New Views on Fungal Evolution Based on DNA Markers and the Fossil Record

Total Page:16

File Type:pdf, Size:1020Kb

New Views on Fungal Evolution Based on DNA Markers and the Fossil Record Research in Microbiology 153 (2002) 125–130 www.elsevier.com/locate/resmic Mini-review New views on fungal evolution based on DNA markers and the fossil record Dirk Redecker Institute of Botany, Hebelstrasse 1, University of Basel, 4056 Basel, Switzerland Received 24 October 2001; accepted 23 November 2001 First published online 14 February 2002 Abstract Molecular markers have facilitated a better understanding of the evolution of fungi. Molecular phylogenetics determined the closest relatives of fungi and defined natural groups within the true fungi. The impact of molecular markers on the population biology of fungi has been enormous, helping to define cryptic species and elucidating fungal breeding biology. The interaction between molecular phylogenetics and the fungal fossil record is discussed. 2002 Éditions scientifiques et médicales Elsevier SAS. All rights reserved. Keywords: Fungi; Evolution; Molecular phylogeny; Population biology 1. Introduction the symbiosis between fungi and Ambrosia beetles, which have special pouches to carry their fungal symbionts [1]. Fungi have traditionally been defined as a group of eu- Even ruminants are among the symbiotic partners of fungi, karyotic, achlorophyllous organisms with adsorptive nutri- harboring chytrid fungi in their digestive tract. tion and filamentous somatic structures, known as “hyphae” Morphological characteristics at the macroscopic and the or “mycelium” [1]. It has become clear that several phylo- light microscopic level that can be used for classification are genetically unrelated eukaryotic lineages fall within this dis- often scarce in fungi. Therefore, views of their evolutionary parate array of organisms traditionally studied by mycolo- relationships have been obscured by convergence and homo- gists. One lineage is known as the true fungi [7], comprising plasy in many cases. With the advent of electron microscopy, the fungi forming macroscopic fruiting structures and many a wealth of more useful characters became available, but in others. This group is monophyletic, i.e., it contains all the many cases these were still problematic to interpret phylo- descendants of one common ancestor. genetically. In the past few years, phylogenetic analyses of Fungi are found in all ecosystems and show a great DNA sequences have offered the opportunity to elucidate diversity of lifestyles. It has been estimated there may be as fungal phylogeny without the need to interpret phenotypic many as 1.5 million species of true fungi, but only 69 000 characters and provided numerous new insights into fungal have been described so far [13]. They live as saprobes, evolution. Recent fossil findings of fungi allowed a better decaying dead organic material, or in symbiosis with other understanding of the evolutionary history of fungi. Fossil organisms. Symbiotic interactions range from parasitism, record and molecular data continue to complement and chal- as exemplified by the huge variety of fungal diseases, lenge each other. to mutualistic interactions, benefiting both partners. Plants are the symbiotic partners in the mycorrhizal interactions. Green algae and cyanobacteria participate in the lichen 2. What is a fungus? symbiosis. Insects form many different kinds of fungal symbioses. Examples are the fungus gardens of attine With the rise of molecular phylogenetics, fungi sensu ants, Trichomycetes lining the inside of insect guts or stricto (the true fungi) were defined as a monophyletic group [7]. This group comprised Basidiomycota, Ascomy- E-mail address: [email protected] (D. Redecker). cota, Zygomycota and Chytridiomycota. 0923-2508/02/$ – see front matter 2002 Éditions scientifiques et médicales Elsevier SAS. All rights reserved. PII:S0923-2508(02)01297-4 126 D. Redecker / Research in Microbiology 153 (2002) 125–130 Based on biochemical and ultrastructural characters it the establishment of the mitochondrial endosymbiosis. How- had already been clear that several groups traditionally ever, most protein genes, among them tubulins, placed the treated as fungi sensu lato are not a part of the true Microsporidia within the fungi [20], although it was not pos- fungi [1]. DNA sequence data have made it possible to sible to determine their closest relatives. These findings in- place these groups in other major eukaryotic clades defined dicate that an extremely increased mutation rate in the ri- by molecular phylogenetics, where this was not already bosomal genes caused the artifact of phylogenetic analysis possible by morphological analyses. known as long branch attraction, resulting in a basal place- The Oomycota, for instance, are members of the Stra- ment of this group within the eukaryotes. The discordant re- menopila clade, although they resemble the true fungi sults highlight possible problems that can arise when study- closely in their growth form, their adsorptive and parasitic ing major eukaryotic lineages with single-gene phylogenies. lifestyles and the formation of spores. The Stramenopila are Ribosomal DNA is still the gold standard of phylogenetic a major eukaryotic lineage comprising brown algae, diatoms analysis and will continue to be so, but to elucidate the re- and chrysophytes [26]. Some members of the Oomycota are lationships among major eukaryotic clades it is necessary known as “water molds”, some are prominent pathogens, to employ alternative phylogenetic markers (e.g., elongation e.g., Phytophthora or Peronospora. The Oomycetes are a factor alpha, tubulins, actin). fascinating example of convergence to the true fungi. These two groups of organisms adapted a similar lifestyle although they are not related at all and evolved independently. Inter- 3. Many fungal lifestyles and morphologies arose estingly, no mutualistic symbioses resembling mycorrhizae several times (and were lost again) and lichens are known from this group. It will be interesting in the future to compare the cell biology of true fungi and Molecular phylogenetics showed that phylogenetic re- Oomycota to find the reason for this apparent difference. lationships of the “lower fungi” (Zygomycota/Chytridio- There is now compelling evidence that the closest known mycota) are generally more complicated than previously relatives of the true fungi are animals [2], and not green thought. Zygomycota have a non-septate mycelium and dur- plants, in spite of the historically-grounded responsibility of ing sexual reproduction they form typical structures known botanists for fungi. The sister group relationship of animals as zygospores. The Chytridiomycota are characterized by and fungi is supported by phylogenetic analysis of several motile reproductive cells that have a single, posteriorly di- independent genes and by a characteristic insertion in the rected flagellum. They are thought to be the most ancient elongation factor alpha gene [2]. It can be speculated that fungal group, because they retained this and other features both groups arose from one-celled heterotrophic organisms characteristic of life in the water [1]. Occasionally, the similar to another group that forms a monophyletic clade Chytridiomycota were placed in the protists but molecular with animals and fungi, the choanoflagellates. These resem- phylogenetics confirmed that they are true fungi [7]. ble both the earliest branch of animals, the sponges, and the However, there is some evidence that both Zygomy- earliest branch of the true fungi, the chytrids [3]. cota and Chytridiomycota are not monophyletic [18]. Both Another recently defined group of organisms branching comprise several diverse lineages which are only distantly close to the animal-fungal divergence are the Ichthyosporea, related. Molecular phylogenetics of the Zygomycota and an enigmatic group comprising parasites of marine animals. Chytridiomycota has not been without problems because of Initially, they were informally named “DRIPs” after the the ancient age of the clades and the drastically increased first known members of this group (Dermocystidium,the mutation rates in the ribosomal RNA of some Zygomycota “Rosette agent”, Ichthyophonus,andPsorospermium) [27]. lineages. These lineages cause very long branches in phy- Since that first study, a number of additional members logenetic trees and their placement tends to be problematic. of the group have been discovered, and the group was Therefore it may be misleading to rely on rRNA alone to named Ichthyosporea [9]. Some of these parasites have elucidate the relationship of the deep branches within the fungus-like thalli and sporangia. That is also the case for true fungi. A comprehensive analysis of Zygomycota and Amoebidium parasiticum, which was most recently reported Chytridiomycota, using multiple genes, remains to be done, as a member of the Ichthyosporea [4]. Amoebidium was but studies of subgroups of these phyla yielded interesting previously thought to be a Trichomycete (Zygomycota), results. based on its habitat as arthropod symbiont and the thallus In the Zygomycota, the Mucorales, a group of ubiquitous morphology. saprophytes, have been studied using a combination of se- Hardly any problem case of molecular phylogenetics can quence data from small and large subunit rDNA and elonga- be imagined to be as controversial as the Microsporidia. tion factor alpha [25]. The striking result was that most of the This enigmatic group of unicellular intracellular parasites taxa on the family level that were defined by classical mor- was thought to be one of the deepest-branching eukaryotic phological criteria were not monophyletic. Even
Recommended publications
  • Conservation of Ectomycorrhizal Fungi: Exploring the Linkages Between Functional and Taxonomic Responses to Anthropogenic N Deposition
    fungal ecology 4 (2011) 174e183 available at www.sciencedirect.com journal homepage: www.elsevier.com/locate/funeco Conservation of ectomycorrhizal fungi: exploring the linkages between functional and taxonomic responses to anthropogenic N deposition E.A. LILLESKOVa,*, E.A. HOBBIEb, T.R. HORTONc aUSDA Forest Service, Northern Research Station, Forestry Sciences Laboratory, Houghton, MI 49931, USA bComplex Systems Research Center, University of New Hampshire, Durham, NH 03833, USA cState University of New York, College of Environmental Science and Forestry, Department of Environmental and Forest Biology, 246 Illick Hall, 1 Forestry Drive, Syracuse, NY 13210, USA article info abstract Article history: Anthropogenic nitrogen (N) deposition alters ectomycorrhizal fungal communities, but the Received 12 April 2010 effect on functional diversity is not clear. In this review we explore whether fungi that Revision received 9 August 2010 respond differently to N deposition also differ in functional traits, including organic N use, Accepted 22 September 2010 hydrophobicity and exploration type (extent and pattern of extraradical hyphae). Corti- Available online 14 January 2011 narius, Tricholoma, Piloderma, and Suillus had the strongest evidence of consistent negative Corresponding editor: Anne Pringle effects of N deposition. Cortinarius, Tricholoma and Piloderma display consistent protein use and produce medium-distance fringe exploration types with hydrophobic mycorrhizas and Keywords: rhizomorphs. Genera that produce long-distance exploration types (mostly Boletales) and Conservation biology contact short-distance exploration types (e.g., Russulaceae, Thelephoraceae, some athe- Ectomycorrhizal fungi lioid genera) vary in sensitivity to N deposition. Members of Bankeraceae have declined in Exploration types Europe but their enzymatic activity and belowground occurrence are largely unknown.
    [Show full text]
  • Timeline of the Evolutionary History of Life
    Timeline of the evolutionary history of life This timeline of the evolutionary history of life represents the current scientific theory Life timeline Ice Ages outlining the major events during the 0 — Primates Quater nary Flowers ←Earliest apes development of life on planet Earth. In P Birds h Mammals – Plants Dinosaurs biology, evolution is any change across Karo o a n ← Andean Tetrapoda successive generations in the heritable -50 0 — e Arthropods Molluscs r ←Cambrian explosion characteristics of biological populations. o ← Cryoge nian Ediacara biota – z ← Evolutionary processes give rise to diversity o Earliest animals ←Earliest plants at every level of biological organization, i Multicellular -1000 — c from kingdoms to species, and individual life ←Sexual reproduction organisms and molecules, such as DNA and – P proteins. The similarities between all present r -1500 — o day organisms indicate the presence of a t – e common ancestor from which all known r Eukaryotes o species, living and extinct, have diverged -2000 — z o through the process of evolution. More than i Huron ian – c 99 percent of all species, amounting to over ←Oxygen crisis [1] five billion species, that ever lived on -2500 — ←Atmospheric oxygen Earth are estimated to be extinct.[2][3] Estimates on the number of Earth's current – Photosynthesis Pong ola species range from 10 million to 14 -3000 — A million,[4] of which about 1.2 million have r c been documented and over 86 percent have – h [5] e not yet been described. However, a May a -3500 — n ←Earliest oxygen 2016
    [Show full text]
  • Studies of the Laboulbeniomycetes: Diversity, Evolution, and Patterns of Speciation
    Studies of the Laboulbeniomycetes: Diversity, Evolution, and Patterns of Speciation The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:40049989 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA ! STUDIES OF THE LABOULBENIOMYCETES: DIVERSITY, EVOLUTION, AND PATTERNS OF SPECIATION A dissertation presented by DANNY HAELEWATERS to THE DEPARTMENT OF ORGANISMIC AND EVOLUTIONARY BIOLOGY in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the subject of Biology HARVARD UNIVERSITY Cambridge, Massachusetts April 2018 ! ! © 2018 – Danny Haelewaters All rights reserved. ! ! Dissertation Advisor: Professor Donald H. Pfister Danny Haelewaters STUDIES OF THE LABOULBENIOMYCETES: DIVERSITY, EVOLUTION, AND PATTERNS OF SPECIATION ABSTRACT CHAPTER 1: Laboulbeniales is one of the most morphologically and ecologically distinct orders of Ascomycota. These microscopic fungi are characterized by an ectoparasitic lifestyle on arthropods, determinate growth, lack of asexual state, high species richness and intractability to culture. DNA extraction and PCR amplification have proven difficult for multiple reasons. DNA isolation techniques and commercially available kits are tested enabling efficient and rapid genetic analysis of Laboulbeniales fungi. Success rates for the different techniques on different taxa are presented and discussed in the light of difficulties with micromanipulation, preservation techniques and negative results. CHAPTER 2: The class Laboulbeniomycetes comprises biotrophic parasites associated with arthropods and fungi.
    [Show full text]
  • A Critique of Phanerozoic Climatic Models Involving Changes in The
    Earth-Science Reviews 56Ž. 2001 1–159 www.elsevier.comrlocaterearscirev A critique of Phanerozoic climatic models involving changes in the CO2 content of the atmosphere A.J. Boucot a,), Jane Gray b,1 a Department of Zoology, Oregon State UniÕersity, CorÕallis, OR 97331, USA b Department of Biology, UniÕersity of Oregon, Eugene, OR 97403, USA Received 28 April 1998; accepted 19 April 2001 Abstract Critical consideration of varied Phanerozoic climatic models, and comparison of them against Phanerozoic global climatic gradients revealed by a compilation of Cambrian through Miocene climatically sensitive sedimentsŽ evaporites, coals, tillites, lateritic soils, bauxites, calcretes, etc.. suggests that the previously postulated climatic models do not satisfactorily account for the geological information. Nor do many climatic conclusions based on botanical data stand up very well when examined critically. Although this account does not deal directly with global biogeographic information, another powerful source of climatic information, we have tried to incorporate such data into our thinking wherever possible, particularly in the earlier Paleozoic. In view of the excellent correlation between CO2 present in Antarctic ice cores, going back some hundreds of thousands of years, and global climatic gradient, one wonders whether or not the commonly postulated Phanerozoic connection between atmospheric CO2 and global climatic gradient is more coincidence than cause and effect. Many models have been proposed that attempt to determine atmospheric composition and global temperature through geological time, particularly for the Phanerozoic or significant portions of it. Many models assume a positive correlation between atmospheric CO2 and surface temperature, thus viewing changes in atmospheric CO2 as playing the critical role in r regulating climate temperature, but none agree on the levels of atmospheric CO2 through time.
    [Show full text]
  • Download Chapter
    2 State of the World’s Fungi State of the World’s Fungi 2018 2. Fungal tree of life Ester Gayaa , Pepijn W. Kooija , Bryn T. M. Dentingerb, Igor V. Grigorievc, László G. Nagyd, Jason Stajiche, Timothy Cokera, Ilia J. Leitcha a Royal Botanic Gardens, Kew, UK; b Natural History Museum of Utah & School of Biological Sciences, University of Utah, USA; c U.S. Department of Energy Joint Genome Institute, USA; d Biological Research Centre, Hungarian Academy of Sciences, Hungary; e University of California-Riverside, USA 12 Describing the world’s fungi Fungal tree of life How are different species of fungi related to each other? What do we know about the major steps in fungal evolution and when they occurred? What are we doing about filling the knowledge gaps in the fungal tree of life? stateoftheworldsfungi.org/2018/fungal-tree-of-life.html Fungal tree of life 13 DNA data are providing new insights into the major steps that have taken place over the last 1 BILLION YEARS of fungal evolution 14 Describing the world’s fungi phyla[5], which we follow in this volume. In addition, these HOW ARE DIFFERENT SPECIES RELATED data are providing new insights into the major steps that have TO EACH OTHER? THIS SIMPLE YET taken place over the last 1 billion years of fungal evolution[5–7] (see Figure 1). CRITICALLY IMPORTANT QUESTION, 1. The earliest fungi. The earliest fungi are thought to have WHICH IS ROUTINELY ASKED ABOUT evolved around 1 billion years ago and to have been simple, single-celled organisms living in water and reproducing using SPECIES IN ALL KINGDOMS OF LIFE, motile asexual spores (zoospores) propelled by a posterior IS ONE OF THE MOST DIFFICULT TO whip-like structure called the flagellum[8,9].
    [Show full text]
  • Diversity of Entomopathogens Fungi: Which Groups Conquered
    bioRxiv preprint doi: https://doi.org/10.1101/003756; this version posted April 4, 2014. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Diversity of entomopathogens Fungi: Which groups conquered the insect body? João P. M. Araújoa & David P. Hughesb aDepartment of Biology, Penn State University, University Park, Pennsylvania, United States of America. bDepartment of Entomology and Department of Biology, Penn State University, University Park, Pennsylvania, United States of America. [email protected]; [email protected]; Abstract The entomopathogenic Fungi comprise a wide range of ecologically diverse species. This group of parasites can be found distributed among all fungal phyla and as well as among the ecologically similar but phylogenetically distinct Oomycetes or water molds, that belong to a different kingdom (Stramenopila). As a group, the entomopathogenic fungi and water molds parasitize a wide range of insect hosts from aquatic larvae in streams to adult insects of high canopy tropical forests. Their hosts are spread among 18 orders of insects, in all developmental stages such as: eggs, larvae, pupae, nymphs and adults exhibiting completely different ecologies. Such assortment of niches has resulted in these parasites evolving a considerable morphological diversity, resulting in enormous biodiversity, much of which remains unknown. Here we gather together a huge amount of records of these entomopathogens to comparing and describe both their morphologies and ecological traits. These findings highlight a wide range of adaptations that evolved following the evolutionary transition to infecting the most diverse and widespread animals on Earth, the insects.
    [Show full text]
  • A Preliminary Checklist of Arizona Macrofungi
    A PRELIMINARY CHECKLIST OF ARIZONA MACROFUNGI Scott T. Bates School of Life Sciences Arizona State University PO Box 874601 Tempe, AZ 85287-4601 ABSTRACT A checklist of 1290 species of nonlichenized ascomycetaceous, basidiomycetaceous, and zygomycetaceous macrofungi is presented for the state of Arizona. The checklist was compiled from records of Arizona fungi in scientific publications or herbarium databases. Additional records were obtained from a physical search of herbarium specimens in the University of Arizona’s Robert L. Gilbertson Mycological Herbarium and of the author’s personal herbarium. This publication represents the first comprehensive checklist of macrofungi for Arizona. In all probability, the checklist is far from complete as new species await discovery and some of the species listed are in need of taxonomic revision. The data presented here serve as a baseline for future studies related to fungal biodiversity in Arizona and can contribute to state or national inventories of biota. INTRODUCTION Arizona is a state noted for the diversity of its biotic communities (Brown 1994). Boreal forests found at high altitudes, the ‘Sky Islands’ prevalent in the southern parts of the state, and ponderosa pine (Pinus ponderosa P.& C. Lawson) forests that are widespread in Arizona, all provide rich habitats that sustain numerous species of macrofungi. Even xeric biomes, such as desertscrub and semidesert- grasslands, support a unique mycota, which include rare species such as Itajahya galericulata A. Møller (Long & Stouffer 1943b, Fig. 2c). Although checklists for some groups of fungi present in the state have been published previously (e.g., Gilbertson & Budington 1970, Gilbertson et al. 1974, Gilbertson & Bigelow 1998, Fogel & States 2002), this checklist represents the first comprehensive listing of all macrofungi in the kingdom Eumycota (Fungi) that are known from Arizona.
    [Show full text]
  • Identification of Culture-Negative Fungi in Blood and Respiratory Samples
    IDENTIFICATION OF CULTURE-NEGATIVE FUNGI IN BLOOD AND RESPIRATORY SAMPLES Farida P. Sidiq A Dissertation Submitted to the Graduate College of Bowling Green State University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY May 2014 Committee: Scott O. Rogers, Advisor W. Robert Midden Graduate Faculty Representative George Bullerjahn Raymond Larsen Vipaporn Phuntumart © 2014 Farida P. Sidiq All Rights Reserved iii ABSTRACT Scott O. Rogers, Advisor Fungi were identified as early as the 1800’s as potential human pathogens, and have since been shown as being capable of causing disease in both immunocompetent and immunocompromised people. Clinical diagnosis of fungal infections has largely relied upon traditional microbiological culture techniques and examination of positive cultures and histopathological specimens utilizing microscopy. The first has been shown to be highly insensitive and prone to result in frequent false negatives. This is complicated by atypical phenotypes and organisms that are morphologically indistinguishable in tissues. Delays in diagnosis of fungal infections and inaccurate identification of infectious organisms contribute to increased morbidity and mortality in immunocompromised patients who exhibit increased vulnerability to opportunistic infection by normally nonpathogenic fungi. In this study we have retrospectively examined one-hundred culture negative whole blood samples and one-hundred culture negative respiratory samples obtained from the clinical microbiology lab at the University of Michigan Hospital in Ann Arbor, MI. Samples were obtained from randomized, heterogeneous patient populations collected between 2005 and 2006. Specimens were tested utilizing cetyltrimethylammonium bromide (CTAB) DNA extraction and polymerase chain reaction amplification of internal transcribed spacer (ITS) regions of ribosomal DNA utilizing panfungal ITS primers.
    [Show full text]
  • Mycological Society of San Francisco
    Mycological Society of San Francisco Fungus Fair!! 4-5 December 2004 Mycological Contact MSSF Join MSSF About MSSF Society of Event Calendar Meetings San Mycena News Fungus Fairs Cookbook Francisco Recipes Photos History Introduction Other Activities Welcome to the home page of the Mycological Society of San Francisco, North America's largest local amateur mycological Web Sites association. This page was created by and is maintained by Michael Members Only! Wood, publisher of MykoWeb. MykoWeb The Mycological Society of San Francisco is a non-profit corporation Search formed in 1950 to promote the study and exchange of information about mushrooms. Copyright © Most of our members are amateurs who are interested in mushrooms 1995-2004 by for a variety of reasons: cooking, cultivating, experiencing the Michael Wood and out-of-doors, and learning to properly identify mushrooms. Other the MSSF members are professional mycologists who participate in our activities and may serve as teachers or advisors. Dr. Dennis E. Desjardin is the scientific advisor for the Mycological Society of San Francisco. He is professor of biology at San Francisco State University and director of the Harry D. Thiers Herbarium. Dr. Desjardin was the recipient of the Alexopoulos Prize for outstanding research and the W. H. Weston Award for Excellence in Teaching from the Mycological Society of America. Our active membership extends throughout the San Francisco Bay Area and into many other communities in Northern California and beyond. To join the MSSF, please see the membership page. To renew your MSSF membership, see the renewal page. For information on how to http://www.mssf.org/ (1 of 2) [5/17/2004 12:11:22 PM] Mycological Society of San Francisco contact the MSSF, please visit our contact page.
    [Show full text]
  • SOMA Speaker: Catharine Adams March 17 at the Sonoma County Farm Bureau “How the Death Cap Mushroom Conquered the World”
    SOMANEWS From the Sonoma County Mycological Association VOLUME 28: 7 MARCH 2016 SOMA Speaker: Catharine Adams March 17 At the Sonoma County Farm Bureau “How the Death Cap Mushroom Conquered the World” Cat Adams is interested in how chemical ecology in- fluences interactions between plants and fungi. For her PhD in Tom Bruns’ lab, Cat is studying the inva- sive ectomycorrhizal fungus, Amanita phalloides. The death cap mushroom kills more people than any oth- er mushroom, but how the deadly amatoxins influ- ence its invasion remains unexplored. Previously, Cat earned her M.A. with Anne Pringle at Harvard University. Her thesis examined fungal pathogens of the wild Bolivian chili pepper, Capsi- cum chacoense, and how the fungi evolved tolerance to spice. With the Joint Genome Institute, she is now sequencing the genome of one fungal isolate, a Pho- mopsis species, to better understand the novel en- zymes these fungi wield to outwit their plant host. She also collaborates with a group in China, study- loides, was an invasive species, and why we should ing how arbuscular mycorrhizae can help crop plants care. She’ll then tell you about 10 years of research at avoid toxic effects from pollution. Their first paper is Pt Reyes National Seashore examining how Amanita published in Chemosphere. phalloides spreads. Lastly, Cat will outline her ongo- At the SOMA meeting, Cat will explain how scientists ing work to determine the ecological role of Phalloi- determined the death cap mushroom, Amanita phal- des’ toxins, and will present her preliminary findings. NEED EMERGENCY MUSHROOM POISONING ID? After seeking medical attention, contact Darvin DeShazer for identification at (707) 829- 0596.
    [Show full text]
  • This File Was Created by Scanning the Printed
    FUNGAL ECOLOGY 4 (2011) 134-146 available at www.sciencedirect.com --" -.;" ScienceDirect jou rna I hom epage: www.elsevier.com/locate/fu n eco ELSEVIER Addressing uncertainty: How to conserve and manage rare or little-known fungi b Randy MOLINAa,*, Thomas R. HORTON , James M. TRAPPEa, Bruce G. MARCOr: aOregon State University, Department of Forest Ecosystems and Society, 321 Richardson Hall, Corvallis, OR 97331, USA b State University of New York, College of Environmental Science and Forestry, Department of Environmental and Forest Biology, 246 Illick Hall, 1 Forestry Drive, Syracuse, NY 13210, USA cUSDA Forest Service, Pacific Northwest Research Station, Portland Forestry Sciences Laboratory, 620 SW Main Street, Suite 400, Portland, OR 97205, USA ARTICLE INFO ABSTRACT Article history: One of thegreater challenges in conserving fungi comes from our incomplete knowledge of Received 8 March 2010 degree of rarity, risk status, and habitat requirements of most fungal species. We discuss Accepted 15 June 2010 approaches to immediately begin closing knowledge gaps, including: (1) harnessing Available online 15 September 2010 collective expert knowledge so that data from professional experiences (e.g., personal Corresponding editor: Anne Pringle collection and herbarium records) are better organized and made available to the broader mycological community; (2) thinking outside the mycology box by learning and borrowing Keywords: from conservation approaches to other taxonomic groups; (3) developing and testing Adaptive management hypothesis-driven habitat models for representative fungi to provide support for habitat Expert knowledge restoration and management; (4) framing ecological questions and conducting field Fungus conservation surveys and research more directly pertinent to conservation information needs; and (5) Habitat modeling providing adaptive management guidelines and strategies for resource managers to Species vs.
    [Show full text]
  • Systema Naturae. the Classification of Living Organisms
    Systema Naturae. The classification of living organisms. c Alexey B. Shipunov v. 5.601 (June 26, 2007) Preface Most of researches agree that kingdom-level classification of living things needs the special rules and principles. Two approaches are possible: (a) tree- based, Hennigian approach will look for main dichotomies inside so-called “Tree of Life”; and (b) space-based, Linnaean approach will look for the key differences inside “Natural System” multidimensional “cloud”. Despite of clear advantages of tree-like approach (easy to develop rules and algorithms; trees are self-explaining), in many cases the space-based approach is still prefer- able, because it let us to summarize any kinds of taxonomically related da- ta and to compare different classifications quite easily. This approach also lead us to four-kingdom classification, but with different groups: Monera, Protista, Vegetabilia and Animalia, which represent different steps of in- creased complexity of living things, from simple prokaryotic cell to compound Nature Precedings : doi:10.1038/npre.2007.241.2 Posted 16 Aug 2007 eukaryotic cell and further to tissue/organ cell systems. The classification Only recent taxa. Viruses are not included. Abbreviations: incertae sedis (i.s.); pro parte (p.p.); sensu lato (s.l.); sedis mutabilis (sed.m.); sedis possi- bilis (sed.poss.); sensu stricto (s.str.); status mutabilis (stat.m.); quotes for “environmental” groups; asterisk for paraphyletic* taxa. 1 Regnum Monera Superphylum Archebacteria Phylum 1. Archebacteria Classis 1(1). Euryarcheota 1 2(2). Nanoarchaeota 3(3). Crenarchaeota 2 Superphylum Bacteria 3 Phylum 2. Firmicutes 4 Classis 1(4). Thermotogae sed.m. 2(5).
    [Show full text]