BGGN 213 Pathway Analysis and the Interpretation of Gene Lists
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Primepcr™Assay Validation Report
PrimePCR™Assay Validation Report Gene Information Gene Name epithelial membrane protein 2 Gene Symbol Emp2 Organism Rat Gene Summary Description Not Available Gene Aliases Not Available RefSeq Accession No. Not Available UniGene ID Rn.21730 Ensembl Gene ID ENSRNOG00000002664 Entrez Gene ID 360468 Assay Information Unique Assay ID qRnoCIP0024746 Assay Type Probe - Validation information is for the primer pair using SYBR® Green detection Detected Coding Transcript(s) ENSRNOT00000003615 Amplicon Context Sequence CCTGCTGCCTTCGCTGCCCTGTGAACATGTTGGTGATTCTTGCCTTCATCATCGT CTTCCACATCGTGTCTACGGCACTCTTGTTCATTTCAACCATTGACAATGCCTGG TGGGTAGGAGATGGCTTCTCAGCT Amplicon Length (bp) 104 Chromosome Location 10:4276703-4281842 Assay Design Intron-spanning Purification Desalted Validation Results Efficiency (%) 99 R2 0.9989 cDNA Cq 20.98 cDNA Tm (Celsius) 82.5 gDNA Cq Specificity (%) 100 Information to assist with data interpretation is provided at the end of this report. Page 1/4 PrimePCR™Assay Validation Report Emp2, Rat Amplification Plot Amplification of cDNA generated from 25 ng of universal reference RNA Melt Peak Melt curve analysis of above amplification Standard Curve Standard curve generated using 20 million copies of template diluted 10-fold to 20 copies Page 2/4 PrimePCR™Assay Validation Report Products used to generate validation data Real-Time PCR Instrument CFX384 Real-Time PCR Detection System Reverse Transcription Reagent iScript™ Advanced cDNA Synthesis Kit for RT-qPCR Real-Time PCR Supermix SsoAdvanced™ SYBR® Green Supermix Experimental Sample qPCR Reference Total RNA Data Interpretation Unique Assay ID This is a unique identifier that can be used to identify the assay in the literature and online. Detected Coding Transcript(s) This is a list of the Ensembl transcript ID(s) that this assay will detect. -
Ubiquitin-Mediated Control of ETS Transcription Factors: Roles in Cancer and Development
International Journal of Molecular Sciences Review Ubiquitin-Mediated Control of ETS Transcription Factors: Roles in Cancer and Development Charles Ducker * and Peter E. Shaw * Queen’s Medical Centre, School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK * Correspondence: [email protected] (C.D.); [email protected] (P.E.S.) Abstract: Genome expansion, whole genome and gene duplication events during metazoan evolution produced an extensive family of ETS genes whose members express transcription factors with a conserved winged helix-turn-helix DNA-binding domain. Unravelling their biological roles has proved challenging with functional redundancy manifest in overlapping expression patterns, a common consensus DNA-binding motif and responsiveness to mitogen-activated protein kinase signalling. Key determinants of the cellular repertoire of ETS proteins are their stability and turnover, controlled largely by the actions of selective E3 ubiquitin ligases and deubiquitinases. Here we discuss the known relationships between ETS proteins and enzymes that determine their ubiquitin status, their integration with other developmental signal transduction pathways and how suppression of ETS protein ubiquitination contributes to the malignant cell phenotype in multiple cancers. Keywords: E3 ligase complex; deubiquitinase; gene fusions; mitogens; phosphorylation; DNA damage 1. Introduction Citation: Ducker, C.; Shaw, P.E. Cell growth, proliferation and differentiation are complex, concerted processes that Ubiquitin-Mediated Control of ETS Transcription Factors: Roles in Cancer rely on careful regulation of gene expression. Control over gene expression is maintained and Development. Int. J. Mol. Sci. through signalling pathways that respond to external cellular stimuli, such as growth 2021, 22, 5119. https://doi.org/ factors, cytokines and chemokines, that invoke expression profiles commensurate with 10.3390/ijms22105119 diverse cellular outcomes. -
Confirmation of Pathogenic Mechanisms by SARS-Cov-2–Host
Messina et al. Cell Death and Disease (2021) 12:788 https://doi.org/10.1038/s41419-021-03881-8 Cell Death & Disease ARTICLE Open Access Looking for pathways related to COVID-19: confirmation of pathogenic mechanisms by SARS-CoV-2–host interactome Francesco Messina 1, Emanuela Giombini1, Chiara Montaldo1, Ashish Arunkumar Sharma2, Antonio Zoccoli3, Rafick-Pierre Sekaly2, Franco Locatelli4, Alimuddin Zumla5, Markus Maeurer6,7, Maria R. Capobianchi1, Francesco Nicola Lauria1 and Giuseppe Ippolito 1 Abstract In the last months, many studies have clearly described several mechanisms of SARS-CoV-2 infection at cell and tissue level, but the mechanisms of interaction between host and SARS-CoV-2, determining the grade of COVID-19 severity, are still unknown. We provide a network analysis on protein–protein interactions (PPI) between viral and host proteins to better identify host biological responses, induced by both whole proteome of SARS-CoV-2 and specific viral proteins. A host-virus interactome was inferred, applying an explorative algorithm (Random Walk with Restart, RWR) triggered by 28 proteins of SARS-CoV-2. The analysis of PPI allowed to estimate the distribution of SARS-CoV-2 proteins in the host cell. Interactome built around one single viral protein allowed to define a different response, underlining as ORF8 and ORF3a modulated cardiovascular diseases and pro-inflammatory pathways, respectively. Finally, the network-based approach highlighted a possible direct action of ORF3a and NS7b to enhancing Bradykinin Storm. This network-based representation of SARS-CoV-2 infection could be a framework for pathogenic evaluation of specific 1234567890():,; 1234567890():,; 1234567890():,; 1234567890():,; clinical outcomes. -
(12) United States Patent (10) Patent No.: US 7.873,482 B2 Stefanon Et Al
US007873482B2 (12) United States Patent (10) Patent No.: US 7.873,482 B2 Stefanon et al. (45) Date of Patent: Jan. 18, 2011 (54) DIAGNOSTIC SYSTEM FOR SELECTING 6,358,546 B1 3/2002 Bebiak et al. NUTRITION AND PHARMACOLOGICAL 6,493,641 B1 12/2002 Singh et al. PRODUCTS FOR ANIMALS 6,537,213 B2 3/2003 Dodds (76) Inventors: Bruno Stefanon, via Zilli, 51/A/3, Martignacco (IT) 33035: W. Jean Dodds, 938 Stanford St., Santa Monica, (Continued) CA (US) 90403 FOREIGN PATENT DOCUMENTS (*) Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35 WO WO99-67642 A2 12/1999 U.S.C. 154(b) by 158 days. (21)21) Appl. NoNo.: 12/316,8249 (Continued) (65) Prior Publication Data Swanson, et al., “Nutritional Genomics: Implication for Companion Animals'. The American Society for Nutritional Sciences, (2003).J. US 2010/O15301.6 A1 Jun. 17, 2010 Nutr. 133:3033-3040 (18 pages). (51) Int. Cl. (Continued) G06F 9/00 (2006.01) (52) U.S. Cl. ........................................................ 702/19 Primary Examiner—Edward Raymond (58) Field of Classification Search ................... 702/19 (74) Attorney, Agent, or Firm Greenberg Traurig, LLP 702/23, 182–185 See application file for complete search history. (57) ABSTRACT (56) References Cited An analysis of the profile of a non-human animal comprises: U.S. PATENT DOCUMENTS a) providing a genotypic database to the species of the non 3,995,019 A 1 1/1976 Jerome human animal Subject or a selected group of the species; b) 5,691,157 A 1 1/1997 Gong et al. -
ETV7 293T Cell Transient Overexpression Lysate(Denatured)
Produktinformation Diagnostik & molekulare Diagnostik Laborgeräte & Service Zellkultur & Verbrauchsmaterial Forschungsprodukte & Biochemikalien Weitere Information auf den folgenden Seiten! See the following pages for more information! Lieferung & Zahlungsart Lieferung: frei Haus Bestellung auf Rechnung SZABO-SCANDIC Lieferung: € 10,- HandelsgmbH & Co KG Erstbestellung Vorauskassa Quellenstraße 110, A-1100 Wien T. +43(0)1 489 3961-0 Zuschläge F. +43(0)1 489 3961-7 [email protected] • Mindermengenzuschlag www.szabo-scandic.com • Trockeneiszuschlag • Gefahrgutzuschlag linkedin.com/company/szaboscandic • Expressversand facebook.com/szaboscandic ETV7 293T Cell Transient Overexpression Lysate(Denatured) Catalog # : H00051513-T01 規格 : [ 100 uL ] List All Specification Application Image Transfected 293T Western Blot Cell Line: Plasmid: pCMV-ETV7 full-length Host: Human Theoretical MW 39 (kDa): Quality Control Transient overexpression cell lysate was tested with Anti-ETV7 antibody Testing: (H00051513-B01) by Western Blots. SDS-PAGE Gel ETV7 transfected lysate. Western Blot Lane 1: ETV7 transfected lysate ( 39 KDa) Lane 2: Non-transfected lysate. Storage Buffer: 1X Sample Buffer (50 mM Tris-HCl, 2% SDS, 10% glycerol, 300 mM 2- mercaptoethanol, 0.01% Bromophenol blue) Storage Store at -80°C. Aliquot to avoid repeated freezing and thawing. Instruction: MSDS: Download Applications Page 1 of 2 2016/5/23 Western Blot Gene Information Entrez GeneID: 51513 GeneBank NM_016135.2 Accession#: Protein - Accession#: Gene Name: ETV7 Gene Alias: TEL-2,TEL2,TELB -
Loss of Epithelial Membrane Protein-2 Expression Confers an Independent Prognosticator in Nasopharyngeal Carcinoma: a Cohort Study
Open Access Research BMJ Open: first published as 10.1136/bmjopen-2012-000900 on 5 April 2012. Downloaded from Loss of epithelial membrane protein-2 expression confers an independent prognosticator in nasopharyngeal carcinoma: a cohort study Yi-Hsien Chen,1 Li-Ching Wu,2 Wen-Ren Wu,3 Hung-Jung Lin,1 Sung-Wei Lee,4 Ching-Yih Lin,5 Shih-Lun Chang,6 Nan-Haw Chow,7,8 Hsuan-Ying Huang,9 Chien-Feng Li,2,3,10,11 Han-Ping Hsu,12 Yow-Ling Shiue3 To cite: Chen Y-H, Wu L-C, ABSTRACT ARTICLE SUMMARY Wu W-R, et al. Loss of Objective: To evaluate the expression of epithelial epithelial membrane membrane protein-2 (EMP2) protein and its Article focus protein-2 expression confers clinicopathological associations in patients with - an independent Recent studies have suggested that EMP2 plays nasopharyngeal carcinoma. prognosticator in a tumour suppressor role in B cell lymphomas. nasopharyngeal carcinoma: Design: Retrospective population-based cohort study. - Immunoexpression of EMP2 was retrospectively a cohort study. BMJ Open Setting: This study was based on a biobank in Chi-Mei assessed in biopsies of 124 consecutive patients 2012;2:e000900. Medical Center (Tainan, Taiwan) from 1993 to 2002. with nasopharyngeal carcinoma. doi:10.1136/ Participants: Biopsies of 124 consecutive bmjopen-2012-000900 nasopharyngeal carcinoma patients without initial Key messages - Loss of EMP2 expression significantly correlates distant metastasis and treated with consistent < Prepublication history for with advanced primary tumour, nodal status and guidelines were assessed. Immunoexpressions of this paper is available online. AJCC stage. To view these files please EMP2 were analysed and the outcomes were correlated - In multivariate analyses, loss of EMP2 expres- visit the journal online (http:// with clinicopathological features and patient survivals. -
Alteration of Gene Expression in Response to Bone Morphogenetic Protein-2 in Androgen-Dependent Human Prostate Cancer Lncap Cells
KUMAGAI 26_8 30/12/05 14:22 Page 285 INTERNATIONAL JOURNAL OF MOLECULAR MEDICINE 17: 285-291, 2006 285 Alteration of gene expression in response to bone morphogenetic protein-2 in androgen-dependent human prostate cancer LNCaP cells TORU KUMAGAI, KENTARO TOMARI, TAKAHISA SHIMIZU and KEN TAKEDA Department of Hygiene-Chemistry, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki Noda-shi, Chiba 278-8510, Japan Received August 26, 2005; Accepted October 14, 2005 Abstract. Bone morphogenetic protein (BMP)-2, a multi- ectopic bone formation in vivo (3,4). In addition to functions functional member of the transforming growth factor (TGF)-ß as a possible bone-inducing factor, BMPs have been shown superfamily with powerful osteoinductive effects, has various to play important roles in various biological processes such biological activities in a variety of cells. We observed that as chemotaxis of monocytes (5), migration of osteoblasts BMP-2 inhibits cell proliferation in the androgen-dependent (6) and differentiation of neural cells (7). BMPs and their human prostate cancer cell line, LNCaP. To investigate the receptors are widely distributed not only in bone and cartilage mechanism of inhibition of androgen-dependent growth by but also in other tissue. BMP receptor (BMPR) mRNA is BMP-2, we compared the gene expression in LNCaP cells expressed at higher levels in the prostate than in other organs treated with dihydrotestosterone (DHT) to that of LNCaP (8), and the expression of BMPRs (9) and BMP-2 (10) cells treated with DHT and BMP-2, using DNA microarray decreases with the progression of prostate cancer. -
Supplementary Data
Supplemental figures Supplemental figure 1: Tumor sample selection. A total of 98 thymic tumor specimens were stored in Memorial Sloan-Kettering Cancer Center tumor banks during the study period. 64 cases corresponded to previously untreated tumors, which were resected upfront after diagnosis. Adjuvant treatment was delivered in 7 patients (radiotherapy in 4 cases, cyclophosphamide- doxorubicin-vincristine (CAV) chemotherapy in 3 cases). 34 tumors were resected after induction treatment, consisting of chemotherapy in 16 patients (cyclophosphamide-doxorubicin- cisplatin (CAP) in 11 cases, cisplatin-etoposide (PE) in 3 cases, cisplatin-etoposide-ifosfamide (VIP) in 1 case, and cisplatin-docetaxel in 1 case), in radiotherapy (45 Gy) in 1 patient, and in sequential chemoradiation (CAP followed by a 45 Gy-radiotherapy) in 1 patient. Among these 34 patients, 6 received adjuvant radiotherapy. 1 Supplemental Figure 2: Amino acid alignments of KIT H697 in the human protein and related orthologs, using (A) the Homologene database (exons 14 and 15), and (B) the UCSC Genome Browser database (exon 14). Residue H697 is highlighted with red boxes. Both alignments indicate that residue H697 is highly conserved. 2 Supplemental Figure 3: Direct comparison of the genomic profiles of thymic squamous cell carcinomas (n=7) and lung primary squamous cell carcinomas (n=6). (A) Unsupervised clustering analysis. Gains are indicated in red, and losses in green, by genomic position along the 22 chromosomes. (B) Genomic profiles and recurrent copy number alterations in thymic carcinomas and lung squamous cell carcinomas. Gains are indicated in red, and losses in blue. 3 Supplemental Methods Mutational profiling The exonic regions of interest (NCBI Human Genome Build 36.1) were broken into amplicons of 500 bp or less, and specific primers were designed using Primer 3 (on the World Wide Web for general users and for biologist programmers (see Supplemental Table 2) [1]. -
The NIH Catalyst from the Deputy Director for Intramural Research
— Fostering Communication and Collaboration The nihCatalyst A Publication for NIH Intramural Scientists National Institutes of Health Office of the Director Volume 15 Issue 6 November-Dece.mber i , 2007 Research Festival Research Festival of Age: Getting to the Bottom Coming Tissue Engineering and Regenerative Medicine Of the Beta Cell by Fran Pollner by Julie Wallace or some, the quest is to increase the progenitor pool of pancre- anel chair Rocky F atic beta cells, to derive stem Tuan noted that cells that can be controlled in cul- P this was the NIH ture and serve as replacements for Research Festival’s damaged or lost beta cells; for oth- first dedicated sympo- ers, the quest is for new treatments. sium on tissue engi- neering and regenera- Stem Cell Studies tive medicine, a re- Typically, cul- flection that the field tured human beta is steadily approach- cells do not prolif- ing the threshold of erate well or retain clinical application. the mature pheno- Indeed, applying type, noted Marvin biological and engi- neering principles to Gershengorn, chief Fran Pollner The Re-Generation: (left to right): Pamela Robey, N1DCR; of the Clinical En- Marvin repairing and replac- Cynthia Dunbar, NHLB1; Catherine Kuo, NIAMS; and panel docrinology Branch Gershengorn ing damaged and de- chair Rocky Tuan, NIAMS and scientific director, NIDDK, who stroyed tissues has at- has been exploring the optimization tracted researchers across NIH; scientists adipocytes, and chondrocytes derived of hIPCs (human islet cell-derived from three institutes described their on- from MSCs could indeed be made to precursor cells) for about five years. -
ETV7 Regulates Breast Cancer Stem-Like Cell Plasticity by Repressing IFN- Response Genes
bioRxiv preprint doi: https://doi.org/10.1101/2020.09.02.279133; this version posted September 3, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 ETV7 regulates breast cancer stem-like cell plasticity by repressing IFN- 2 response genes 3 4 5 6 7 Laura Pezzè1,#, Mattia Forcato2, Stefano Pontalti1,^, Kalina Aleksandra Badowska1,#, Dario 8 Rizzotto3,°, Ira-Ida Skvortsova4,5, Silvio Bicciato2, Yari Ciribilli1,§ 9 10 11 12 1 Laboratory of Molecular Cancer Research, Department of Cellular, Computational and Integrative 13 Biology (CIBIO), University of Trento, Italy; 2 Department of Life Sciences, University of Modena 14 and Reggio Emilia, Italy; 3 Laboratory of Transcriptional Networks, Department CIBIO, University 15 of Trento, Italy; 4 EXTRO-Lab, Department of Therapeutic Radiology and Oncology, Medical 16 University of Innsbruck, Austria; 5 Tyrolean Cancer Research Institute, Innsbruck, Austria 17 # present address: Alia Therapeutics s.r.l., Trento, Italy 18 ^ present address: Azienda Provinciale per i Servizi Sanitari, APSS, Trento, Italy 19 °present address: CeMM Research Center for Molecular Medicine of the Austrian Academy of 20 Sciences, Vienna, Austria 21 § correspondence: [email protected] (YC) 22 23 24 25 Running Title: ETV7 regulates BCSCs plasticity 26 27 28 Keywords: ETV7 – Cancer stem cells – Breast cancer – Interferon – Chemoresistance 29 30 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.09.02.279133; this version posted September 3, 2020. -
Yale Computational Biology and Bioinformatics Rotation Guide 2020-2021
Yale Computational Biology and Bioinformatics Rotation Guide 2020-2021 Julien Berro ............................................................................................................................................................3 Cynthia Brandt .......................................................................................................................................................3 Kei-Hoi Cheung .....................................................................................................................................................4 Chris Cotsapas ........................................................................................................................................................4 Richard Flavell .......................................................................................................................................................4 Joel Gelernter .........................................................................................................................................................5 Mark Gerstein .........................................................................................................................................................6 Antonio Giraldez ....................................................................................................................................................7 Jeffrey Gruen ..........................................................................................................................................................8 -
Entrez ID Gene Name Fold Change Q-Value Description
Entrez ID gene name fold change q-value description 4283 CXCL9 -7.25 5.28E-05 chemokine (C-X-C motif) ligand 9 3627 CXCL10 -6.88 6.58E-05 chemokine (C-X-C motif) ligand 10 6373 CXCL11 -5.65 3.69E-04 chemokine (C-X-C motif) ligand 11 405753 DUOXA2 -3.97 3.05E-06 dual oxidase maturation factor 2 4843 NOS2 -3.62 5.43E-03 nitric oxide synthase 2, inducible 50506 DUOX2 -3.24 5.01E-06 dual oxidase 2 6355 CCL8 -3.07 3.67E-03 chemokine (C-C motif) ligand 8 10964 IFI44L -3.06 4.43E-04 interferon-induced protein 44-like 115362 GBP5 -2.94 6.83E-04 guanylate binding protein 5 3620 IDO1 -2.91 5.65E-06 indoleamine 2,3-dioxygenase 1 8519 IFITM1 -2.67 5.65E-06 interferon induced transmembrane protein 1 3433 IFIT2 -2.61 2.28E-03 interferon-induced protein with tetratricopeptide repeats 2 54898 ELOVL2 -2.61 4.38E-07 ELOVL fatty acid elongase 2 2892 GRIA3 -2.60 3.06E-05 glutamate receptor, ionotropic, AMPA 3 6376 CX3CL1 -2.57 4.43E-04 chemokine (C-X3-C motif) ligand 1 7098 TLR3 -2.55 5.76E-06 toll-like receptor 3 79689 STEAP4 -2.50 8.35E-05 STEAP family member 4 3434 IFIT1 -2.48 2.64E-03 interferon-induced protein with tetratricopeptide repeats 1 4321 MMP12 -2.45 2.30E-04 matrix metallopeptidase 12 (macrophage elastase) 10826 FAXDC2 -2.42 5.01E-06 fatty acid hydroxylase domain containing 2 8626 TP63 -2.41 2.02E-05 tumor protein p63 64577 ALDH8A1 -2.41 6.05E-06 aldehyde dehydrogenase 8 family, member A1 8740 TNFSF14 -2.40 6.35E-05 tumor necrosis factor (ligand) superfamily, member 14 10417 SPON2 -2.39 2.46E-06 spondin 2, extracellular matrix protein 3437