Chapter 12 Communications

Total Page:16

File Type:pdf, Size:1020Kb

Chapter 12 Communications DoD 51 OO.52-M CHAPTER 12 COMMUNICATIONS 12-1 GENERAL 12-3 SPECIFIC REQUIREMENTS The On-Scene Commander (OSC) requires internal a. Fast, reliable and accurate communications are communications with the operations center and with essential for nuclear weapon accident response opera- forces in the field to control and keep abreast of response tions. Moreover, securing adequate internal commun- activities. External communications with higher echelons ications to support activities at the accident scene is a time-sensitive operation. Equally critical to effective of command are necessary to keep key personnel command and control is the timely establishment of informed. Many initial communications requirements external communications to higher echelons, particularly can be met by unsecure voice communications; however, in the Washington arena. Therefore, the communications both secure voice and record communications are officers of the Initial Response Force (IRF) and Service required early in the response. Response Force (SRF) must take immediate action to ensure that appropriate communications equipment is Communication requirements: identified and requested early in response operations. a. Establish internal communications. b. Effective response to a nuclear weapon accident (1) Telephone communications between fixed site relies heavily on a communications officer knowledge locations, for example, the operations center and the about secure and non-secure tactical, strategic, and Joint Information Center (JIC). commercial communications systems. He or she must (2) Field phones for EOD operations (secure be able to apply conventional and imaginative methods phones are desirable). and ensure that required communications are available. (3) UHF/VHF nets. Several minimum nets, He or she should be equally adept at establishing command (secure desirable), weapons recovery opera- communications support in remote locations, or in areas tions (secure), radiological operations (secure desirable), near existing communications systems. security, public affairs will be required. c. In addition to military communications at the b. Establish external communications. accident site, the DoE, FE MA, State and/or civilian officials establish their own communications. Careful (1) Telephone communications with the Service attention must be afforded these installations to ensure operations center, the National Military Command mutual support and eliminate interference. Center, and the Office of the Assistant Secretary of Defense (Public Affairs). Conferencing may suffice early in the response. 12-2 PURPOSE AND SCOPE (2) Multiple telephone lines to support response force elements. (3) Secure voice via satellite, telephone, .or HF. This chapter provides guidance for establishing (4) Access to the Defense Communications System communications systems and capabilities to support response operations. The requirements of both the IRF for record communications. and SRF are “discussed, including personnel at the accident scene (internal communications) and at long c. Coordinate frequency usage of all response distances (external corhmunications). Also included are organizations to prevent interference and radio treatments of various capabilities and hardware operations in areas where electromagnetic emissions may (telephone, radio, satellite, and visual signal) that are. Create explosive hazards or affect electronic and field available. laboratory instruments. 12-1 d. Obtain frequency clearances, as necessary. gapped” to AUTODIN through the HAMMER ACE operations center. Other capabilities include air-to- e. Prepare a Communication-Electronics Operating ground communications and a privacy feature, land Instruction for use by all response organizations. mobile radio network with a repeater/base station for local communications. The land mobile radios can interface with the secure satellite system. The limited 12-4 RESOURCES capability provided by HAMMER ACE is an initial capability only. For this reason, HAMMER ACE The communications capabilities and resources for personnel, in conjunction with the OSC, evaluate the nuclear weapon accident recovery operations vary situation and determine what, if any, additional widely. Resources are as familiar as the telephone or capabilities are required. HAMMER ACE equipment as sophisticated as satellite capable secure voice radio. is capable of battery operations, and enough batteries Communications assets must be capable of deployment are deployed to sustain 72-hour operation. A follow- to, and operation in, remote locations. The following on deployment of generators or additional batteries is presents a variety of communications resources for required for longer operations. response organizations. Because the same equipment supports numerous contingencies, only those assets ~. Requests for emergency HAMMER ACE required for a specific nuclear weapon accident response support should be made directly to HQ AFCC/COXC effort should be requested. Resources are available from (AFCC Command Center) or through the JNACC. the DoD, other Federal organizations, or commercial Phone numbers are listed in Appendix 20-A. Any sources. available communications media may be used to submit the request; however, verbal requests must be followed a. Service Assets. The Military Services maintain in writing within 24 hours. The requesting agency must communications assets organic to combat support units provide the following information with the request. as well as for contingency assets. Information about specific assets as well as procedures for requesting and a. Deployment location, including coordi- tasking Service assets can be obtained from the respective nates if avaiiabie. Service operations centers, or operational commanders. ~. Situation, including type of emergency. Telephone numbers are contained in Appendix l-G. c. Points of contact. ~. Remarks concerning any unusual condi- (1) U.S. Army. U.S. Army signal units have tions for wh~ch the team should prepare. communications assets to support battalion, brigade, and division operations including wire/ telephone ~. Requests for additional information should switchboards, multichannel radios, and record commun- “be directed to HQ AFCC/ DOXZ, Special Commun~’ ication systems. ications Division, Scott AFB, Illinois. Phone numbers (2) U.S. Air Force. Tactical communications assets are listed in Appendix 20-A. are available from both Combat Communication Groups and HAMMER ACE as described in paragraph (a) (3) U.S. Navy. Each U.S. Navy Fleet Commanders- below. “ in-Chief has control of ashore mobile contingency communication units. These units are maintained in a (a) HAMMER ACE. HAMMER ACE is a state of readiness to permit deployment within 24 hours rapidly deployable team of engineers and technicians by COMMNAVSTA Philippines and NAVCAMSLANT equipped with advanced technology communications Norfolk, VA, respectively. equipment. The team can deploy within three hours and establish communications within 30 minutes of arrival (a) Ashore Mobile Contingency Communica- on-site. HAMMER ACE equipment can be transported tions (AMCC). The AMCC van is . a small mobile on C-21, or equivalent-type aircraft, or commercial communications unit contained in one. transportable airliners. Capabilities include secure satellite system for equipment shelter with two separately configured 55 kw voice, facsimile, and limited data communications. The mobile diesel generators. The van contains sufficient secure satellite link can interface with AUTOSEVOCOM, equipment to maintain the following circuits STU-11, AUTOVON, and commercial telephone systems simul~aneously: through the HAMMER ACE operations center at Scott ~. Two secure full duplex teletype circuits (one AFB, Illinois. Record communications can be “air- via HF radio; or alternatively, two via HF radio). 12-2 ~. One narrow band secure voice (CV-3333) (a) Switchboards. via satellite with KG-36 security equipment. (b) HF radio. ~. Two UHF secure voice circuits with KY- (c) Microwave/ troposcatter radios. 28 voice security equipment. (d) UHF and VHF radios (secure and non- ~. HF High Command (HICOM) net. secure). ~. UHF satellite fleet broadcast receiver (AN/ (e) Secure record communications terminals. SSR-I receiver only). (f) Weather dissemination equipment. ~. One PARKHILL narrow band secure voice (g) UHF and SHF satellite terminals. circuit via HF or UHF satellite. (h) Secure TELEFAX (DACOM 412). ~. Two VINSON secure voice devices. (i) KY-65, KY-70 and KY-75 secure voice devices, and (b) When deployed, the AMCC uses local power (j) The AN/ URC Joint Airborne Communica- where available. Power source must be 440V, three phase, tions Center/ Command Post (JACC/ CP). 60 Hz. Otherwise, mobile generators supplied with the AMCC units will be used. A complete AMCC unit can ~. The Joint Airborne Communication& Cen- be transported via one C-130 aircraft, one CH-53 ter/ Command Post (JACC/ CP), commonly referred t’o helicopter, or one 6x65-ton truck. The mobile generators as JACKPOT, consists of several pieces of equipment for the AMCC, if needed, requires an additional lift mounted in air transportable vans. The JACC/ CP has if transported by helicopter. When transported via truck, four major components—operations center, commun- an additional prime mover is required. ications control, generator, and an air conditioner/ (c) The AMCC units are, at all times, under the accessory trailer. operational control of the respective Fleet Commanders- ~. The JACC/CP can provide
Recommended publications
  • Battle Management Language: History, Employment and NATO Technical Activities
    Battle Management Language: History, Employment and NATO Technical Activities Mr. Kevin Galvin Quintec Mountbatten House, Basing View, Basingstoke Hampshire, RG21 4HJ UNITED KINGDOM [email protected] ABSTRACT This paper is one of a coordinated set prepared for a NATO Modelling and Simulation Group Lecture Series in Command and Control – Simulation Interoperability (C2SIM). This paper provides an introduction to the concept and historical use and employment of Battle Management Language as they have developed, and the technical activities that were started to achieve interoperability between digitised command and control and simulation systems. 1.0 INTRODUCTION This paper provides a background to the historical employment and implementation of Battle Management Languages (BML) and the challenges that face the military forces today as they deploy digitised C2 systems and have increasingly used simulation tools to both stimulate the training of commanders and their staffs at all echelons of command. The specific areas covered within this section include the following: • The current problem space. • Historical background to the development and employment of Battle Management Languages (BML) as technology evolved to communicate within military organisations. • The challenges that NATO and nations face in C2SIM interoperation. • Strategy and Policy Statements on interoperability between C2 and simulation systems. • NATO technical activities that have been instigated to examine C2Sim interoperation. 2.0 CURRENT PROBLEM SPACE “Linking sensors, decision makers and weapon systems so that information can be translated into synchronised and overwhelming military effect at optimum tempo” (Lt Gen Sir Robert Fulton, Deputy Chief of Defence Staff, 29th May 2002) Although General Fulton made that statement in 2002 at a time when the concept of network enabled operations was being formulated by the UK and within other nations, the requirement remains extant.
    [Show full text]
  • Atp 6-02.45 Techniques for Tactical Signal Support To
    ATP 6-02.45 TECHNIQUES FOR TACTICAL SIGNAL SUPPORT TO THEATER OPERATIONS NOVEMBER 2019 DISTRIBUTION RESTRICTION: Approved for public release, distribution is unlimited. This publication supersedes FMI 6-02.45, dated 5 July 2007. Headquarters, Department of the Army This publication is available at the Army Publishing Directorate site (https://armypubs.army.mil/), and the Central Army Registry site (https://atiam.train.army.mil/catalog/dashboard). *ATP 6-02.45 Army Techniques Publication Headquarters No. 6-02.45 Department of the Army Washington, DC, 07 November 2019 Techniques for Tactical Signal Support to Theater Operations Contents Page PREFACE.................................................................................................................... iii INTRODUCTION .......................................................................................................... v Chapter 1 THE OPERATIONAL ENVIRONMENT .................................................................... 1-1 The Information Environment .................................................................................... 1-1 The Tactical Network ................................................................................................. 1-3 Chapter 2 ECHELONS ABOVE CORPS TACTICAL NETWORK ARCHITECTURE .............. 2-1 Section I –Network Architecture and Transport Capabilities ............................. 2-1 Colorless Core Architecture....................................................................................... 2-1 Network Transport Capabilities
    [Show full text]
  • TB 380-41 Final!
    klg DISTRIBUTION RESTRICTION STATEMENT The technical or operational information in this manual is required solely for official use; therefore, distribution is authorized to U.S. Government agencies only. This determination was made on 1 January 1993. For further information, see page i of this document. WARNING: Military or civilian personnel who misuse or disclose to unauthorized persons information marked For Official Use Only (FOUO) may be subject to administrative sanctions brought under UCMJ Article 92, or in accor- dance with AR 690-700, Chapter 751, Table 1-1. Elec- tronic copies made of any publication herein must (1) bear the Four Official Use Only marking, and (2) include this WARNING in its entirety. Protective marking is in accordance with paragraph 3-200, Exemption 3a, AR 25-55. Destroy by any method that will prevent disclosure of contents or reconstruction of the document. Headquarters, Department of the Army Date of this Publication is 1 August 2003. Current as of 1 July 2003. This bulletin supersedes TB 380-41, October 1994 and rescinds the use of DA Forms 2008 and 2009. FOR OFFICIAL USE ONLY TB 380-41 DISTRIBUTION RESTRICTION STATEMENT OUTSIDE THE U.S. GOVERNMENT RELEASE: Requests from outside the U.S. Government for release of this publication under the Foreign Military Sales Program must be made to Commander, U.S. Army Security Assistance Center, ATTN: AMSAC-MI/I, 5002 Eisenhower Ave., Alexandria, VA 22333-0001. Request from outside the U.S. Government for release of this publication under the Freedom of Information Act must be made to the Director, Communications-Electronics Command (CECOM), Communications Security Logistics Activity (CSLA) at ATTN: SELCL-ID-P3, U.S.
    [Show full text]
  • Ky-57 Vinson
    KY-57 VINSON Homepage Crypto KY-57 (VINSON) Index Voice encryption unit Enigma The KY-57 was a wide-band voice encryption unit that was developed in the USA during the 1970s as a replacement of the NESTOR cryptographic products, such as the KY-38. It was suitable for use with a Hagelin wide range of military radios and telehone lines. As part of the VINSON family of devices, it was the main Fialka crypto 'workhorse' of the US Army during the 1980s. Even today, many radios and voice encryption devices are still backwards compatible with the KY-57, that is also known as the TSEC/KY-57. The Siemens airborne version of the KY-57 is called the KY-58. Philips The KY-57 uses the NSA-developed Type-1 KY-57 voice encryption unit Nema SAVILLE cryptographic algorithm. When used in combination with a radio transceiver, such as the Racal SINCGARS non-ICOM RT-1439/VRC, the KY-57 STK allows signal fades or losses for up to 12 seconds without losing synchronization. Transvertex The KY-57 was eventually superceeded by the KY- Gretag 99 that offered newer - more advanced - Telsy cryptographic algorithms, but that was still backwards compatible with the KY-57. Later Tadiran SINCGARS ICOM radios, such as the RT-1523, had built-in KY-57 (VINSON) compatibility. USA USSR Both voice and data can be encrypted with the KY-57. Voice data is digitized using Continuous Variable Slope Delta modulation (CVSD), similar to other voice crypto systems of the same era, such as the UK Philips Spendex-10 , the Spendex 50 and the Telsy TS-500.
    [Show full text]
  • KY-58 (Vinson)
    KY-58 (Vinson) The KY-57/58 is a member of the VINSON family. The VINSON family consists of wideband secure voice (WBSV) units developed by the National Security Agency to provide line of sight half-duplex voice and data encryption at 16 Kbps. The KY-57/58 provides security for AM/FM, VHF, UHF, half-duplex PTT combat net radios and tactical wireline systems when used with the HYX-57. Also used by non-tactical users for high-level communications in the local wideband telephone networks and wideband satellite terminals. The KY-57 is the manpack/vehicular model and the KY-58 is the airborne/shipborne version. The KY-57/58 is certified to pass data up to TOP SECRET and accepts key from the family of Common Fill Devices and also incorporates remote keying. KY-57/58 production was completed in 1993. No further production is planned. KY-58 photo by Tim Tyler Tim Tyler comments."The photo above depicts the KY-58 unit inside a USCG HH-65C 'Dolphin' helicopter taken in September 2008. It is currently configured just for use on their 225-400MHz aircraft band radio. Supposedly, they're in the process of upgrading the HH-65 helos into an MH-65 (Special Ops capable) configuration which will have APCO P-25 compliant radios (with AES crypto, for talking to other DHS agencies) as well as ANDVT / KY-100 type crypto for communicating with the military-side of USCG ops". The photo above depicts a KY-58 RCU installation in an A-10 attack aircraft.
    [Show full text]
  • Inter-Island Communications
    SOUTH CHINA SEA MILITARY CAPABILITY SERIES A Survey of Technologies and Capabilities on China’s Military Outposts in the South China Sea INTER-ISLAND COMMUNICATIONS J. Michael Dahm INTER-ISLAND COMMUNICATIONS J. Michael Dahm Copyright © 2020 The Johns Hopkins University Applied Physics Laboratory LLC. All Rights Reserved. This study contains the best opinion of the author based on publicly available, open- source information at time of issue. It does not necessarily represent the assessments or opinions of APL sponsors. The author is responsible for all analysis and annotations of satellite images contained in this report. Satellite images are published under license from Maxar Technologies/DigitalGlobe, Inc., which retains copyrights to the original images. Satellite images in this report may not be reproduced without the express permission of JHU/APL and Maxar Technologies/DigitalGlobe, Inc. See Appendix A for notes on sources and analytic methods. NSAD-R-20-048 July 2020 Inter-Island Communicaitons Contents Introduction .................................................................................................................. 1 Troposcatter Communications, 散射通信 ..................................................................... 2 VHF/UHF and Other Line-of-Sight Communications ...................................................... 6 4G Cellular Communications ........................................................................................ 7 Airborne Communications Layer .................................................................................
    [Show full text]
  • A History of U.S. Communications Security (U)
    A HISTORY OF U.S. COMMUNICATIONS SECURITY (U) THE DAVID G. BOAK LECTURES VOLUME II NATIONAL SECURITY AGENCY FORT GEORGE G. MEADE, MARYLAND 20755 The information contained in this publication will not be disclosed to foreign nationals or their representatives without express approval of the DIRECTOR, NATIONAL SECURITY AGENCY. Approval shall refer specifically to this publication or to specific information contained herein. JULY 1981 CLASSIFIED BY NSA/CSSM 123-2 REVIEW ON 1 JULY 2001 NOT RELEASABLE TO FOREI6N NATIONALS SECRET HA~mLE YIA COMINT CIIA~HJELS O~JLY ORIGINAL (Reverse Blank) ---------- • UNCLASSIFIED • TABLE OF CONTENTS SUBJECT PAGE NO INTRODUCTION _______ - ____ - __ -- ___ -- __ -- ___ -- __ -- ___ -- __ -- __ --- __ - - _ _ _ _ _ _ _ _ _ _ _ _ iii • POSTSCRIPT ON SURPRISE _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ I OPSEC--------------------------------------------------------------------------- 3 ORGANIZATIONAL DYNAMICS ___ -------- --- ___ ---- _______________ ---- _ --- _ ----- _ 7 THREAT IN ASCENDANCY _________________________________ - ___ - - _ -- - _ _ _ _ _ _ _ _ _ _ _ _ 9 • LPI _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ I I SARK-SOME CAUTIONARY HISTORY __ --- _____________ ---- ________ --- ____ ----- _ _ 13 THE CRYPTO-IGNITION KEY __________ --- __ -- _________ - ---- ___ -- ___ - ____ - __ -- _ _ _ 15 • PCSM _ _ _ _ _ _ _ _ _ _ _ _ _ _
    [Show full text]
  • JP 6-0, Joint Communications System, 10 June 2015
    Joint Publication 6-0 T OF EN TH W E I S E' L L M H D T E F T E N A R D R A M P Y E • D • U A N C I I T R E E D M S A T F AT E S O Joint Communications System 10 June 2015 Incorporating Change 1 04 October 2019 PREFACE 1. Scope a. This publication is the keystone document for the communications system series of publications. It provides fundamental principles and guidance to plan, execute, and assess communications system support to joint operations. b. An array of information, underpinned by joint doctrine, is utilized to employ combat power across the range of military operations. The communications system provides the means to synchronize joint forces. c. Reliable, secure, and synchronized information sharing among joint forces, multinational forces, and with non-Department of Defense agencies is essential for effective command and control in today’s network-enabled environment. Information systems and networks provide the means to send, receive, share, and utilize information. The synthesis of advanced communications system capabilities and sound doctrine leads to information superiority, which is essential to success in all military operations. 2. Purpose This publication is the Chairman of the Joint Chiefs of Staff (CJCS) official advice concerning communications in joint operations and provides considerations for military interaction with governmental and nongovernmental agencies, multinational forces, and other interorganizational partners. It does not restrict the authority of the joint force commander (JFC) from organizing forces and executing the mission in a manner deemed most appropriate to ensure unity of effort.
    [Show full text]
  • Link 16 Secure Voice J-Voice for the Entire Operations Team
    Product brief: Link 16 secure voice J-Voice for the entire operations team Since its early beginnings in the Vietnam War, Link 16 (L16) has been consistently improved and has subsequently developed into the primary military tactical data link for NATO and selected friendly nations. Commanders are able to employ L16 to exchange vast amounts of mission data between likewise equipped units in real time without fear of cyber attack or being subject to electronic counter measures. One key element of L16 capability is its ability to host secure voice channels – often referred to a J-Voice (Joint Tactical Information Distribution System – JTIDS) – and this is an area where Frequentis can add value. By using the field-proven and certified ground/air and ground/ground secure communications system iSecCOM, Frequentis provides the customer with unparalleled J-Voice connectivity to every iSecCOM position. Key features Link 16 secure voice iSecCOM enables Link 16 secure voice to be available at each operator position. Routed from the workstation via the Link 16 MIDS (multifunctional information distribution system) terminals, both channels A and B, (16kbps & 2.4kbps) are supported. Simplified communications and full control iSecCOM provides full-spectrum communication services, including all radio and telephony services, combined with selected data and Link 16 secure voice full radio remote control services. at a glance Designed by the operators and for the operators • Link 16 Secure Voice connectivity to combat aircraft Frequentis leverages decades of experience working • Embedded electronic-counter-counter- with operators to define the most user-friendly measures in every operator position HMI based on its field-proven, military-grade IT solutions used by multiple forces around the globe.
    [Show full text]
  • Wireless Military Communications - NNEC Enabler
    Wireless Military Communications - NNEC Enabler Miroslav Hopjan, Zuzana Vranova University of Defence, Department of Communication and Information Systems, Kounicova 65, 60200 Brno, Czech Republic [email protected]. [email protected] Abstract The paper discusses the NATO Network Enabled Capability concept, mainly from the communication point of view. The changes involve complete new requirements on the role of command and control to increase flexibility and effectiveness. Integration of Modeling and Simulation with Command, Control, and Information Systems increases the number of risks but it promises to leverage the projected capability and interoperability. Keywords: NNEC, simulation, tactical communication, CCIS. 1 Introduction This paper does not introduce new technological solution in wireless communications, the point of view is closer to the customer side of the house - how to use the emerging communication technologies in an optimal way supporting the concept of NATO Network Enabled Capability (NNEC) which emphasizes the role of information superiority in modem warfare. The aim is to evaluate number of aspects when implementing this technology in the Czech Army. What role is adequate for contemporary microwave devices, why the implementation is delayed, what risks must be outweighed by benefits of these solutions. Communications networking is the clearly visible part of the solution, and suitability of selected, mostly wireless communication approach, is discussed. Although it is not the core functionality for Command and Control Information Systems (CCIS) it is apparent that NNEC encompasses also Modeling and Simulation (M&S) capability. These two domains have developed different architectures, standards but further progress of one system is related to the other.
    [Show full text]
  • The People's Liberation Army's 37 Academic Institutions the People's
    The People’s Liberation Army’s 37 Academic Institutions Kenneth Allen • Mingzhi Chen Printed in the United States of America by the China Aerospace Studies Institute ISBN: 9798635621417 To request additional copies, please direct inquiries to Director, China Aerospace Studies Institute, Air University, 55 Lemay Plaza, Montgomery, AL 36112 Design by Heisey-Grove Design All photos licensed under the Creative Commons Attribution-Share Alike 4.0 International license, or under the Fair Use Doctrine under Section 107 of the Copyright Act for nonprofit educational and noncommercial use. All other graphics created by or for China Aerospace Studies Institute E-mail: [email protected] Web: http://www.airuniversity.af.mil/CASI Twitter: https://twitter.com/CASI_Research | @CASI_Research Facebook: https://www.facebook.com/CASI.Research.Org LinkedIn: https://www.linkedin.com/company/11049011 Disclaimer The views expressed in this academic research paper are those of the authors and do not necessarily reflect the official policy or position of the U.S. Government or the Department of Defense. In accordance with Air Force Instruction 51-303, Intellectual Property, Patents, Patent Related Matters, Trademarks and Copyrights; this work is the property of the U.S. Government. Limited Print and Electronic Distribution Rights Reproduction and printing is subject to the Copyright Act of 1976 and applicable treaties of the United States. This document and trademark(s) contained herein are protected by law. This publication is provided for noncommercial use only. Unauthorized posting of this publication online is prohibited. Permission is given to duplicate this document for personal, academic, or governmental use only, as long as it is unaltered and complete however, it is requested that reproductions credit the author and China Aerospace Studies Institute (CASI).
    [Show full text]
  • SDR and Cognitive Radio for Military Applications
    UNCLASSIFIED/UNLIMITED SDR and Cognitive Radio for Military Applications Tricia J. Willink Communications Research Centre 3701 Carling Ave., Box 11490, Station H Ottawa, ON, K2H 8S2 CANADA email:[email protected] ABSTRACT The development of software-defined radios (SDRs) should provide a small, light and cost-efficient platform capable of supporting multiple waveforms over a large frequency range. While there are challenges in achieving the vision of rapidly portable waveforms, the SDR is a critical technology for future military communications, and is an enabling platform for cognitive radio. Cognitive radio is proposed as a technology for exploiting the EM spectrum more effectively. While the main frequency bands of interest are fully licenced to authorised users, they are often unoccupied over large geographic areas or for significant time intervals. Cognitive radios are envisioned as aware, adaptable and intelligent devices, capable of learning and operating autonomously in a wide range of scenarios. The key feature of cognitive radios is the capability to identify unused frequency bands, to jump to them and select appropriate radio parameters. These radios must be able to operate without causing unacceptable interference to authorised users of the frequency band, therefore they must monitor for the presence of the primary user, and take into account the possible location of receivers of its signals. INTRODUCTION The adoption of the network-centric warfare (NCW), or net-enabled operations (NEOps), philosophy by western and allied nations requires a similarly revolutionary approach to communications technology. The basis of NEOps is the sharing of information among front-line forces, decision makers, sensors, weapons, etc.
    [Show full text]