INFORMATION to USERS the Most Advanced Technology Has Been Used to Photo Graph and Reproduce This Manuscript from the Microfilm Master
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
NS201C Anatomy 1: Sensory and Motor Systems
NS201C Anatomy 1: Sensory and Motor Systems 25th January 2017 Peter Ohara Department of Anatomy [email protected] The Subdivisions and Components of the Central Nervous System Axes and Anatomical Planes of Sections of the Human and Rat Brain Development of the neural tube 1 Dorsal and ventral cell groups Dermatomes and myotomes Neural crest derivatives: 1 Neural crest derivatives: 2 Development of the neural tube 2 Timing of development of the neural tube and its derivatives Timing of development of the neural tube and its derivatives Gestational Crown-rump Structure(s) age (Weeks) length (mm) 3 3 cerebral vesicles 4 4 Optic cup, otic placode (future internal ear) 5 6 cerebral vesicles, cranial nerve nuclei 6 12 Cranial and cervical flexures, rhombic lips (future cerebellum) 7 17 Thalamus, hypothalamus, internal capsule, basal ganglia Hippocampus, fornix, olfactory bulb, longitudinal fissure that 8 30 separates the hemispheres 10 53 First callosal fibers cross the midline, early cerebellum 12 80 Major expansion of the cerebral cortex 16 134 Olfactory connections established 20 185 Gyral and sulcul patterns of the cerebral cortex established Clinical case A 68 year old woman with hypertension and diabetes develops abrupt onset numbness and tingling on the right half of the face and head and the entire right hemitrunk, right arm and right leg. She does not experience any weakness or incoordination. Physical Examination: Vitals: T 37.0° C; BP 168/87; P 86; RR 16 Cardiovascular, pulmonary, and abdominal exam are within normal limits. Neurological Examination: Mental Status: Alert and oriented x 3, 3/3 recall in 3 minutes, language fluent. -
Meninges,Cerebrospinal Fluid, and the Spinal Cord
The Nervous System SPINAL CORD Spinal Cord Continuation of CNS inferior to foramen magnum (medulla) Simpler Conducts impulses to and from brain Two way conduction pathway Reflex actions Spinal Cord Passes through vertebral canal Foramen magnum L2 Conus medullaris Filum terminale Cauda equina Cervical Cervical spinal nerves enlargement Dura and arachnoid Thoracic mater spinal nerves Lumbar enlargement Conus medullaris Lumbar Cauda spinal nerves equina Filum (a) The spinal cord and its nerve terminale Sacral roots, with the bony vertebral spinal nerves arches removed. The dura mater and arachnoid mater are cut open and reflected laterally. Figure 12.29a Spinal Cord Spinal nerves 31 pairs Cervical and lumbar enlargements The nerves serving the upper and lower limbs emerge here Cervical Cervical spinal nerves enlargement Dura and arachnoid Thoracic mater spinal nerves Lumbar enlargement Conus medullaris Lumbar Cauda spinal nerves equina Filum (a) The spinal cord and its nerve terminale Sacral roots, with the bony vertebral spinal nerves arches removed. The dura mater and arachnoid mater are cut open and reflected laterally. Figure 12.29a Spinal Cord Protection Bone, meninges, and CSF Spinal tap-inferior to second lumbar vertebra T12 Ligamentum flavum L5 Lumbar puncture needle entering subarachnoid space L4 Supra- spinous ligament L5 Filum terminale S1 Inter- Cauda equina vertebral Arachnoid Dura in subarachnoid disc matter mater space Figure 12.30 Spinal Cord Cross section Central gray matter Cortex of white matter Epidural -
Spinal Cord Organization
Lecture 4 Spinal Cord Organization The spinal cord . Afferent tract • connects with spinal nerves, through afferent BRAIN neuron & efferent axons in spinal roots; reflex receptor interneuron • communicates with the brain, by means of cell ascending and descending pathways that body form tracts in spinal white matter; and white matter muscle • gives rise to spinal reflexes, pre-determined gray matter Efferent neuron by interneuronal circuits. Spinal Cord Section Gross anatomy of the spinal cord: The spinal cord is a cylinder of CNS. The spinal cord exhibits subtle cervical and lumbar (lumbosacral) enlargements produced by extra neurons in segments that innervate limbs. The region of spinal cord caudal to the lumbar enlargement is conus medullaris. Caudal to this, a terminal filament of (nonfunctional) glial tissue extends into the tail. terminal filament lumbar enlargement conus medullaris cervical enlargement A spinal cord segment = a portion of spinal cord that spinal ganglion gives rise to a pair (right & left) of spinal nerves. Each spinal dorsal nerve is attached to the spinal cord by means of dorsal and spinal ventral roots composed of rootlets. Spinal segments, spinal root (rootlets) nerve roots, and spinal nerves are all identified numerically by th region, e.g., 6 cervical (C6) spinal segment. ventral Sacral and caudal spinal roots (surrounding the conus root medullaris and terminal filament and streaming caudally to (rootlets) reach corresponding intervertebral foramina) collectively constitute the cauda equina. Both the spinal cord (CNS) and spinal roots (PNS) are enveloped by meninges within the vertebral canal. Spinal nerves (which are formed in intervertebral foramina) are covered by connective tissue (epineurium, perineurium, & endoneurium) rather than meninges. -
Major Motor & Sensory Projections
Major Motor & Sensory Projections Neuroanatomy > Brainstem > Brainstem MAJOR MOTOR & SENSORY PROJECTIONS  FULL TEXT OVERVIEW • Here, we will learn a consolidated view of the major descending (motor) and ascending (sensory) pathways from the cerebrum through the brainstem into the spinal cord. • Start a table, specify that we will learn about the following major pathway projections: Motor • Corticospinal tract (CST) • Corticobulbar (aka corticonuclear) tract Sensory • Posterior column/medial lemniscus • Anterolateral system (spinothalamic) tract • Trigeminothalamic tract MOTOR PATHWAYS Anatomical Structures Begin with the motor pathways. • Label the superior/inferior axes. • Draw a coronal view of the right brain. • Then, the brainstem. • The upper cervical spinal cord. 1 / 5 • And the lumbar cord. Innervation • Start another table. Write that for the motor fibers: • The corticospinal tract fibers innervate the body via spinal motor neurons. - Specify that the lateral CST innervates distal musculature for fine motor movements - Whereas the anterior CST innervates proximal musculature for gross motor movements. • The corticobulbar fibers (aka corticonuclear fibers) innervate the face via the CNs. Projections • Now, demarcate the internal capsule deep within the cerebrum – the motor fibers consolidate here before entering the ipsilateral cerebral peduncle in the midbrain. • Next, draw the twisting descent of each fiber group through the subcortical white matter. • Show that the facial fibers [RED] emerge from the lateral convexity, descend medially and, generally, decussate to synapse on different cranial nerve nuclei throughout their descent. • Then, show that the leg fibers [GREEN] emerge paracentrally, descend laterally through the brainstem into the ipsilateral medullary pyramid. • Show that the arm fibers [BLUE] emerge from the upper convexity, descend in between the facial and leg fibers, medial to the leg fibers through the brainstem into the ipsilateral medullary pyramid. -
Review of Spinal Cord Basics of Neuroanatomy Brain Meninges
Review of Spinal Cord with Basics of Neuroanatomy Brain Meninges Prof. D.H. Pauža Parts of Nervous System Review of Spinal Cord with Basics of Neuroanatomy Brain Meninges Prof. D.H. Pauža Neurons and Neuroglia Neuron Human brain contains per 1011-12 (trillions) neurons Body (soma) Perikaryon Nissl substance or Tigroid Dendrites Axon Myelin Terminals Synapses Neuronal types Unipolar, pseudounipolar, bipolar, multipolar Afferent (sensory, centripetal) Efferent (motor, centrifugal, effector) Associate (interneurons) Synapse Presynaptic membrane Postsynaptic membrane, receptors Synaptic cleft Synaptic vesicles, neuromediator Mitochondria In human brain – neurons 1011 (100 trillions) Synapses – 1015 (quadrillions) Neuromediators •Acetylcholine •Noradrenaline •Serotonin •GABA •Endorphin •Encephalin •P substance •Neuronal nitric oxide Adrenergic nerve ending. There are many 50-nm-diameter vesicles (arrow) with dark, electron-dense cores containing norepinephrine. x40,000. Cell Types of Neuroglia Astrocytes - Oligodendrocytes – Ependimocytes - Microglia Astrocytes – a part of hemoencephalic barrier Oligodendrocytes Ependimocytes and microglial cells Microglia represent the endogenous brain defense and immune system, which is responsible for CNS protection against various types of pathogenic factors. After invading the CNS, microglial precursors disseminate relatively homogeneously throughout the neural tissue and acquire a specific phenotype, which clearly distinguish them from their precursors, the blood-derived monocytes. The ´resting´ microglia -
Evoked Spinal Cord Potentials.Pdf
EVPPR 11/29/05 12:39 PM Page I K. Shimoji, W.D. Willis, Jr. (Eds.) Evoked Spinal Cord Potentials An Illustrated Guide to Physiology, Pharmacology, and Recording Techniques EVPPR 11/29/05 12:39 PM Page III K. Shimoji, W.D. Willis, Jr. (Eds.) Evoked Spinal Cord Potentials An Illustrated Guide to Physiology, Pharmacology, and Recording Techniques With 130 Figures EVPPR 11/30/05 10:06 AM Page IV Editors: Koki Shimoji, M.D., Ph.D., FRCA Professor, Frontier University Ube Graduate School of Human Sciences 2-1-1 Bunkyodai, Ube, Yamaguchi 755-0805,Japan Professor Emeritus, Niigata University Visiting Professor, Saitama Medical College William D. Willis, Jr., M.D., Ph.D. Professor of Neuroscience and Cell Biology University of Texas Medical Branch 301 University Blvd., Galveston, TX 77555-1069, USA Authors: Tatsuhiko Kano, M.D., Ph.D. Professor and Chairman Department of Anesthesiology Kurume University School of Medicine Yoichi Katayama, M.D., Ph.D. Professor and Chairman Department of Neurosurgery Nihon University School of Medicine Satoru Fukuda, M.D., Ph.D. Professor and Chairman Department of Anesthesiology and Reanimation Fukui University School of Medicine Library of Congress Control Number: 2005935847 ISBN-10 4-431-24026-8 Springer-Verlag Tokyo Berlin Heidelberg New York ISBN-13 978-4-431-24026-6 Springer-Verlag Tokyo Berlin Heidelberg New York This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broad- casting, reproduction on microfilms or in other ways, and storage in data banks. -
Correlation of Diffusion Tensor Imaging Indices with Histological
Marquette University e-Publications@Marquette Master's Theses (2009 -) Dissertations, Theses, and Professional Projects Correlation of Diffusion Tensor Imaging Indices with Histological Parameters in Rat Cervical Spinal Cord Gray Matter Following Distal Contusion Spinal Cord Injury Robin Easow Mottackel Marquette University Recommended Citation Mottackel, Robin Easow, "Correlation of Diffusion Tensor Imaging Indices with Histological Parameters in Rat Cervical Spinal Cord Gray Matter Following Distal Contusion Spinal Cord Injury" (2010). Master's Theses (2009 -). Paper 69. http://epublications.marquette.edu/theses_open/69 CORRELATION OF DIFFUSION TENSOR IMAGING INDICES WITH HISTOLOGICAL PARAMETERS IN RAT CERVICAL SPINAL CORD GRAY MATTER FOLLOWING DISTAL CONTUSION SPINAL CORD INJURY By Robin E. Mottackel, B.E. A Thesis submitted to the Faculty of the Graduate School, Marquette University, in Partial Fulfillment of the Requirements for the Degree of Master of Science Milwaukee, Wisconsin December 2010 ABSTRACT CORRELATION OF DIFFUSION TENSOR IMAGING INDICES WITH HISTOLOGICAL PARAMETERS IN RAT CERVICAL SPINAL CORD GRAY MATTER FOLLOWING DISTAL CONTUSION SPINAL CORD INJURY Robin E. Mottackel, B.E. Marquette University, 2010 The purpose of this study was to delineate the diffusion tensor imaging (DTI) parameters across the cervical spinal cord gray matter (GM) in a distal (T8) rat contusion spinal cord injury (SCI) model. DTI data were obtained from ex vivo rat spinal cords and registered to corresponding histological slices in samples from the acute through chronic stages of SCI including uninjured control, 2 weeks post injury, 15 weeks post injury and 25 weeks post injury groups (n = 5 in all groups). After imaging, samples were dehydrated, blocked in paraffin, sliced axially and stained with eriochrome cyanine R stain and H&E counter-stain. -
Functional Significance of the Ventral and Lateral Funiculi in the Frog's Spinal Cord
ACTA NEUROBIOL. EXP. 1976, 36: 593-812 FUNCTIONAL SIGNIFICANCE OF THE VENTRAL AND LATERAL FUNICULI IN THE FROG'S SPINAL CORD Zofia AFELT Department of Neurophysiology, Nencki Institute of Experimental Biology Warsaw, Poland Abstract. The spinal cord was transected at the level of calamus scriptorius either completely (spinal preparation) or partially (funicular preparation). In the operated frogs and in normal controls cranial and peripheral receptive fields were stimulated by natural stimuli. Results indicated that the information necessary for somatic activation of the protective flight ascends in the dorsolateral funiculus, which can be characterized as an ascending part of the reflex arc of somatotopically guided avoidance behavior. The tectal region is apparently a center of responses. The information necessary for activating different patterns of locomotion adequate to environmental conditions goes unilaterally through the ventral and ventrolateral funiculus. A diminished specifi- city of these motor patterns observed after injury of the ventrolateral funiculus seems to be related to a reduced feedback from the periphery. Lacking of aquatic pattern of limb movements (even when terrestrial patterns of locomotion were undisturbed), and drowning in water seem to be related to an injury of a vestibulo-spinal system in the ventral funiculus. It is concluded that the ventrolateral area of the frog spinal cord, i.e., the area between median fissure and dorsal root, forms a clo- sed system providing afferent and efferent information sufficient to evoke normal behavior. INTRODUCTION A high autonomy of the spinal cord function in lower vertebrates has been repeatedly stressed since the last century. However, even in the most primitive forms, a supraspinal control over body movement has 594 Z. -
Descending Influences on Vestibulospinal and Vestibulosympathetic Reflexes
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Frontiers - Publisher Connector REVIEW published: 27 March 2017 doi: 10.3389/fneur.2017.00112 Descending influences on Vestibulospinal and Vestibulosympathetic Reflexes Andrew A. McCall, Derek M. Miller and Bill J. Yates* Department of Otolaryngology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA This review considers the integration of vestibular and other signals by the central ner- vous system pathways that participate in balance control and blood pressure regulation, with an emphasis on how this integration may modify posture-related responses in accordance with behavioral context. Two pathways convey vestibular signals to limb motoneurons: the lateral vestibulospinal tract and reticulospinal projections. Both path- ways receive direct inputs from the cerebral cortex and cerebellum, and also integrate vestibular, spinal, and other inputs. Decerebration in animals or strokes that interrupt corticobulbar projections in humans alter the gain of vestibulospinal reflexes and the responses of vestibular nucleus neurons to particular stimuli. This evidence shows that supratentorial regions modify the activity of the vestibular system, but the functional importance of descending influences on vestibulospinal reflexes acting on the limbs Edited by: is currently unknown. It is often overlooked that the vestibulospinal and reticulospinal Bernard Cohen, Icahn School of Medicine at systems mainly terminate on spinal interneurons, and not directly on motoneurons, yet Mount Sinai, USA little is known about the transformation of vestibular signals that occurs in the spinal Reviewed by: cord. Unexpected changes in body position that elicit vestibulospinal reflexes can also William Michael King, produce vestibulosympathetic responses that serve to maintain stable blood pressure. -
AAV-Based Gene Therapy for Axonal Regeneration in a Rat Model of Rubrospinal Tract Lesion
AAV-based gene therapy for axonal regeneration in a rat model of rubrospinal tract lesion Dissertation For the award of the degree “Doctor of Philosophy” Division of Mathematics and Natural Sciences of the Georg-August-Universität-Göttingen, Germany Submitted by Malleswari Challagundla Born in Kothaganeshunipadu (India) Göttingen, February 2014 Thesis committee members Prof. Dr. Mathias Bähr Prof. Dr. André Fischer Prof. Dr. Wolfgang Brück Extended thesis committee members Prof. Dr. Tiago Fleming Outeiro Dr. Camin Dean Prof. Dr. Ralf Heinrich 2 Declaration I hereby declare that the thesis “AAV-based gene therapy for axonal regeneration in a rat model of rubrospinal tract lesion” has been written independently with no other sources and aids otherwise quoted. Malleswari Challagundla, Göttingen, February 2014. 3 TABLE OF CONTENTS Declaration 3 TABLE OF CONTENTS 4 1 Introduction 7 1.1 Spinal cord injury 7 1.1.1 Spinal cord anatomy 7 1.1.2 Corticospinal and rubrospinal tracts 8 1.1.3 Spinal cord lesion and pathophysiology 10 1.2 Axonal regeneration and plasticity after SCI 12 1.3 Barriers of axonal regeneration in the CNS 13 1.3.1 Myelin inhibitors 13 1.3.2 Scar tissue 13 1.4 Current treatment approaches for SCI 14 1.5 Anti-scarring treatment (BPY-DCA) 16 1.6 Gene therapy 16 1.6.1 Rho and Rho kinase (ROCK) 17 1.6.2 BAG1 20 1.6.3 microRNA-134 21 1.6.4 Reggie1 22 1.7 Aims of the thesis 23 2 Materials 24 2.1 Instruments 24 2.2 Chemicals and Consumables 25 2.3 Solutions and Buffers 26 2.3.1 Mowiol 26 2.3.2 Paraformaldehyde (PFA) 4% 26 2.3.3 1x -
High-Resolution MR Imaging of the Cadaveric Human Spinal Cord: Normal Anatomy
3 High-Resolution MR Imaging of the Cadaveric Human Spinal Cord: Normal Anatomy M. D. Solsberg1 The purpose of this study was to demonstrate the regional MR anatomy of a normal 1 2 C. Lemaire • human spinal cord under near optimal conditions. A spinal cord and meninges were L. Resch3 excised and segments from the cervical (C6), thoracic (T6), lumbar (L3), and sacral/ D. G. Potts1 cauda equina regions were examined on a 2-T MR system. By using a 2.5 x 2.0 em solenoid coil and a multislice spin-echo sequence, we achieved a resolution of 58 llm in the readout direction and 117 llm in the phase-encode direction. Histological sections corresponding to the areas imaged by MR were retained and treated with stains that demonstrated the distributions of collagen (hematoxylin, phloxine, saffron), myelin (Luxol fast bluefH and E), or neuritic processes (Bielschowsky's). Subarachnoid, vas cular, white matter, and gray matter structures were demonstrated by MR and light microscopy. The resulting MR images and photomicrographs were correlated. Different signal intensities were observed in the gracile and cuneate fasciculi, and these differ ences were similar to the pattern seen with the myelin stain. Decreased signal intensity was present in the region of the spinocerebellar tracts. The anatomic detail demonstrated by this study was clearly superior to that shown by clinical MR examinations. AJNR 11:3-7, January/February 1990 Because MR imaging of the human spinal cord demonstrates clearly the gray and white matter structures [1-5], this technique is useful for diagnosing variou s cord abnormalities, such as syringomyelia, intramedullary tumors, cord atrophy demyelination , cord cysts, and vascular malformations. -
White Matter Anatomy: What the Radiologist Needs to Know
White Matter Anatomy What the Radiologist Needs to Know Victor Wycoco, MBBS, FRANZCRa, Manohar Shroff, MD, DABR, FRCPCa,*, Sniya Sudhakar, MBBS, DNB, MDb, Wayne Lee, MSca KEYWORDS Diffusion tensor imaging (DTI) White matter tracts Projection fibers Association Fibers Commissural fibers KEY POINTS Diffusion tensor imaging (DTI) has emerged as an excellent tool for in vivo demonstration of white matter microstructure and has revolutionized our understanding of the same. Information on normal connectivity and relations of different white matter networks and their role in different disease conditions is still evolving. Evidence is mounting on causal relations of abnormal white matter microstructure and connectivity in a wide range of pediatric neurocognitive and white matter diseases. Hence there is a pressing need for every neuroradiologist to acquire a strong basic knowledge of white matter anatomy and to make an effort to apply this knowledge in routine reporting. INTRODUCTION (Fig. 1). However, the use of specific DTI sequences provides far more detailed and clini- DTI has allowed in vivo demonstration of axonal cally useful information. architecture and connectivity. This technique has set the stage for numerous studies on normal and abnormal connectivity and their role in devel- DIFFUSION TENSOR IMAGING: THE BASICS opmental and acquired disorders. Referencing established white matter anatomy, DTI atlases, Using appropriate magnetic field gradients, and neuroanatomical descriptions, this article diffusion-weighted sequences can be used to summarizes the major white matter anatomy and detect the motion of the water molecules to and related structures relevant to the clinical neurora- from cells. This free movement of the water mole- diologist in daily practice.