View 3 Executive Summary 3 I
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Conservation of Ectomycorrhizal Fungi: Exploring the Linkages Between Functional and Taxonomic Responses to Anthropogenic N Deposition
fungal ecology 4 (2011) 174e183 available at www.sciencedirect.com journal homepage: www.elsevier.com/locate/funeco Conservation of ectomycorrhizal fungi: exploring the linkages between functional and taxonomic responses to anthropogenic N deposition E.A. LILLESKOVa,*, E.A. HOBBIEb, T.R. HORTONc aUSDA Forest Service, Northern Research Station, Forestry Sciences Laboratory, Houghton, MI 49931, USA bComplex Systems Research Center, University of New Hampshire, Durham, NH 03833, USA cState University of New York, College of Environmental Science and Forestry, Department of Environmental and Forest Biology, 246 Illick Hall, 1 Forestry Drive, Syracuse, NY 13210, USA article info abstract Article history: Anthropogenic nitrogen (N) deposition alters ectomycorrhizal fungal communities, but the Received 12 April 2010 effect on functional diversity is not clear. In this review we explore whether fungi that Revision received 9 August 2010 respond differently to N deposition also differ in functional traits, including organic N use, Accepted 22 September 2010 hydrophobicity and exploration type (extent and pattern of extraradical hyphae). Corti- Available online 14 January 2011 narius, Tricholoma, Piloderma, and Suillus had the strongest evidence of consistent negative Corresponding editor: Anne Pringle effects of N deposition. Cortinarius, Tricholoma and Piloderma display consistent protein use and produce medium-distance fringe exploration types with hydrophobic mycorrhizas and Keywords: rhizomorphs. Genera that produce long-distance exploration types (mostly Boletales) and Conservation biology contact short-distance exploration types (e.g., Russulaceae, Thelephoraceae, some athe- Ectomycorrhizal fungi lioid genera) vary in sensitivity to N deposition. Members of Bankeraceae have declined in Exploration types Europe but their enzymatic activity and belowground occurrence are largely unknown. -
CZECH MYCOLOGY Publication of the Czech Scientific Society for Mycology
CZECH MYCOLOGY Publication of the Czech Scientific Society for Mycology Volume 57 August 2005 Number 1-2 Central European genera of the Boletaceae and Suillaceae, with notes on their anatomical characters Jo s e f Š u t a r a Prosetická 239, 415 01 Tbplice, Czech Republic Šutara J. (2005): Central European genera of the Boletaceae and Suillaceae, with notes on their anatomical characters. - Czech Mycol. 57: 1-50. A taxonomic survey of Central European genera of the families Boletaceae and Suillaceae with tubular hymenophores, including the lamellate Phylloporus, is presented. Questions concerning the delimitation of the bolete genera are discussed. Descriptions and keys to the families and genera are based predominantly on anatomical characters of the carpophores. Attention is also paid to peripheral layers of stipe tissue, whose anatomical structure has not been sufficiently studied. The study of these layers, above all of the caulohymenium and the lateral stipe stratum, can provide information important for a better understanding of relationships between taxonomic groups in these families. The presence (or absence) of the caulohymenium with spore-bearing caulobasidia on the stipe surface is here considered as a significant ge neric character of boletes. A new combination, Pseudoboletus astraeicola (Imazeki) Šutara, is proposed. Key words: Boletaceae, Suillaceae, generic taxonomy, anatomical characters. Šutara J. (2005): Středoevropské rody čeledí Boletaceae a Suillaceae, s poznámka mi k jejich anatomickým znakům. - Czech Mycol. 57: 1-50. Je předložen taxonomický přehled středoevropských rodů čeledí Boletaceae a. SuiUaceae s rourko- vitým hymenoforem, včetně rodu Phylloporus s lupeny. Jsou diskutovány otázky týkající se vymezení hřibovitých rodů. Popisy a klíče k čeledím a rodům jsou založeny převážně na anatomických znacích plodnic. -
Changes in Polyamine Content and Localization of Pinus Sylvestris ADC
Journal of Experimental Botany Advance Access published July 25, 2006 Journal of Experimental Botany, Page 1 of 10 doi:10.1093/jxb/erl049 RESEARCH PAPER Changes in polyamine content and localization of Pinus sylvestris ADC and Suillus variegatus ODC mRNA transcripts during the formation of mycorrhizal interaction in an in vitro cultivation system Karoliina Niemi1,*, Suvi Sutela2, Hely Ha¨ggman2, Carolyn Scagel3, Jaana Vuosku2, Anne Jokela2 and Tytti Sarjala4 1 Department of Applied Biology, University of Helsinki, PO Box 27, 00014 University of Helsinki, Finland 2 Department of Biology, University of Oulu, PO Box 3000, 90014 University of Oulu, Finland 3 USDA, Agricultural Research Service, Horticultural Crops Research Laboratory, Corvallis, OR 97330, USA 4 Finnish Forest Research Institute, Parkano Research Unit, 39700 Parkano, Finland Received 24 October 2005; Accepted 27 April 2006 Abstract formation and main root elongation were greatest between the first and third week in dual culture, The involvement of polyamines (PAs) in the interaction coinciding with retarded accumulation or a decrease between Pinus sylvestris L. seedlings and an ectomy- of free PAs. These results show that accumulation of corrhizal fungus Suillus variegatus (Swatz: Fr.) O. Kunze PAs in the host plant is one of the first indicators of was studied in an in vitro cultivation system. PA the establishment of ectomycorrhizal interaction be- concentrations in seedlings were analysed after 1, 3, tween P. sylvestris and S. variegatus in the in vitro and 5 weeks in dual culture with S. variegatus, and system. changes in PA pools were compared with the growth of the seedlings. Pinus sylvestris arginine decarboxy- Key words: Arginine decarboxylase, ectomycorrhizas, lase (ADC) and S. -
A Preliminary Checklist of Arizona Macrofungi
A PRELIMINARY CHECKLIST OF ARIZONA MACROFUNGI Scott T. Bates School of Life Sciences Arizona State University PO Box 874601 Tempe, AZ 85287-4601 ABSTRACT A checklist of 1290 species of nonlichenized ascomycetaceous, basidiomycetaceous, and zygomycetaceous macrofungi is presented for the state of Arizona. The checklist was compiled from records of Arizona fungi in scientific publications or herbarium databases. Additional records were obtained from a physical search of herbarium specimens in the University of Arizona’s Robert L. Gilbertson Mycological Herbarium and of the author’s personal herbarium. This publication represents the first comprehensive checklist of macrofungi for Arizona. In all probability, the checklist is far from complete as new species await discovery and some of the species listed are in need of taxonomic revision. The data presented here serve as a baseline for future studies related to fungal biodiversity in Arizona and can contribute to state or national inventories of biota. INTRODUCTION Arizona is a state noted for the diversity of its biotic communities (Brown 1994). Boreal forests found at high altitudes, the ‘Sky Islands’ prevalent in the southern parts of the state, and ponderosa pine (Pinus ponderosa P.& C. Lawson) forests that are widespread in Arizona, all provide rich habitats that sustain numerous species of macrofungi. Even xeric biomes, such as desertscrub and semidesert- grasslands, support a unique mycota, which include rare species such as Itajahya galericulata A. Møller (Long & Stouffer 1943b, Fig. 2c). Although checklists for some groups of fungi present in the state have been published previously (e.g., Gilbertson & Budington 1970, Gilbertson et al. 1974, Gilbertson & Bigelow 1998, Fogel & States 2002), this checklist represents the first comprehensive listing of all macrofungi in the kingdom Eumycota (Fungi) that are known from Arizona. -
Re-Thinking the Classification of Corticioid Fungi
mycological research 111 (2007) 1040–1063 journal homepage: www.elsevier.com/locate/mycres Re-thinking the classification of corticioid fungi Karl-Henrik LARSSON Go¨teborg University, Department of Plant and Environmental Sciences, Box 461, SE 405 30 Go¨teborg, Sweden article info abstract Article history: Corticioid fungi are basidiomycetes with effused basidiomata, a smooth, merulioid or Received 30 November 2005 hydnoid hymenophore, and holobasidia. These fungi used to be classified as a single Received in revised form family, Corticiaceae, but molecular phylogenetic analyses have shown that corticioid fungi 29 June 2007 are distributed among all major clades within Agaricomycetes. There is a relative consensus Accepted 7 August 2007 concerning the higher order classification of basidiomycetes down to order. This paper Published online 16 August 2007 presents a phylogenetic classification for corticioid fungi at the family level. Fifty putative Corresponding Editor: families were identified from published phylogenies and preliminary analyses of unpub- Scott LaGreca lished sequence data. A dataset with 178 terminal taxa was compiled and subjected to phy- logenetic analyses using MP and Bayesian inference. From the analyses, 41 strongly Keywords: supported and three unsupported clades were identified. These clades are treated as fam- Agaricomycetes ilies in a Linnean hierarchical classification and each family is briefly described. Three ad- Basidiomycota ditional families not covered by the phylogenetic analyses are also included in the Molecular systematics classification. All accepted corticioid genera are either referred to one of the families or Phylogeny listed as incertae sedis. Taxonomy ª 2007 The British Mycological Society. Published by Elsevier Ltd. All rights reserved. Introduction develop a downward-facing basidioma. -
Ectomycorrhizal Fungal Assemblages of Nursery-Grown Scots Pine Are Influenced by Age of the Seedlings
Article Ectomycorrhizal Fungal Assemblages of Nursery-Grown Scots Pine are Influenced by Age of the Seedlings Maria Rudawska * and Tomasz Leski Institute of Dendrology, Polish Academy of Sciences, Parkowa 5, 62-035 Kórnik, Poland; [email protected] * Correspondence: [email protected] Abstract: Scots pine (Pinus sylvestris L.) is the most widely distributed pine species in Europe and is relevant in terms of planted areas and harvest yields. Therefore, each year the demand for planting stock of Scots pine is exceedingly high, and large quantities of seedlings are produced annually throughout Europe to carry out reforestation and afforestation programs. Abundant and diverse ectomycorrhizal (ECM) symbiosis is critical for the success of seedlings once planted in the field. To improve our knowledge of ECM fungi that inhabit bare-root nursery stock of Scots pine and understand factors that influence their diversity, we studied the assemblages of ECM fungi present across 23 bare-root forest nurseries in Poland. Nursery stock samples were characterized by a high level of ECM colonization (nearly 100%), and a total of 29 ECM fungal taxa were found on 1- and 2- year-old seedlings. The diversity of the ECM community depended substantially on the nursery and age of the seedlings, and species richness varied from 3–10 taxa on 1-year-old seedlings and 6–13 taxa on 2-year-old seedlings. The ECM fungal communities that developed on the studied nursery stock were characterized by the prevalence of Ascomycota over Basidiomycota members on 1-year-old seedlings. All ecological indices (diversity, dominance, and evenness) were significantly affected by age of the seedlings, most likely because dominant ECM morphotypes on 1-year-old seedlings (Wilcoxina mikolae) were replaced by other dominant ones (e.g., Suillus luteus, Rhizopogon roseolus, Thelephora terrestris, Hebeloma crustuliniforme), mostly from Basidiomycota, on 2-year-old seedlings. -
A Higher-Level Phylogenetic Classification of the Fungi
mycological research 111 (2007) 509–547 available at www.sciencedirect.com journal homepage: www.elsevier.com/locate/mycres A higher-level phylogenetic classification of the Fungi David S. HIBBETTa,*, Manfred BINDERa, Joseph F. BISCHOFFb, Meredith BLACKWELLc, Paul F. CANNONd, Ove E. ERIKSSONe, Sabine HUHNDORFf, Timothy JAMESg, Paul M. KIRKd, Robert LU¨ CKINGf, H. THORSTEN LUMBSCHf, Franc¸ois LUTZONIg, P. Brandon MATHENYa, David J. MCLAUGHLINh, Martha J. POWELLi, Scott REDHEAD j, Conrad L. SCHOCHk, Joseph W. SPATAFORAk, Joost A. STALPERSl, Rytas VILGALYSg, M. Catherine AIMEm, Andre´ APTROOTn, Robert BAUERo, Dominik BEGEROWp, Gerald L. BENNYq, Lisa A. CASTLEBURYm, Pedro W. CROUSl, Yu-Cheng DAIr, Walter GAMSl, David M. GEISERs, Gareth W. GRIFFITHt,Ce´cile GUEIDANg, David L. HAWKSWORTHu, Geir HESTMARKv, Kentaro HOSAKAw, Richard A. HUMBERx, Kevin D. HYDEy, Joseph E. IRONSIDEt, Urmas KO˜ LJALGz, Cletus P. KURTZMANaa, Karl-Henrik LARSSONab, Robert LICHTWARDTac, Joyce LONGCOREad, Jolanta MIA˛ DLIKOWSKAg, Andrew MILLERae, Jean-Marc MONCALVOaf, Sharon MOZLEY-STANDRIDGEag, Franz OBERWINKLERo, Erast PARMASTOah, Vale´rie REEBg, Jack D. ROGERSai, Claude ROUXaj, Leif RYVARDENak, Jose´ Paulo SAMPAIOal, Arthur SCHU¨ ßLERam, Junta SUGIYAMAan, R. Greg THORNao, Leif TIBELLap, Wendy A. UNTEREINERaq, Christopher WALKERar, Zheng WANGa, Alex WEIRas, Michael WEISSo, Merlin M. WHITEat, Katarina WINKAe, Yi-Jian YAOau, Ning ZHANGav aBiology Department, Clark University, Worcester, MA 01610, USA bNational Library of Medicine, National Center for Biotechnology Information, -
Mycological Society of San Francisco
Mycological Society of San Francisco Fungus Fair!! 4-5 December 2004 Mycological Contact MSSF Join MSSF About MSSF Society of Event Calendar Meetings San Mycena News Fungus Fairs Cookbook Francisco Recipes Photos History Introduction Other Activities Welcome to the home page of the Mycological Society of San Francisco, North America's largest local amateur mycological Web Sites association. This page was created by and is maintained by Michael Members Only! Wood, publisher of MykoWeb. MykoWeb The Mycological Society of San Francisco is a non-profit corporation Search formed in 1950 to promote the study and exchange of information about mushrooms. Copyright © Most of our members are amateurs who are interested in mushrooms 1995-2004 by for a variety of reasons: cooking, cultivating, experiencing the Michael Wood and out-of-doors, and learning to properly identify mushrooms. Other the MSSF members are professional mycologists who participate in our activities and may serve as teachers or advisors. Dr. Dennis E. Desjardin is the scientific advisor for the Mycological Society of San Francisco. He is professor of biology at San Francisco State University and director of the Harry D. Thiers Herbarium. Dr. Desjardin was the recipient of the Alexopoulos Prize for outstanding research and the W. H. Weston Award for Excellence in Teaching from the Mycological Society of America. Our active membership extends throughout the San Francisco Bay Area and into many other communities in Northern California and beyond. To join the MSSF, please see the membership page. To renew your MSSF membership, see the renewal page. For information on how to http://www.mssf.org/ (1 of 2) [5/17/2004 12:11:22 PM] Mycological Society of San Francisco contact the MSSF, please visit our contact page. -
The Effect of Cytokinins and Auxins on the Growth of Mycorrhizal Fungus Suillus V Ariegatu S*
View metadata, citation and similar papers at core.ac.uk brought to you by CORE Acta Bot. Croat. 35 (1976) 129— 134 THE EFFECT OF CYTOKININS AND AUXINS ON THE GROWTH OF MYCORRHIZAL FUNGUS SUILLUS V ARIEGATU S* NADA GO GALA and FRANCI POHLEVEN (Biological Department of the Biotechnical Faculty and Biological Institute of the University Ljubljana) R e c e iv e d J a n u a ry 14, 1976 Introduction It is known that pine tree root exudate promotes the growth of the mycelium of mycorrhizal fungi. M e 1 i n (1959) considered that there were probably several components that influenced growth. In our earlier work (G o g a 1 a 1971), naturally occuring cytokinins, found in the exudate of pine tree seedlings (Pinus sylvestris), showed an influence on the growth of Boletus edulis. Following the fact that kinetin displays a similar effect (G o g a 1 a 1973), we tried to clarify the influence of the individual cytokinins extracted from the exudate on mycorrhizal fungi, as well as the effect of zeatin and zeatinriboside. Auxins, which are among the other hormones present in the exudate, were of special inte rest for us because of their potential common effect on mycelium. Materials and methods Pine tree seeds (Pinus sylvestris) were obtained from “Semesadike” Menges (1973). The sterile tissue of Suillus variegatus was taken from fruit-bodies in 1974 and grown on potato agar-agar culture media (Dif- co). The test on cytokinins was made by using the seeds of radish (Rap- hanus sativus ■— 1973). -
Josiana Adelaide Vaz
Josiana Adelaide Vaz STUDY OF ANTIOXIDANT, ANTIPROLIFERATIVE AND APOPTOSIS-INDUCING PROPERTIES OF WILD MUSHROOMS FROM THE NORTHEAST OF PORTUGAL. ESTUDO DE PROPRIEDADES ANTIOXIDANTES, ANTIPROLIFERATIVAS E INDUTORAS DE APOPTOSE DE COGUMELOS SILVESTRES DO NORDESTE DE PORTUGAL. Tese do 3º Ciclo de Estudos Conducente ao Grau de Doutoramento em Ciências Farmacêuticas–Bioquímica, apresentada à Faculdade de Farmácia da Universidade do Porto. Orientadora: Isabel Cristina Fernandes Rodrigues Ferreira (Professora Adjunta c/ Agregação do Instituto Politécnico de Bragança) Co- Orientadoras: Maria Helena Vasconcelos Meehan (Professora Auxiliar da Faculdade de Farmácia da Universidade do Porto) Anabela Rodrigues Lourenço Martins (Professora Adjunta do Instituto Politécnico de Bragança) July, 2012 ACCORDING TO CURRENT LEGISLATION, ANY COPYING, PUBLICATION, OR USE OF THIS THESIS OR PARTS THEREOF SHALL NOT BE ALLOWED WITHOUT WRITTEN PERMISSION. ii FACULDADE DE FARMÁCIA DA UNIVERSIDADE DO PORTO STUDY OF ANTIOXIDANT, ANTIPROLIFERATIVE AND APOPTOSIS-INDUCING PROPERTIES OF WILD MUSHROOMS FROM THE NORTHEAST OF PORTUGAL. Josiana Adelaide Vaz iii The candidate performed the experimental work with a doctoral fellowship (SFRH/BD/43653/2008) supported by the Portuguese Foundation for Science and Technology (FCT), which also participated with grants to attend international meetings and for the graphical execution of this thesis. The Faculty of Pharmacy of the University of Porto (FFUP) (Portugal), Institute of Molecular Pathology and Immunology (IPATIMUP) (Portugal), Mountain Research Center (CIMO) (Portugal) and Center of Medicinal Chemistry- University of Porto (CEQUIMED-UP) provided the facilities and/or logistical supports. This work was also supported by the research project PTDC/AGR- ALI/110062/2009, financed by FCT and COMPETE/QREN/EU. Cover – photos kindly supplied by Juan Antonio Sanchez Rodríguez. -
SOMA Speaker: Catharine Adams March 17 at the Sonoma County Farm Bureau “How the Death Cap Mushroom Conquered the World”
SOMANEWS From the Sonoma County Mycological Association VOLUME 28: 7 MARCH 2016 SOMA Speaker: Catharine Adams March 17 At the Sonoma County Farm Bureau “How the Death Cap Mushroom Conquered the World” Cat Adams is interested in how chemical ecology in- fluences interactions between plants and fungi. For her PhD in Tom Bruns’ lab, Cat is studying the inva- sive ectomycorrhizal fungus, Amanita phalloides. The death cap mushroom kills more people than any oth- er mushroom, but how the deadly amatoxins influ- ence its invasion remains unexplored. Previously, Cat earned her M.A. with Anne Pringle at Harvard University. Her thesis examined fungal pathogens of the wild Bolivian chili pepper, Capsi- cum chacoense, and how the fungi evolved tolerance to spice. With the Joint Genome Institute, she is now sequencing the genome of one fungal isolate, a Pho- mopsis species, to better understand the novel en- zymes these fungi wield to outwit their plant host. She also collaborates with a group in China, study- loides, was an invasive species, and why we should ing how arbuscular mycorrhizae can help crop plants care. She’ll then tell you about 10 years of research at avoid toxic effects from pollution. Their first paper is Pt Reyes National Seashore examining how Amanita published in Chemosphere. phalloides spreads. Lastly, Cat will outline her ongo- At the SOMA meeting, Cat will explain how scientists ing work to determine the ecological role of Phalloi- determined the death cap mushroom, Amanita phal- des’ toxins, and will present her preliminary findings. NEED EMERGENCY MUSHROOM POISONING ID? After seeking medical attention, contact Darvin DeShazer for identification at (707) 829- 0596. -
This File Was Created by Scanning the Printed
FUNGAL ECOLOGY 4 (2011) 134-146 available at www.sciencedirect.com --" -.;" ScienceDirect jou rna I hom epage: www.elsevier.com/locate/fu n eco ELSEVIER Addressing uncertainty: How to conserve and manage rare or little-known fungi b Randy MOLINAa,*, Thomas R. HORTON , James M. TRAPPEa, Bruce G. MARCOr: aOregon State University, Department of Forest Ecosystems and Society, 321 Richardson Hall, Corvallis, OR 97331, USA b State University of New York, College of Environmental Science and Forestry, Department of Environmental and Forest Biology, 246 Illick Hall, 1 Forestry Drive, Syracuse, NY 13210, USA cUSDA Forest Service, Pacific Northwest Research Station, Portland Forestry Sciences Laboratory, 620 SW Main Street, Suite 400, Portland, OR 97205, USA ARTICLE INFO ABSTRACT Article history: One of thegreater challenges in conserving fungi comes from our incomplete knowledge of Received 8 March 2010 degree of rarity, risk status, and habitat requirements of most fungal species. We discuss Accepted 15 June 2010 approaches to immediately begin closing knowledge gaps, including: (1) harnessing Available online 15 September 2010 collective expert knowledge so that data from professional experiences (e.g., personal Corresponding editor: Anne Pringle collection and herbarium records) are better organized and made available to the broader mycological community; (2) thinking outside the mycology box by learning and borrowing Keywords: from conservation approaches to other taxonomic groups; (3) developing and testing Adaptive management hypothesis-driven habitat models for representative fungi to provide support for habitat Expert knowledge restoration and management; (4) framing ecological questions and conducting field Fungus conservation surveys and research more directly pertinent to conservation information needs; and (5) Habitat modeling providing adaptive management guidelines and strategies for resource managers to Species vs.