Weak-Line T Tauri Star Disks I. Initial Spitzer Results from the Cores to Disks Legacy Project

Total Page:16

File Type:pdf, Size:1020Kb

Weak-Line T Tauri Star Disks I. Initial Spitzer Results from the Cores to Disks Legacy Project Weak-line T Tauri Star Disks I. Initial Spitzer Results from the Cores to Disks Legacy Project Deborah L. Padgett1, Lucas Cieza2, Karl R. Stapelfeldt3, Neal J. Evans, II2, David Koerner4, Anneila Sargent5, Misato Fukagawa1, Ewine F. van Dishoek6, Jean-Charles Augereau6, Lori Allen7, Geoff Blake5, Tim Brooke5, Nicholas Chapman8, Paul Harvey2, Alicia Porras7, Shih-Ping Lai8, Lee Mundy8, Philip C. Myers7, William Spiesman2, Zahed Wahhaj4 ABSTRACT Using the Spitzer Space Telescope, we have observed 90 weak-line and clas- sical T Tauri stars in the vicinity of the Ophiuchus, Lupus, Chamaeleon, and Taurus star-forming regions as part of the Cores to Disks (c2d) Spitzer Legacy project. In addition to the Spitzer data, we have obtained contemporaneous op- tical photometry to assist in constructing spectral energy distributions. These objects were specifically chosen as solar-type young stars with low levels of Hα emission, strong X-ray emission, and lithium absorption i.e. weak-line T Tauri stars, most of which were undetected in the mid-to-far IR by the IRAS survey. Weak-line T Tauri stars are potentially extremely important objects in determin- ing the timescale over which disk evolution may take place. Our objective is to determine whether these young stars are diskless or have remnant disks which arXiv:astro-ph/0603370v1 14 Mar 2006 are below the detection threshold of previous infrared missions. We find that only 5/83 weak-line T Tauri stars have detectable excess emission between 3.6 and 70 µm which would indicate the presence of dust from the inner few tenths of an AU out to the planet-forming regions a few tens of AU from the star. Of these sources, two have small excesses at 24 microns consistent with optically thin disks; the others have optically thick disks already detected by previous IR surveys. All of the seven classical T Tauri stars show excess emission at 24 and 70 µm although their properties vary at the shorter wavelengths. Our initial results show that disks are rare among young stars selected for their weak Hα emission. Subject headings: stars: pre-main sequence — (stars:) planetary systems: protoplane- tary disks — infrared: stars 1 1. Introduction same spectral type (Covino et al. 1997). The presence of a strong lithium absorp- T Tauri stars (Joy 1945) have long been tion indicates stellar youth among stars known as solar-mass pre-main sequence with deeply convecting photospheres since stars. Sprinkled throughout molecular lithium is easily destroyed at high temper- cloud complexes, or gathered in dense clus- atures. In practice, using the Li I EW to ters, they have traditionally been identified select young stars is a difficult task, since by their unusual optical spectra which in- the strength of the lithium line may de- clude bright emission lines of Hα and other pend on the rotational history of the star permitted and forbidden atomic transi- and spot coverage (Mendes et al. 1999). In tions. However, with the advent of X-ray addition, spectral classes earlier than G5 molecular cloud surveys, another class of may retain strong lithium lines through- solar-type young star has been identified out their main sequence lifetimes (Spite et from their high X-ray luminosity. Unlike al. 1996). Thus, current lists of WTTS the spectroscopically identified “Classical” are probably contaminated to some degree T Tauri stars (CTTS), these objects lack by young main sequence stars which are ˚ Hα emission in excess of 10 A in equiva- closer than the cloud, but too faint for ac- lent width (EW) and are thus known as curate parallax measurements (Alcala et “weak-line” T Tauri stars (WTTS; Her- al. 1998). big & Bell 1988). Confirmation that X- The current paradigm of planet forma- ray identified WTTS are young stars re- tion is still based on the venerable IRAS quires high resolution optical spectra that (Strom et al. 1989) and millimeter contin- show a solar-type spectrum with a Li I uum surveys (Beckwith et al. 1990) of the 6707 A˚ absorption line equivalent width late 1980’s that found mid-to-far-infared stronger than that of a Pleiades star of the and/or millimeter excess emission around 1Spitzer Science Center, MC220-6, Califor- about half of solar-type stars in nearby nia Institute of Technology, Pasadena, CA 91125 clouds. This picture of disk evolution [email protected] starts with Class 0-I sources which are ex- 2Astronomy Departement, University of Texas, tremely faint shortward of 25 microns, pro- 1 University Station C1400, Austin, TX 78712 ceeds through Class I with a rising IR Spec- 3 Jet Propulsion Laboratory, MS 183-900, 4800 tral Energy Distribution (SED), continues Oak Grove Drive, Pasadena, CA 91109 to Class II which has a flat or falling SED 4Northern Arizona University, Department of Physics and Astronomy, Box 6010, Flagstaff, AZ with strong IR excesses above the photo- 86011 sphere, and ends at Class III where the 5California Institute of Technology, Pasadena, excess emission indicates a tenuous, opti- CA 91125 cally thin disk (Adams, Lada, & Shu 1987; 7Smithsonian Astrophysical Observatory, 60 Andr´e& Montmerle 1994). In practice, Garden Street, MS42, Cambridge, MA 02138 IRAS and ISO were not sensitive enough 8 Astronomy Departement, University of Mary- to detect optically thin disks in the mid- land, College Park, MD 20742 IR at the distance of nearby star formation 6Leiden Observatory, Postbus 9513, 2300 R.A. Leiden, Netherlands regions; however, the Spitzer Space Tele- 2 scope does have this capability. Almost not retain remnant circumstellar mate- as soon as the first WTTS were identi- rial and did not possess substantial disks fied, they were presumed to be the Class long enough for plausible planet formation. III “missing link” of the planet formation Typical “core accretion” models of giant paradigm since “post” T Tauri stars had planet formation require a minimum of 5 proved elusive. Initial ground-based NIR million years to make a Jupiter, most of and MIR studies showed that inner disks which is spent in the coagulation of dust were very rare among the WTTS popula- and accretion of planetesimals (Wieden- tion (Skrutskie et al. 1990). More recent schilling 2000), although accretion times JHKL studies of several young clusters in- continue to drop in the most recent models dicated that inner disks disappear in 5 - 6 (Goldreich et al. 2004a,b) and the alterna- Myr (Haisch, Lada, & Lada 2001). On the tive “disk instability” model can produce other hand, a JHKL study of the ≈ 10 Myr giant planets on a very short timescale η Cha cluster found a rather high disk frac- (Boss 2001). A low detection frequency of tion among its few known members (Lyo any infrared excess among WTTS would et al. 2003), although a smaller percent- provide evidence for diskless young stars. age of disks was found by Haisch et al. In addition, this study will address the (2005). Both IRAS and millimeter surveys dispersion in disk properties among coeval indicate that optically thick outer disks are stars in the same environment. These dif- rare among WTTS (Strom et al. 1989, ferences could possibly be related to the Osterloh & Beckwith 1995). However, a early formation of planets in the stars sensitive study of tenuous material in the where the disks have inner holes or have terrestrial planet forming zone of WTTS disappeared entirely. Such a hypothesis is has awaited the power of the Spitzer Space potentially testable with future high res- Telescope (Spitzer). Spitzer has over 1000 olution astrometric studies of young stars times the sensitivity at 24 µm of the IRAS with and without disks to see if the pres- satellite, with similar improvements in its ence of giant planets is related to the state other imaging bands (Werner et al. 2004). of disk evolution. Only Spitzer can distinguish between tran- Several Spitzer surveys to assess the de- sitional disks (optically thick with inner tection frequency of excess in young stars holes), optically thin remnant disks with are either in progress or have been pub- low disk luminosity Ld (Ld/L∗ << 1, like lished recently. The entire range of Spitzer the debris disks found around older stars), instrumentation are utilized by these stud- and completely diskless “naked” T Tauri ies, including the 3.6 - 8.0 µm camera stars. (IRAC), the 24, 70, and 160 µm photome- Study of circumstellar material around ter (MIPS), and the 5 - 40 µm spectro- WTTS promises to answer some significant graph (IRS). There are several investiga- questions about planet formation around tions of excess among very young stars in low mass stars. The first is whether some individual star-forming regions (Reach et young stars are born “diskless”; that is, al. 2004, Muzerolle et al. 2004, Padgett some stars at the age of 1 - 3 Myr do et al. 2004, Young et al. 2005, Hart- 3 mann et al. 2005a, etc.). These stud- 70 µm sensitivities are good. Although ies investigate known young star popula- their youngest age group includes solar- tions including WTTS, CTTS, and Class type stars of similar age to the current I sources. Among older pre-main sequence WTTS sample, the FEPS young stars are associations, Chen et al. (2005) report on located more than 6◦ from nearby clouds a MIPS 24 & 70 µm survey of 40 F- and (Silverstone et al. 2006). In contrast to G- type stars in the Sco-Cen OB associ- these surveys, our 0.5 - 70 µm survey fo- ation with an age of 5 - 20 Myr (Chen cuses only on WTTS in and adjacent to et al. 2005). The Megeath et al. (2005) several star-forming clouds within 200 pc.
Recommended publications
  • Lurking in the Shadows: Wide-Separation Gas Giants As Tracers of Planet Formation
    Lurking in the Shadows: Wide-Separation Gas Giants as Tracers of Planet Formation Thesis by Marta Levesque Bryan In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy CALIFORNIA INSTITUTE OF TECHNOLOGY Pasadena, California 2018 Defended May 1, 2018 ii © 2018 Marta Levesque Bryan ORCID: [0000-0002-6076-5967] All rights reserved iii ACKNOWLEDGEMENTS First and foremost I would like to thank Heather Knutson, who I had the great privilege of working with as my thesis advisor. Her encouragement, guidance, and perspective helped me navigate many a challenging problem, and my conversations with her were a consistent source of positivity and learning throughout my time at Caltech. I leave graduate school a better scientist and person for having her as a role model. Heather fostered a wonderfully positive and supportive environment for her students, giving us the space to explore and grow - I could not have asked for a better advisor or research experience. I would also like to thank Konstantin Batygin for enthusiastic and illuminating discussions that always left me more excited to explore the result at hand. Thank you as well to Dimitri Mawet for providing both expertise and contagious optimism for some of my latest direct imaging endeavors. Thank you to the rest of my thesis committee, namely Geoff Blake, Evan Kirby, and Chuck Steidel for their support, helpful conversations, and insightful questions. I am grateful to have had the opportunity to collaborate with Brendan Bowler. His talk at Caltech my second year of graduate school introduced me to an unexpected population of massive wide-separation planetary-mass companions, and lead to a long-running collaboration from which several of my thesis projects were born.
    [Show full text]
  • Meeting Announcement Upcoming Star Parties And
    CVAS Executive Committee Pres – Bruce Horrocks Night Sky Network Coordinator – [email protected] Garrett Smith – [email protected] Vice Pres- James Somers Past President – Dell Vance (435) 938-8328 [email protected] [email protected] Treasurer- Janice Bradshaw Public Relations – Lyle Johnson - [email protected] [email protected] Secretary – Wendell Waters (435) 213-9230 Webmaster, Librarian – Tom Westre [email protected] [email protected] Vol. 7 Number 6 February 2020 www.cvas-utahskies.org The President’s Corner Meeting Announcement By Bruce Horrocks – CVAS President Our next meeting will be held on Wed. I don’t know about most of you, but I for February 26th at 7 pm in the Lake Bonneville Room one would be glad to at least see a bit of sun and of the Logan City Library. Our presenter will be clear skies at least once this winter. I believe there Wendell Waters, and his presentation is called was just a couple of nights in the last 2 months that “Charles Messier and the ‘Not-Comet’ Catalogue”. I was able to get out and do some observing and so I The meeting is free and open to the public. am hoping to see some clear skies this spring. I Light refreshments will be served. COME AND have watched all the documentaries I can stand on JOIN US!! Netflix, so I am running out of other nighttime activities to do and I really want to get out and test my new little 72mm telescope. Upcoming Star Parties and CVAS Events We made a change to our club fees at our last meeting and if you happened to have missed We have four STEM Nights coming up in that I will just quickly explain it to you now.
    [Show full text]
  • Staff, Visiting Scientists and Graduate Students at the Pescara Center December 2012 2
    Staff, Visiting Scientists and Graduate Students at the Pescara Center December 2012 2 Contents ICRANet Faculty Staff……………………………………………………………………. p. 17 Adjunct Professors of the Faculty .……………………………………………………… p. 36 Lecturers…………………………………………………………………………………… p. 64 Research Scientists ……………………………………………………………………….. p. 76 Visiting Scientists ………………………………………………………………………... p. 86 IRAP Ph. D. Students ……………………………………………………………………. p. 103 IRAP Ph. D. Erasmus Mundus Students………………………………………………. p. 123 Administrative and Secretarial Staff …………………………………………………… p. 135 3 4 ICRANet Faculty Staff Belinski Vladimir ICRANet Bianco Carlo Luciano University of Rome “Sapienza” and ICRANet Einasto Jaan Tartu Observatory, Estonia Novello Mario Cesare Lattes-ICRANet Chair CBPF, Rio de Janeiro, Brasil Rueda Jorge A. University of Rome “Sapienza” and ICRANet Ruffini Remo University of Rome “Sapienza” and ICRANet Vereshchagin Gregory ICRANet Xue She-Sheng ICRANet 5 Adjunct Professors Of The Faculty Aharonian Felix Albert Benjamin Jegischewitsch Markarjan Chair Dublin Institute for Advanced Studies, Dublin, Ireland Max-Planck-Institut für Kernphysis, Heidelberg, Germany Amati Lorenzo Istituto di Astrofisica Spaziale e Fisica Cosmica, Italy Arnett David Subramanyan Chandrasektar- ICRANet Chair University of Arizona, Tucson, USA Chakrabarti Sandip P. Centre for Space Physics, India Chardonnet Pascal Université de la Savoie, France Chechetkin Valeri Mstislav Vsevolodich Keldysh-ICRANet Chair Keldysh institute for Applied Mathematics Moscow, Russia Damour Thibault Joseph-Louis
    [Show full text]
  • Winter Constellations
    Winter Constellations *Orion *Canis Major *Monoceros *Canis Minor *Gemini *Auriga *Taurus *Eradinus *Lepus *Monoceros *Cancer *Lynx *Ursa Major *Ursa Minor *Draco *Camelopardalis *Cassiopeia *Cepheus *Andromeda *Perseus *Lacerta *Pegasus *Triangulum *Aries *Pisces *Cetus *Leo (rising) *Hydra (rising) *Canes Venatici (rising) Orion--Myth: Orion, the great ​ ​ hunter. In one myth, Orion boasted he would kill all the wild animals on the earth. But, the earth goddess Gaia, who was the protector of all animals, produced a gigantic scorpion, whose body was so heavily encased that Orion was unable to pierce through the armour, and was himself stung to death. His companion Artemis was greatly saddened and arranged for Orion to be immortalised among the stars. Scorpius, the scorpion, was placed on the opposite side of the sky so that Orion would never be hurt by it again. To this day, Orion is never seen in the sky at the same time as Scorpius. DSO’s ● ***M42 “Orion Nebula” (Neb) with Trapezium A stellar ​ ​ ​ nursery where new stars are being born, perhaps a thousand stars. These are immense clouds of interstellar gas and dust collapse inward to form stars, mainly of ionized hydrogen which gives off the red glow so dominant, and also ionized greenish oxygen gas. The youngest stars may be less than 300,000 years old, even as young as 10,000 years old (compared to the Sun, 4.6 billion years old). 1300 ly. ​ ​ 1 ● *M43--(Neb) “De Marin’s Nebula” The star-forming ​ “comma-shaped” region connected to the Orion Nebula. ● *M78--(Neb) Hard to see. A star-forming region connected to the ​ Orion Nebula.
    [Show full text]
  • Naming the Extrasolar Planets
    Naming the extrasolar planets W. Lyra Max Planck Institute for Astronomy, K¨onigstuhl 17, 69177, Heidelberg, Germany [email protected] Abstract and OGLE-TR-182 b, which does not help educators convey the message that these planets are quite similar to Jupiter. Extrasolar planets are not named and are referred to only In stark contrast, the sentence“planet Apollo is a gas giant by their assigned scientific designation. The reason given like Jupiter” is heavily - yet invisibly - coated with Coper- by the IAU to not name the planets is that it is consid- nicanism. ered impractical as planets are expected to be common. I One reason given by the IAU for not considering naming advance some reasons as to why this logic is flawed, and sug- the extrasolar planets is that it is a task deemed impractical. gest names for the 403 extrasolar planet candidates known One source is quoted as having said “if planets are found to as of Oct 2009. The names follow a scheme of association occur very frequently in the Universe, a system of individual with the constellation that the host star pertains to, and names for planets might well rapidly be found equally im- therefore are mostly drawn from Roman-Greek mythology. practicable as it is for stars, as planet discoveries progress.” Other mythologies may also be used given that a suitable 1. This leads to a second argument. It is indeed impractical association is established. to name all stars. But some stars are named nonetheless. In fact, all other classes of astronomical bodies are named.
    [Show full text]
  • Cadas Transit Magazine
    TRANSIT The January 2011 Newsletter of NEXT MEETING 14 January 2011, 7.15 pm for a 7.30 pm start Wynyard Planetarium Galaxies with proper names Dave Newton, Sunderland A.S. Contents p.2 Editorial p.2 Letters: I really wish I didn't have to write this…!; Weather predictions Neil Haggath; Keith Johnson Observation reports & planning p.4 Skylights – January 2011 Rob Peeling p.7 Total lunar eclipse, 21 December 2010 (1) Keith Johnson p.8 Total lunar eclipse, 21 December 2010 (2) John McCue General articles p.8 Star of wonder John Crowther p.10 Look again at the Big Dipper! Andy Fleming p.11 Chasing chickens Ray Worthy The Transit quiz p.15 Answers to December's quiz p.16 January's quiz 1 Editorial Rod Cuff December's weather probably sorted out the really hardy observers from the rest. Beautiful as some of the crystal-clear nights were, I used the fact that often the stars appeared to be twinkling wildly to convince myself that seeing would be poor and therefore I needn't feel obliged to stand for hours with snow half-way up my calves and in temperatures of many degrees below freezing. And so I studied last month's lunar eclipse from the relative warmth of a downstairs room with a clear north-west view, knowing that the aforesaid hardy observers would be bound to come up trumps – and so it proved. Take a bow, Keith Johnson and John McCue, whose photographic output appears in this issue. This month there is of course another eclipse, this time a partial solar eclipse visible at sunrise on 4 January.
    [Show full text]
  • Abstracts of Papers and Posters Presented at the 97Th Annual Meeting of the AAVSO, Held in Nantucket, Massachusetts, October 16–19, 2008
    Abstracts, JAAVSO Volume 37, 2009 193 Abstracts of Papers and Posters Presented at the 97th Annual Meeting of the AAVSO, Held in Nantucket, Massachusetts, October 16–19, 2008 The International Year of Astronomy and Citizen Science Aaron Price AAVSO, 49 Bay State Road, Cambridge, MA 02138 Abstract 2009 has been endorsed as the International Year of Astronomy by both the United Nations and the United States Congress. This talk will briefly outline the IYA cornerstone projects and then will go into more detail regarding the AAVSO’s role as leading a citizen science project regarding the variable star epsilon Aurigae. Variable Star Astronomy Education Outreach Initiative Donna L. Young The Wright Center for Innovative Science, Tufts University, 4 Colby Street, Medford, MA 02155 Abstract The American Association of Variable Star Observers (AAVSO) published a comprehensive variable star curriculum, Hands-On Astrophysics, Variable Stars in Science, Math, and Computer Education in 1997. The curriculum, funded by the National Science Foundation, was developed for a comprehensive audience—amateur astronomers, classroom educators, science fair projects, astronomy clubs, family learning, and anyone interested in learning about variable stars. Some of the activities from the Hands-On Astrophysics curriculum have been incorporated into the educational materials for the Chandra X-Ray Observatory’s Educational and Public Outreach (EPO) Office. On two occasions, in 2000 and 2001, triggered by alerts from amateur astronomers, Chandra observed the outburst of the dwarf nova SS Cygni. The cooperation of amateur variable star astronomers and Chandra X-Ray scientists provided proof that the collaboration of amateur and professional astronomers is a powerful tool to study cosmic phenomena.
    [Show full text]
  • Charles Augustus Young
    NATIONAL ACADEMY OF SCIENCES BIOGRAPHICAL MEMOIRS PART OF VOLUME VII BIOGRAPHICAL MEMOIR CHARLES AUGUSTUS YOUNG 1834-1908 EDWIN B. FROST PRESENTED BEFORE THE ACADEMY AT THE AUTUMN MEETING, I9O9 CITY OF WASHINGTON PUBLISHED BY THE NATIONAL ACADEMY OF SCIENCES April, 1910 CHARLES AUGUSTUS YOUNG. Charles Augustus Young was born in Hanover, New Hamp- shire, the seat of Dartmouth College, on December 15, 1834, and he died seventy-three years later, on January 3, 1908, in the same village, which had thrice been his home—in youth, in early manhood, and after his retirement from active work. An academic career was his by inheritance, for his maternal grandfather, Ebenezer Adams, of New Hampshire origin, was professor of mathematics and natural philosophy at Dartmouth from 1810 to 1833, and was succeeded in that chair by his son-in-law, Ira Young, father of Charles Augustus. Ira Young was also from New Hampshire, having been born at Lebanon, five miles from the college, in 1801. He was prevented by circumstances from entering college until after he was of age. but he took high rank and graduated in 1828, returning to the college two years later as tutor, and then assuming the duties of professor in 1833. Five years later his chair was changed to that of natural philosophy and astronomy, and it was filled by him with distinguished success until he died, in 1858. He was survived for thirty years by his widow, Eliza Adams, a woman of strong character and intellect. Charles Augustus thus grew up in the atmosphere of natural philosophy, and, gifted with an active mind, he was ready for college before he had reached his fourteenth birthday; but it was thought best by his father that he should delay his entrance for a year.
    [Show full text]
  • Magnetic Field, Chemical Composition and Line Profile Variability of The
    Mon. Not. R. Astron. Soc. 000, 1–11 (2010) Printed 20 November 2018 (MN LATEX style file v2.2) Magnetic field, chemical composition and line profile variability of the peculiar eclipsing binary star AR Aur⋆ C.P. Folsom1†, O. Kochukhov2, G.A. Wade3, J. Silvester3,4, S. Bagnulo1 1Armagh Observatory, College Hill, Armagh Northern Ireland BT61 9DG 2Department of Astronomy and Space Physics, Uppsala University, 751 20 Uppsala, Sweden 3Department of Physics, Royal Military College of Canada, P.O. Box 17000, Station ‘Forces’, Kingston, Ontario, Canada, K7K 7B4 4Department of Physics, Engineering Physics & Astronomy, Queen’s University, Kingston, Ontario, Canada, K7L 3N6 Received: 2010; Accepted: 2010 ABSTRACT AR Aur is the only eclipsing binary known to contain a HgMn star, making it an ideal case for a detailed study of the HgMn phenomenon. HgMn stars are a poorly understood class of chemically peculiar stars, which have traditionally been thought not to possess significant magnetic fields. However, the recent discovery of line profile variability in some HgMn stars, apparently attributable to surface abundance patches, has brought this belief into question. In this paper we investigate the chemical abun- dances, line profile variability, and magnetic field of the primary and secondary of the AR Aur system, using a series of high resolution spectropolarimetric observations. We find the primary is indeed a HgMn star, and present the most precise abundances yet determined for this star. We find the secondary is a weak Am star, and is possibly still on the pre-main sequence. Line profile variability was observed in a range of lines in the primary, and is attributed to inhomogeneous surface distributions of some el- ements.
    [Show full text]
  • Exodata: a Python Package to Handle Large Exoplanet Catalogue Data
    ExoData: A Python package to handle large exoplanet catalogue data Ryan Varley Department of Physics & Astronomy, University College London 132 Hampstead Road, London, NW1 2PS, United Kingdom [email protected] Abstract Exoplanet science often involves using the system parameters of real exoplanets for tasks such as simulations, fitting routines, and target selection for proposals. Several exoplanet catalogues are already well established but often lack a version history and code friendly interfaces. Software that bridges the barrier between the catalogues and code enables users to improve the specific repeatability of results by facilitating the retrieval of exact system parameters used in an arti- cles results along with unifying the equations and software used. As exoplanet science moves towards large data, gone are the days where researchers can recall the current population from memory. An interface able to query the population now becomes invaluable for target selection and population analysis. ExoData is a Python interface and exploratory analysis tool for the Open Exoplanet Cata- logue. It allows the loading of exoplanet systems into Python as objects (Planet, Star, Binary etc) from which common orbital and system equations can be calculated and measured parame- ters retrieved. This allows researchers to use tested code of the common equations they require (with units) and provides a large science input catalogue of planets for easy plotting and use in research. Advanced querying of targets are possible using the database and Python programming language. ExoData is also able to parse spectral types and fill in missing parameters according to programmable specifications and equations. Examples of use cases are integration of equations into data reduction pipelines, selecting planets for observing proposals and as an input catalogue to large scale simulation and analysis of planets.
    [Show full text]
  • Výročná Správa Za Rok 2005
    2005 3.1. Research output – publications 3. Monographs published in Slovakia 1. PITTICH, E.M. Astronomická ročenka 2006. Hurbanovo: Slovenská ústredná hvezdáreň, 2005. ISBN 80-85221-50-0. p. 1-272. (in Slovak) 7. Chapters in monographs published in Slovakia 2. HRIC, L. Premenné hviezdy. In PITTICH, E.M. Astronomická ročenka 2006. Hurbanovo: Slovenská ústredná hvezdáreň, 2005. ISBN 80-85221-50-0. p. 186-202. (in Slovak) 3. PITTICH, E. Čas, obloha od januára do decembra. In PITTICH, E.M. Astronomická ročenka 2006. Hurbanovo: Slovenská ústredná hvezdáreň, 2005. ISBN 80-85221-50-0. p. 3-89. (in Slovak) 4. PITTICH, E. Pohyb planét po oblohe, elongácie a jasnosti, Mesiac krátko po nove. In PITTICH, E.M. Astronomická ročenka 2006. Hurbanovo: Slovenská ústredná hvezdáreň, 2005. ISBN 80-85221-50-0. p. 90-103. (in Slovak) 5. PITTICH, E. Kométy. In PITTICH, E.M. Astronomická ročenka 2006. Hurbanovo: Slovenská ústredná hvezdáreň, 2005. ISBN 80-85221-50-0. p. 106-143. (in Slovak) 6. PITTICH, E. Galileiho mesiace. In PITTICH, E.M. Astronomická ročenka 2006. Hurbanovo: Slovenská ústredná hvezdáreň, 2005. ISBN 80-85221-50-0. p. 159-172. (in Slovak) 7. PITICHOVÁ, J. Kométy roka 2004. In PITTICH, E.M. Astronomická ročenka 2006. Hurbanovo: Slovenská ústredná hvezdáreň, 2005. ISBN 80-85221-50-0. p. 241-268. (in Slovak) 8. PORUBČAN, V. Meteorické roje. In PITTICH, E.M. Astronomická 2006. Hurbanovo: Slovenská ústredná hvezdáreň, 2005. ISBN 80-85221-50-0. p. 104-105. (in Slovak) 9. SVOREŇ, J. Teórie vzniku a vývoja asteroidov. In PITTICH, E.M. Astronomická ročenka 2006. Hurbanovo: Slovenská ústredná hvezdáreň, 2005.
    [Show full text]
  • FIXED STARS a SOLAR WRITER REPORT for Churchill Winston WRITTEN by DIANA K ROSENBERG Page 2
    FIXED STARS A SOLAR WRITER REPORT for Churchill Winston WRITTEN BY DIANA K ROSENBERG Page 2 Prepared by Cafe Astrology cafeastrology.com Page 23 Churchill Winston Natal Chart Nov 30 1874 1:30 am GMT +0:00 Blenhein Castle 51°N48' 001°W22' 29°‚ 53' Tropical ƒ Placidus 02' 23° „ Ý 06° 46' Á ¿ 21° 15° Ý 06' „ 25' 23° 13' Œ À ¶29° Œ 28° … „ Ü É Ü 06° 36' 26' 25° 43' Œ 51'Ü áá Œ 29° ’ 29° “ àà … ‘ à ‹ – 55' á á 55' á †32' 16° 34' ¼ † 23° 51'Œ 23° ½ † 06' 25° “ ’ † Ê ’ ‹ 43' 35' 35' 06° ‡ Š 17° 43' Œ 09° º ˆ 01' 01' 07° ˆ ‰ ¾ 23° 22° 08° 02' ‡ ¸ Š 46' » Ï 06° 29°ˆ 53' ‰ Page 234 Astrological Summary Chart Point Positions: Churchill Winston Planet Sign Position House Comment The Moon Leo 29°Le36' 11th The Sun Sagittarius 7°Sg43' 3rd Mercury Scorpio 17°Sc35' 2nd Venus Sagittarius 22°Sg01' 3rd Mars Libra 16°Li32' 1st Jupiter Libra 23°Li34' 1st Saturn Aquarius 9°Aq35' 5th Uranus Leo 15°Le13' 11th Neptune Aries 28°Ar26' 8th Pluto Taurus 21°Ta25' 8th The North Node Aries 25°Ar51' 8th The South Node Libra 25°Li51' 2nd The Ascendant Virgo 29°Vi55' 1st The Midheaven Gemini 29°Ge53' 10th The Part of Fortune Capricorn 8°Cp01' 4th Chart Point Aspects Planet Aspect Planet Orb App/Sep The Moon Semisquare Mars 1°56' Applying The Moon Trine Neptune 1°10' Separating The Moon Trine The North Node 3°45' Separating The Moon Sextile The Midheaven 0°17' Applying The Sun Semisquare Jupiter 0°50' Applying The Sun Sextile Saturn 1°52' Applying The Sun Trine Uranus 7°30' Applying Mercury Square Uranus 2°21' Separating Mercury Opposition Pluto 3°49' Applying Venus Sextile
    [Show full text]