxygenases 2. a-Ketoadipic Family (K,W) 3. Branched-chain Family (V,I,L) E. Convergence with Fatty Acids: propionyl-CoA 29 N 1 Amino Acid Degradation • Intermediates of the central metabolic pathway • Some amino acids result in more than one intermediate. • Ketogenic amino acids can be converted to ketone bodies.
    [Show full text]
  • Glutamine and Leucine Provide Enhanced Protective Immunity Against Mucosal Infection with Herpes Simplex Virus Type 1
    http://dx.doi.org/10.4110/in.2012.12.5.196 ORIGINAL ARTICLE pISSN 1598-2629 eISSN 2092-6685 Glutamine and Leucine Provide Enhanced Protective Immunity Against Mucosal Infection with Herpes Simplex Virus Type 1 Erdenebileg Uyangaa1, Hern-Ku Lee2 and Seong Kug Eo1* 1College of Veterinary Medicine and Bio-Safety Research Institute, Chonbuk National University, 2Department of Immunology, Chonbuk National University Medical School, Jeonju 561-756, Korea Besides their role as building blocks of protein, there are [Immune Network 2012;12(5):196-206] growing evidences that some amino acids have roles in regu- lating key metabolic pathways that are necessary for main- tenance, growth, reproduction, and immunity. Here, we eval- INTRODUCTION uated the modulatory functions of several amino acids in pro- tective immunity against mucosal infection of herpes simplex There is growing evidence that as well as being the building virus type 1 (HSV-1). We found that glutamine (Gln) and leu- blocks of proteins and polypeptides, some amino acids have cine (Leu) showed enhanced protective immunity to HSV-1 roles in regulating key metabolic pathways that are necessary mucosal infection when two administration of Gln and single for maintenance, growth, reproduction, and immunity (1). administration of Leu per day, but not when administered in combinations. Ameliorated clinical signs of HSV-1 challenged They are called functional amino acids, which include argi- mice by the intraperitoneal administration of Gln and Leu nine (Arg), cystein (Cys), glutamine (Gln), leucine (Leu), pro- were closely associated with viral burden and IFN-γ pro- line (Pro), and tryptophan (Try). Dietary supplementation duction in the vaginal tract at 2 and 4 days post-infection.
    [Show full text]
  • Histidine: a Systematic Review on Metabolism and Physiological Effects in Human and Different Animal Species
    nutrients Review Histidine: A Systematic Review on Metabolism and Physiological Effects in Human and Different Animal Species Joanna Moro 1, Daniel Tomé 1, Philippe Schmidely 2, Tristan-Chalvon Demersay 3 and Dalila Azzout-Marniche 1,* 1 AgroParisTech, Université Paris-Saclay, INRAE, UMR PNCA, 75005 Paris, France; [email protected] (J.M.); [email protected] (D.T.) 2 AgroParisTech, Université Paris-Saclay, INRAE, UMR0791 Mosar, 75005 Paris, France; [email protected] 3 Ajinomoto Animal Nutrition Europe, 75017 Paris, France; [email protected] * Correspondence: [email protected]; Tel.: +33-1-44087244 Received: 1 April 2020; Accepted: 8 May 2020; Published: 14 May 2020 Abstract: Histidine is an essential amino acid (EAA) in mammals, fish, and poultry. We aim to give an overview of the metabolism and physiological effects of histidine in humans and different animal species through a systematic review following the guidelines of PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses). In humans, dietary histidine may be associated with factors that improve metabolic syndrome and has an effect on ion absorption. In rats, histidine supplementation increases food intake. It also provides neuroprotection at an early stage and could protect against epileptic seizures. In chickens, histidine is particularly important as a limiting factor for carnosine synthesis, which has strong anti-oxidant effects. In fish, dietary histidine may be one of the most important factors in preventing cataracts. In ruminants, histidine is a limiting factor for milk protein synthesis and could be the first limiting AA for growth. In excess, histidine supplementation can be responsible for eating and memory disorders in humans and can induce growth retardation and metabolic dysfunction in most species.
    [Show full text]
  • Plasma Concentrations and Intakes of Amino Acids in Male Meat-Eaters, fish-Eaters, Vegetarians and Vegans: a Cross-Sectional Analysis in the EPIC-Oxford Cohort
    European Journal of Clinical Nutrition (2016) 70, 306–312 OPEN © 2016 Macmillan Publishers Limited All rights reserved 0954-3007/16 www.nature.com/ejcn ORIGINAL ARTICLE Plasma concentrations and intakes of amino acids in male meat-eaters, fish-eaters, vegetarians and vegans: a cross-sectional analysis in the EPIC-Oxford cohort JA Schmidt1, S Rinaldi2, A Scalbert2, P Ferrari2, D Achaintre2, MJ Gunter3, PN Appleby1, TJ Key1 and RC Travis1 BACKGROUND/OBJECTIVES: We aimed to investigate the differences in plasma concentrations and in intakes of amino acids between male meat-eaters, fish-eaters, vegetarians and vegans in the Oxford arm of the European Prospective Investigation into Cancer and Nutrition. SUBJECTS/METHODS: This cross-sectional analysis included 392 men, aged 30–49 years. Plasma amino acid concentrations were measured with a targeted metabolomic approach using mass spectrometry, and dietary intake was assessed using a food frequency questionnaire. Differences between diet groups in mean plasma concentrations and intakes of amino acids were examined using analysis of variance, controlling for potential confounding factors and multiple testing. RESULTS: In plasma, concentrations of 6 out of 21 amino acids varied significantly by diet group, with differences of − 13% to +16% between meat-eaters and vegans. Concentrations of methionine, tryptophan and tyrosine were highest in fish-eaters and vegetarians, followed by meat-eaters, and lowest in vegans. A broadly similar pattern was seen for lysine, whereas alanine concentration was highest in fish-eaters and lowest in meat-eaters. For glycine, vegans had the highest concentration and meat-eaters the lowest. Intakes of all 18 dietary amino acids differed by diet group; for the majority of these, intake was highest in meat-eaters followed by fish-eaters, then vegetarians and lowest in vegans (up to 47% lower than in meat-eaters).
    [Show full text]
  • Structure and Functions of Amino Acids and Proteins
    Structure of Amino Acids DR. KIRAN MEENA 05/9/2019 8:00-9:00 AM Specific Learning Objectives 1. General Structure of amino acids 2. Amino acids classification based on: •Standard and Non-standard amino acids (aa) •Essential and non-essential aa •Ketogenic and Glucogenic aa •Side chain functional group 3. Function of essential amino acids Introduction •Amino acids as a building blocks of peptides and proteins •Proteins are made up of hundreds of smaller units called amino acids that are attached to one another by peptide bonds, forming a long chain. •Protein as a string of beads where each bead is an amino acid. www.khanacademy.org Genetic Code Specifies 20 L-α-Amino Acids •Proteins are synthesized from the set of 20 L-α-amino acids encoded by nucleotide triplets called codons. •Common amino acids are those for which at least one specific codon exists in the DNA genetic code. •Sequences of peptides and proteins represent by using one- and three letter abbreviations for each amino acid. Genetic information is transcribed from a DNA sequence into mRNA and then translated to amino acid sequence of a protein Fig. 2.1. Textbook of Biochemistry with Clinical Correlations, 4th edition by Thomas M Devlin General Structure of Common Amino Acids •General structure of amino acids , group and a variable side chain •Side chain determines: protein folding, binding to specific ligand and interaction with its environment •Amino acids consists of a constant COOH (R is side chain) + - •At neutral pH, H2N- protonated to H3N -, and –COOH deprotonated to –COO Fig.4.2.
    [Show full text]
  • Chain Amino Acids in Pseudomonas Aeruginosa
    JOUtNAL OF BACTERIOLOGY, Mar. 1980, p. 1055-1063 Vol. 141, No. 3 0021-9193/80/03-1055/09$02.00/0 Purification and Properties of a Binding Protein for Branched- Chain Amino Acids in Pseudomonas aeruginosa TOSHIMITSU HOSHINO* AND MAKOTO KAGEYAMA Mitsubishi-Kasei Institute ofLife Sciences, Machida-shi, Tokyo 194, Japan A binding protein for branched-chain amino acids was purified to a homoge- neous state from shock fluid of Pseudomonas aeruginosa PML14. It was a monomeric protein with an apparent molecular weight of4.3 x 10' or 4.0 x 10' by sodium dodecyl sulfate-polyacrylamide gel electrophoresis or gel filtration, re- spectively. The isoelectric point was determined to be pH 4.1 by electrofocusing. Amino acid analysis of the protein showed that aspartic acid, glutamic acid, glycine, and alanine were major components and that the protein contained only one residue each of tryptophan and cysteine per molecule. The binding protein contained no sugar. The binding activity of the protein was specific for the branched-chain amino acids. The protein also bound alanine and threonine with lower affinity. The dissociation constants of this protein for leucine, isoleucine, and valine were found to be 0.4, 0.3, and 0.5 !M, respectively. Mutants defective in the production of the binding protein were identified among the mutants deficient in a transport system for branched-chain amino acids (LIV-I). The revertants from these mutants to LIV-I-positive phenotype simultaneously re- covered normal levels of the binding protein. These findings suggest strongly the association of the binding protein with the LIV-I transport system.
    [Show full text]