Publications of the Astronomical Society of the Pacific

Total Page:16

File Type:pdf, Size:1020Kb

Publications of the Astronomical Society of the Pacific PUBLICATIONS OF THE ASTRONOMICAL SOCIETY OF THE PACIFIC Vol. 83 October 1971 No. 495 EVOLUTION IN CLOSE BINARY SYSTEMS* ZDENEK KOPAL Department of Astronomy, University of Manchester, England Received 25 June 1971 A comparison of the consequences of current theories of stellar evolution with known observational aspects of close binary systems leads to the following conclusions. 1. Systems with both components on the main sequence conform satisfactorily to our present expectations in most observational aspects. In particular, components which are equal (or comparable) in mass appear to be also comparable in their spectra and absolute dimensions. They also rotate without exception in the direction of their orbital revolution, and about axes which are nearly perpendicular to the orbital plane. 2. Their post-main-sequence evolution towards the giant branch results in a widespread "evolutionary paradox," in which the component leading in evolution (having expanded to fill its Roche limit) proves to be the less massive of the two. The existence of contact com- ponents in systems of total mass less than 1-2 O casts some doubt, however, on the possibility that such systems became semidetached as a consequence of thermonuclear hydrogen deple- tion within the lifetime of our Galaxy. 3. A hypothesis that this situation is the result of a changeover in the role caused by transfer of mass between them can be made compatible with the observed absence of a transient phase in which the more massive star has reached the Roche limit first only if a mass transfer at a rate of 10-5 to 10~4 O /yr is limited to 1(^-105 years, and occurs with velocities generally less than 102 km/sec. This would, however, require the density of such temporary gas streams to be of the order of 10^-1021 particles per cm3 (i.e., 10-6 to 10-3 g/cm3 for hydrogen), and optically completely thick. 4. The gas streams actually observed by spectroscopic means in many semidetached systems fall short of these requirements by several orders of magnitude; and any mass transfer by these would become noticeable only on a long (nuclear) time scale. 5. The existence of binary systems like Sirius or Procyon (consisting of a main-sequence star attended by a white dwarf) — in which very wide separation of both components largely precludes mass transfer — suggests that a loss of mass of their white dwarfs must have occurred with velocities sufficient to remove it altogether from the system — as it happens in Wolf-Rayet stars or novae. 6. Another significant fact concerning close binaries in their post-main-sequence evolutionary stage is a virtually complete absence of such binaries with mass ratios close to one — in contrast with their relatively high frequency encountered on the main sequence, and in spite of an increased probability of discovery. The reason why these should become extinct in the post-main-sequence stage is unknown. 7. Close binaries of the W UMa type are much too numerous in space to be regarded as evolutionary descendants of detached main-sequence systems of comparable masses and dimensions. A hypothesis is, therefore, advanced that their origin was by contraction towards two preexisting mass centers in close proximity of each other — a contraction which became arrested (by the onset of hydrogen burning) at, or even beyond, their respective Roche limits — thus resulting in the formation of systems with properties as we see them today. 8. The observed excesses of photometric over dynamical ellipticities of W UMa-type systems point to the conspicuous gravity-darkening operative over their surfaces — not smaller than that to be expected for the case of radiative equilibrium in subsurface layers. *One in a series of review articles currently appearing in the Publications. 521 © Astronomical Society of the Pacific · Provided by the NASA Astrophysics Data System 522 ZDENEK KOPAL 9. The kinematic properties of W UMa-type binaries are different (and their concentra- tion towards the galactic plane more pronounced) than those of the subdwarf systems of U Gem type — facts which throw some doubt on the possibility of evolutionary connection between the two groups of stars. Key words: stellar evolution — binary stars individual evolutionary stages may become I. Introduction impossible to accomplish. 1 As is known only too well, the evolution of the A more favorable situation would obtain if we stars constitutes a process which (barring excep- could identify a group of stars of the same age tional phases bordering on instability) unrolls and initial composition, which may differ among on so slow a time scale that no changes arising themselves only in mass. Such groups are indeed from it can become perceptible within a cos- known to exist — to wit, stellar associations and mically fleeting span of time, such as the time star clusters of different types, whose HR interval human beings have been observing the diagrams reflect nothing else but evolutionary stars since the dawn of the astronomical science. dispersion of equally old stars of different mass However, atomic and nuclear physics has now after a certain lapse of time. However — except progressed to the stage at which the cosmic for relative luminosities — the individual proper- history of self-gravitating configurations of ties of such cluster stars are again not known to stellar mass and size can be broadly recon- us any better than if such stars were solitary structed on theoretical grounds — at least travelers through space. The situation becomes throughout most of their lives — from the cradle only a little better in the extreme case of associa- to the grave. In particular, it has been generally tions we call double or multiple stars — visual recognized that the evolution of the stars repre- binaries of known periods, for which the masses sents — in effect — an initial-value problem, the of the individual components are obtainable whole course of which is governed by the star's from a knowledge of their parallax and absolute initial mass and composition (to which we should orbits; but their radii are known to us no more add, perhaps, also the initial angular momen- than if these stars were single. tum) — the mass (and, to a lesser extent, momen- In order to learn more about the stars as tum) remaining essentially unaltered at least individuals, we must turn our attention to close throughout long evolutionary epochs; while the binary systems — and, in particular, to those composition changes irreversibly in the course of which by an accident of the orientation of their time as a result of gradual depletion of hydrogen orbital planes with respect to our line of sight and other types of nuclear fuel. happen to become eclipsing variables; for these No theories of this process are, however, as constitute so far our sole source of information yet sufficiently specific —let alone infallible — concerning the masses, densities, and absolute and they must continually be tested by con- dimensions of the individual stars other than our fronting their consequences with the actual sun. The significance of such systems for a properties of real stars at different phases of their documentation of the story of stellar evolution is evolution. The discriminating power of such manifest: namely, they provide a unique oppor- tests depends, in turn, on the range of informa- tunity for tracing the effects of differential evo- tion offered by the test objects. Single stars lution of stars of virtually the same age and which move alone through space are, unfortu- initial composition, which may differ in initial nately, not very revealing in this respect; for mass (or momentum). Moreover, a close binary their basic physical characteristics — such as the system represents a liaison of two stars which masses and absolute dimensions — are not indi- are bound to remain together through all vidually obtainable, and can be surmised only vicissitudes of their subsequent evolution no by statistical methods. Moreover, a sample of matter how long the latter may be. And the stars selected at random in any part of the longer it lasts, the more revealing a comparison galactic space would contain objects of very may become of the actual properties of two different ages as well as initial masses and com- partners of the same age constituting an indis- position. As a result, an identification of their soluble union. © Astronomical Society of the Pacific · Provided by the NASA Astrophysics Data System EVOLUTION IN CLOSE BINARY SYSTEMS 523 It will be the aim of the present paper to cording to most recent estimates (cf. Dommanget examine, from this point of view, known physical 1970; or Jaschek and Gomez 1970) more than properties of close binary systems in order to one-half of all main-sequence stars are double inquire into the extent to which they conform or multiple, and have been so from the stage at to theoretical expectations based on the evolu- which a preexisting gas cloud collapsed into tion of the two components of such systems as individual stars. Whether the origin of multiple stellar individuals. This story, the commence- stars is to be sought in a "simultaneous condensa- ment of which goes back less than 20 years in the tion" or "capture" at a distance comparable with past, is still full of gaps — some very tantalizing their present separation in close pairs is largely ones —but it does not lack many points of a matter of semantics, for in dense star associa- interest. In fact, it plays a central role in docu- tions both processes amount to very much the menting the story of stellar evolution; and while same thing. being (at least, up to a point) broadly in agree- Be that as it may, however, both components ment with theoretical expectations, it discloses of ordinary close pairs evolved probably side by also many facts which have not been previously side in the course of the last stage of their con- anticipated.
Recommended publications
  • Analysis of Eclipsing Binary Data
    analysis of eclipsing binary data A.E. Lynas-Gray and C. Causer October 2012 AS33 1 Introduction The purpose of this experiment is to verify physical and geometric characteristics of an eclipsing binary already published in the literature, using radial velocity and light curves provided. In carrying out the experiment, the most important thing is to appreciate how the masses, radii, shapes, temperatures and orbits of the two stars determine the observed light and radial velocity variations. The book by Hilditch (2001) is an excellent introduction to binary stars and is recommended reading. Once the period has been determined, masses, radii and effective temperatures of both components are estimated using a “back of an envelope” calculation; these results are then used as a starting ap- proximation in a light and radial velocity curve synthesis code. The idea is to reproduce observed light and radial velocity curves, but in practice “back of the envelope” results will need adjustment before a good agreement with observation is achieved. At the time of writing, only data for R Canis Majoris are provided. 2 Initial setup Begin by creating a xterm window in which commands can be typed. The window is created using the Mouse to click on the large “X” in the middle of the dock on the bottom of your screen. The large “X” may bob up and down a bit before the window appears. The steps detailed below provide the setup necessary for experiments carried out in the Astrophysics Laboratory. The .profile, .bashrc, .cups/lpoptions and .Xdefaults files in your home directory are changed as a result of carrying out steps listed below; if these files have been previously setup to carry out an experiment in another laboratory, please consult a demonstrator before proceeding.
    [Show full text]
  • PHOTOMETRIC and SPECTROSCOPIC STUDY of R Cma*
    PHOTOMETRIC AND SPECTROSCOPIC STUDY OF R CMa* K. R. RADHAKRISHNAN, M. B. K. SARMA, and K. D. ABHYANKAR Centre of Advances Study in Astronomy, Osmania University, Hyderabad, India (Received 19 July, 1983) Abstract. UBFlight curves and spectrograms of RCMa obtained with the 48-inch telescope of Japal- Rangapur Observatory during 1980-82 have been used for deriving the eclipse and orbital elements as well as the absolute dimensions of the components. The primary is found to be a Main-Sequence F2V star of mass 1.52 M and the secondary a subgiant star of spectral type G8 and mass 0.20 M which fills its Roche lobe, in agreement with Kopal and Shapley (1956) results, Kopal (1959), or Sahade's (1963) results. From a consideration of the possible evolution of this system it is concluded that a large fraction of the original mass of the secondary is lost from the system. A study of the period changes indicates the possible presence of a third component of mass of about 0.5 MQ which is most likely to be an M dwarf. 1. Introduction R Canis Majoris is the prototype of a group of Algol systems having very low mass function. It is known to exhibit peculiarities in its light curve that change from time to time and is thought to be surrounded by gas. It also shows changes in period which are not yet fully understood. Hence, this star was included in the photometric and spectroscopic observing programme of Japal-Rangapur Observatory. R CMa was observed photometrically with the 48-inch telescope in the standard UBV colors on 34 nights during 1980-82 covering nine minima.
    [Show full text]
  • Magnetic Field, Chemical Composition and Line Profile Variability of The
    Mon. Not. R. Astron. Soc. 000, 1–11 (2010) Printed 20 November 2018 (MN LATEX style file v2.2) Magnetic field, chemical composition and line profile variability of the peculiar eclipsing binary star AR Aur⋆ C.P. Folsom1†, O. Kochukhov2, G.A. Wade3, J. Silvester3,4, S. Bagnulo1 1Armagh Observatory, College Hill, Armagh Northern Ireland BT61 9DG 2Department of Astronomy and Space Physics, Uppsala University, 751 20 Uppsala, Sweden 3Department of Physics, Royal Military College of Canada, P.O. Box 17000, Station ‘Forces’, Kingston, Ontario, Canada, K7K 7B4 4Department of Physics, Engineering Physics & Astronomy, Queen’s University, Kingston, Ontario, Canada, K7L 3N6 Received: 2010; Accepted: 2010 ABSTRACT AR Aur is the only eclipsing binary known to contain a HgMn star, making it an ideal case for a detailed study of the HgMn phenomenon. HgMn stars are a poorly understood class of chemically peculiar stars, which have traditionally been thought not to possess significant magnetic fields. However, the recent discovery of line profile variability in some HgMn stars, apparently attributable to surface abundance patches, has brought this belief into question. In this paper we investigate the chemical abun- dances, line profile variability, and magnetic field of the primary and secondary of the AR Aur system, using a series of high resolution spectropolarimetric observations. We find the primary is indeed a HgMn star, and present the most precise abundances yet determined for this star. We find the secondary is a weak Am star, and is possibly still on the pre-main sequence. Line profile variability was observed in a range of lines in the primary, and is attributed to inhomogeneous surface distributions of some el- ements.
    [Show full text]
  • Výročná Správa Za Rok 2005
    2005 3.1. Research output – publications 3. Monographs published in Slovakia 1. PITTICH, E.M. Astronomická ročenka 2006. Hurbanovo: Slovenská ústredná hvezdáreň, 2005. ISBN 80-85221-50-0. p. 1-272. (in Slovak) 7. Chapters in monographs published in Slovakia 2. HRIC, L. Premenné hviezdy. In PITTICH, E.M. Astronomická ročenka 2006. Hurbanovo: Slovenská ústredná hvezdáreň, 2005. ISBN 80-85221-50-0. p. 186-202. (in Slovak) 3. PITTICH, E. Čas, obloha od januára do decembra. In PITTICH, E.M. Astronomická ročenka 2006. Hurbanovo: Slovenská ústredná hvezdáreň, 2005. ISBN 80-85221-50-0. p. 3-89. (in Slovak) 4. PITTICH, E. Pohyb planét po oblohe, elongácie a jasnosti, Mesiac krátko po nove. In PITTICH, E.M. Astronomická ročenka 2006. Hurbanovo: Slovenská ústredná hvezdáreň, 2005. ISBN 80-85221-50-0. p. 90-103. (in Slovak) 5. PITTICH, E. Kométy. In PITTICH, E.M. Astronomická ročenka 2006. Hurbanovo: Slovenská ústredná hvezdáreň, 2005. ISBN 80-85221-50-0. p. 106-143. (in Slovak) 6. PITTICH, E. Galileiho mesiace. In PITTICH, E.M. Astronomická ročenka 2006. Hurbanovo: Slovenská ústredná hvezdáreň, 2005. ISBN 80-85221-50-0. p. 159-172. (in Slovak) 7. PITICHOVÁ, J. Kométy roka 2004. In PITTICH, E.M. Astronomická ročenka 2006. Hurbanovo: Slovenská ústredná hvezdáreň, 2005. ISBN 80-85221-50-0. p. 241-268. (in Slovak) 8. PORUBČAN, V. Meteorické roje. In PITTICH, E.M. Astronomická 2006. Hurbanovo: Slovenská ústredná hvezdáreň, 2005. ISBN 80-85221-50-0. p. 104-105. (in Slovak) 9. SVOREŇ, J. Teórie vzniku a vývoja asteroidov. In PITTICH, E.M. Astronomická ročenka 2006. Hurbanovo: Slovenská ústredná hvezdáreň, 2005.
    [Show full text]
  • 121012-AAS-221 Program-14-ALL, Page 253 @ Preflight
    221ST MEETING OF THE AMERICAN ASTRONOMICAL SOCIETY 6-10 January 2013 LONG BEACH, CALIFORNIA Scientific sessions will be held at the: Long Beach Convention Center 300 E. Ocean Blvd. COUNCIL.......................... 2 Long Beach, CA 90802 AAS Paper Sorters EXHIBITORS..................... 4 Aubra Anthony ATTENDEE Alan Boss SERVICES.......................... 9 Blaise Canzian Joanna Corby SCHEDULE.....................12 Rupert Croft Shantanu Desai SATURDAY.....................28 Rick Fienberg Bernhard Fleck SUNDAY..........................30 Erika Grundstrom Nimish P. Hathi MONDAY........................37 Ann Hornschemeier Suzanne H. Jacoby TUESDAY........................98 Bethany Johns Sebastien Lepine WEDNESDAY.............. 158 Katharina Lodders Kevin Marvel THURSDAY.................. 213 Karen Masters Bryan Miller AUTHOR INDEX ........ 245 Nancy Morrison Judit Ries Michael Rutkowski Allyn Smith Joe Tenn Session Numbering Key 100’s Monday 200’s Tuesday 300’s Wednesday 400’s Thursday Sessions are numbered in the Program Book by day and time. Changes after 27 November 2012 are included only in the online program materials. 1 AAS Officers & Councilors Officers Councilors President (2012-2014) (2009-2012) David J. Helfand Quest Univ. Canada Edward F. Guinan Villanova Univ. [email protected] [email protected] PAST President (2012-2013) Patricia Knezek NOAO/WIYN Observatory Debra Elmegreen Vassar College [email protected] [email protected] Robert Mathieu Univ. of Wisconsin Vice President (2009-2015) [email protected] Paula Szkody University of Washington [email protected] (2011-2014) Bruce Balick Univ. of Washington Vice-President (2010-2013) [email protected] Nicholas B. Suntzeff Texas A&M Univ. suntzeff@aas.org Eileen D. Friel Boston Univ. [email protected] Vice President (2011-2014) Edward B. Churchwell Univ. of Wisconsin Angela Speck Univ. of Missouri [email protected] [email protected] Treasurer (2011-2014) (2012-2015) Hervey (Peter) Stockman STScI Nancy S.
    [Show full text]
  • Prof. Tansel AK
    Prof. Tansel AK OPfefricseo Pnhaol nIen:f +or9m0 2a1t2io 4n40 0000 Extension: 10296 EFmaxa iPl:h otannes:e l+ak9@0 i2st1a2n b4u4l0.e 0d3u7.t0r AWdedbr:e hstst:p :İ/s/tawnwbuwl. iÜstnainvebrusli.etedsui .Ftre/nfe Fna/kpüelrtessoin Aeslatrkoanfeonm.pi hvpe? Uidz=ay2 6B9ilimleri Bölümü, 34119, Üniversite, Beyazıt, İstanbul EDodcutocraatteio, İnst aInnbfuol rÜmniavetriosintesi, Institute of Graduate Studies In Sciences, Astronomi Ve Uzay Bilimleri Anabilim Dalı, PTousrtkgerya d1u9a9t2e ,- İ1st9a9n9bul Üniversitesi, Institute of Graduate Studies In Sciences, Astronomi Ve Uzay Bilimleri Anabilim Dalı, UTunrdkeeryg r1a9d9u0a t-e 1, 9İs9ta2nbul Üniversitesi, Faculty of Science, Astronomy and Space Sciences, Turkey 1983 - 1990 FEnogrliesihg, nB2 L Uapnpgeru Iangteersmediate Dissertations ADsotcrtoonroamtei, CVüec Uez Nayo vBaillaimrılne rUi zAunna Dbiölinme mDalil ıD, 1av9r9a9nışları, Istanbul University, Institute of Graduate Studies In Sciences, SPcoisetngcreasd, uYaıltdeı,z K Aatmakolissfmerilke rDi ePğrioşegnra DmQı, H1e9r9 2Yıldızının Morötesi Tayfı, Istanbul University, Institute of Graduate Studies In RPheysseicas,r Acshtr Aonroemays and Astrophysics, Astronomy and Astrophysics: Instrumentation Techniques and Observations, Star Scyisetnecmess, Interstellar Medium, The Galaxy, Galactic and Extragalactic Objets and Systems, Cosmology, Stars, Natural Academic Titles / Tasks APrsosofecsiastoer ,P Irsotafensbsuolr U, Insitvaenrbsuitly U, Fnaivceurltsyit yo,f FSaccieunltcye o, Af sStcrioencoem, Ay satnrodn Sopmacye a Sncdie Snpcaecse, 2S0c1ie2n
    [Show full text]
  • Phenomenological Modelling of Eclipsing System Light Curves
    A&A 584, A8 (2015) Astronomy DOI: 10.1051/0004-6361/201425244 & c ESO 2015 Astrophysics Phenomenological modelling of eclipsing system light curves Zdenekˇ Mikulášek Department of Theoretical Physics and Astrophysics, Masaryk University, Kotlárskᡠ2, 611 37 Brno, Czech Republic e-mail: [email protected] Received 30 October 2014 / Accepted 17 August 2015 ABSTRACT Context. The observed light curves of most eclipsing binaries and stars with transiting planets can be described well and interpreted by current advanced physical models that also allow for determining many of the physical parameters of eclipsing systems. However, for several common practical tasks, there is no need to know the detailed physics of a variable star, but only the shapes of their light curves or other phase curves. Aims. We present a set of phenomenological models for the light curves of eclipsing systems. Methods. We express the observed light curves of eclipsing binaries and stars, which are transited by their exoplanets orbiting in circular trajectories, by a sum of special, analytical, few-parameter functions that enable fitting their light curves with an accuracy of better than 1%. The proposed set of phenomenological models of eclipsing variable light curves were then tested on several real systems. For XY Bootis, we also give a detailed comparison of the results obtained using our phenomenological modelling with those found using available physical models. Results. We demonstrate that the proposed phenomenological models of transiting exoplanet and eclipsing binary light curves applied to ground-based photometric observations yield results compatible with those obtained by applying more complex physical models. Conclusions.
    [Show full text]
  • Prof.Dr. Tansel AK
    Prof.Dr. Tansel AK İKşi Tşiesleflo Bniul:g +il9e0r 212 440 0000 Dahili: 10296 EF-apxo Tsetale: ftoansue:l a+k9@0i s2t1an2b 4u4l.0e d0u3.7tr0 PWoesbta: hAtdtpr:e//swi: wİswta.insbtaunl bÜunl.ievdeurs.tirte/sfei nF/epne Frasokünletleaski aAfestnr.opnhopm?idi =ve2 U69zay Bilimleri Bölümü, 34119, Üniversite, Beyazıt, İstanbul Eğitim Bilgileri YDüokksteokr aL, iİssatnans,b İustl aÜnnbiuvel rÜsnitievseir, sFiteens iB, Filiemnl eBrilii mEnlesrtiit üEsnüs,t iAtüsstrüo, nAosmtroi Vnoe mUiz aVye BUizliamyl eBrilii mAnlearbi iAlimna Dbialilmı, T Düarlkı,i yTeü 1rk9i9y2e 1- 91909 9- L1i9s9a2ns, İstanbul Üniversitesi, Fen Fakültesi, Astronomi ve Uzay Bilimleri Bölümü, Türkiye 1983 - 1990 Yİnagbiliazcnec, Bı 2D Oilrltea rÜstü Yaptığı Tezler BDiolikmtolerrai, ACnüacbe iNlimov Dalaalrı,ı n1 9U9z9un Dönemli Davranışları, İstanbul Üniversitesi, Fen Bilimleri Enstitüsü, Astronomi Ve Uzay AYütmksoeskfe Lrilsearni sP,r Koagtraakmlisı,m 1i9k9 D2eğişen DQ Her Yıldızının Morötesi Tayfı, İstanbul Üniversitesi, Fen Bilimleri Enstitüsü, Yıldız Araştırma Alanları YFıilzdikız, ASissttreomnloemrii; Yvıeld Aızsltarroafrizaiskı, oTretmamel; gAasltarkotniko vmei gvael aAksstir doıfşizı inke: sEnneslterrü mvea snitsatseymolne,r T;eevkrneink,l eYrıl dveız lAasrt, rToenmoeml iBk igliömzlleermler, Akademik Unvanlar / Görevler DProoçf.D.Drr.,. , İİssttaannbbuull ÜÜnniivveerrssiitteessii, , FFeenn FFaakküülltteessii, , AAssttrroonnoommii vvee UUzzaayy BBiilliimmlleerrii BBööllüümmüü, , 22000172 -- 2D0e1v2am Ediyor AYrdaş.Dtıormç.Da rG., öİsrteavnlibsui, lİ sÜtnainvbeursl iÜtensiiv,
    [Show full text]
  • Arxiv:0908.2624V1 [Astro-Ph.SR] 18 Aug 2009
    Astronomy & Astrophysics Review manuscript No. (will be inserted by the editor) Accurate masses and radii of normal stars: Modern results and applications G. Torres · J. Andersen · A. Gim´enez Received: date / Accepted: date Abstract This paper presents and discusses a critical compilation of accurate, fun- damental determinations of stellar masses and radii. We have identified 95 detached binary systems containing 190 stars (94 eclipsing systems, and α Centauri) that satisfy our criterion that the mass and radius of both stars be known to ±3% or better. All are non-interacting systems, so the stars should have evolved as if they were single. This sample more than doubles that of the earlier similar review by Andersen (1991), extends the mass range at both ends and, for the first time, includes an extragalactic binary. In every case, we have examined the original data and recomputed the stellar parameters with a consistent set of assumptions and physical constants. To these we add interstellar reddening, effective temperature, metal abundance, rotational velocity and apsidal motion determinations when available, and we compute a number of other physical parameters, notably luminosity and distance. These accurate physical parameters reveal the effects of stellar evolution with un- precedented clarity, and we discuss the use of the data in observational tests of stellar evolution models in some detail. Earlier findings of significant structural differences between moderately fast-rotating, mildly active stars and single stars, ascribed to the presence of strong magnetic and spot activity, are confirmed beyond doubt. We also show how the best data can be used to test prescriptions for the subtle interplay be- tween convection, diffusion, and other non-classical effects in stellar models.
    [Show full text]
  • Arxiv:2006.10868V2 [Astro-Ph.SR] 9 Apr 2021 Spain and Institut D’Estudis Espacials De Catalunya (IEEC), C/Gran Capit`A2-4, E-08034 2 Serenelli, Weiss, Aerts Et Al
    Noname manuscript No. (will be inserted by the editor) Weighing stars from birth to death: mass determination methods across the HRD Aldo Serenelli · Achim Weiss · Conny Aerts · George C. Angelou · David Baroch · Nate Bastian · Paul G. Beck · Maria Bergemann · Joachim M. Bestenlehner · Ian Czekala · Nancy Elias-Rosa · Ana Escorza · Vincent Van Eylen · Diane K. Feuillet · Davide Gandolfi · Mark Gieles · L´eoGirardi · Yveline Lebreton · Nicolas Lodieu · Marie Martig · Marcelo M. Miller Bertolami · Joey S.G. Mombarg · Juan Carlos Morales · Andr´esMoya · Benard Nsamba · KreˇsimirPavlovski · May G. Pedersen · Ignasi Ribas · Fabian R.N. Schneider · Victor Silva Aguirre · Keivan G. Stassun · Eline Tolstoy · Pier-Emmanuel Tremblay · Konstanze Zwintz Received: date / Accepted: date A. Serenelli Institute of Space Sciences (ICE, CSIC), Carrer de Can Magrans S/N, Bellaterra, E- 08193, Spain and Institut d'Estudis Espacials de Catalunya (IEEC), Carrer Gran Capita 2, Barcelona, E-08034, Spain E-mail: [email protected] A. Weiss Max Planck Institute for Astrophysics, Karl Schwarzschild Str. 1, Garching bei M¨unchen, D-85741, Germany C. Aerts Institute of Astronomy, Department of Physics & Astronomy, KU Leuven, Celestijnenlaan 200 D, 3001 Leuven, Belgium and Department of Astrophysics, IMAPP, Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ Nijmegen, the Netherlands G.C. Angelou Max Planck Institute for Astrophysics, Karl Schwarzschild Str. 1, Garching bei M¨unchen, D-85741, Germany D. Baroch J. C. Morales I. Ribas Institute of· Space Sciences· (ICE, CSIC), Carrer de Can Magrans S/N, Bellaterra, E-08193, arXiv:2006.10868v2 [astro-ph.SR] 9 Apr 2021 Spain and Institut d'Estudis Espacials de Catalunya (IEEC), C/Gran Capit`a2-4, E-08034 2 Serenelli, Weiss, Aerts et al.
    [Show full text]
  • Betelgeuse and the Crab Nebula
    The monthly newsletter of the Temecula Valley Astronomers Feb 2020 Events: General Meeting : Monday, February 3rd, 2020 at the Ronald H. Roberts Temecula Library, Room B, 30600 Pauba Rd, at 7:00 PM. On the agenda this month is “What’s Up” by Sam Pitts, “Mission Briefing” by Clark Williams then followed by a presentation topic : “A History of Palomar Observatory” by Curtis Oort Cloud in Perspective. Credit NASA / JPL- Croulet. Refreshments by Chuck Caltech Dyson. Please consider helping out at one of the many Star Parties coming up over the next few months. For General information: the latest schedule, check the Subscription to the TVA is included in the annual $25 Calendar on the web page. membership (regular members) donation ($9 student; $35 family). President: Mark Baker 951-691-0101 WHAT’S INSIDE THIS MONTH: <[email protected]> Vice President: Sam Pitts <[email protected]> Cosmic Comments Past President: John Garrett <[email protected]> by President Mark Baker Treasurer: Curtis Croulet <[email protected]> Looking Up Redux Secretary: Deborah Baker <[email protected]> Club Librarian: Vacant compiled by Clark Williams Facebook: Tim Deardorff <[email protected]> Darkness Star Party Coordinator and Outreach: Deborah Baker by Mark DiVecchio <[email protected]> Betelgeuse and the Crab Nebula: Stellar Death and Rebirth Address renewals or other correspondence to: Temecula Valley Astronomers by David Prosper PO Box 1292 Murrieta, CA 92564 Send newsletter submissions to Mark DiVecchio th <[email protected]> by the 20 of the month
    [Show full text]
  • Jahresbericht 2010 Mitteilungen Der Astronomischen Gesellschaft 94 (2013), 583–627
    Jahresbericht 2010 Mitteilungen der Astronomischen Gesellschaft 94 (2013), 583–627 Potsdam Leibniz-Institut für Astrophysik Potsdam (AIP) An der Sternwarte 16, D-14482 Potsdam Tel. 03317499-0, Telefax: 03317499-267 E-Mail: [email protected] WWW: http://www.aip.de Beobachtungseinrichtungen Robotisches Observatorium STELLA Observatorio del Teide, Izaña E-38205 La Laguna, Teneriffa, Spanien Tel. +34 922 329 138 bzw. 03317499-633 LOFAR-Station DE604 Potsdam-Bornim D-14469 Potsdam Tel. 03317499-291, Telefax: 03317499-352 Observatorium für Solare Radioastronomie Tremsdorf D-14552 Tremsdorf Tel. 03317499-291, Telefax: 03317499-352 Sonnenobservatorium Einsteinturm Telegrafenberg, D-14473 Potsdam Tel. 0331288-2303/-2304, Telefax: 03317499-524 0 Allgemeines Das Leibniz-Institut für Astrophysik Potsdam (AIP) ist eine Stiftung bürgerlichen Rechts zum Zweck der wissenschaftlichen Forschung auf dem Gebiet der Astrophysik. Als außer- universitäre Forschungseinrichtung ist es Mitglied der Leibniz-Gemeinschaft. Seinen For- schungsauftrag führt das AIP im Rahmen von nationalen und internationalen Kooperatio- nen aus. Die Beteiligung am Large Binocular Telescope auf dem Mt Graham in Arizona, dem größten optischen Teleskop der Welt, verdient hierbei besondere Erwähnung. Neben seinen Forschungsarbeiten profiliert sich das Institut zunehmend als Kompetenzzentrum im Bereich der Entwicklung von Forschungstechnologie. Vier gemeinsame Berufungen mit der Universität Potsdam und mehrere außerplanmäßige Professuren und Privatdozenturen an Universitäten in der Region und
    [Show full text]