Environmental Variation, Vegetation Distribution, Carbon Dynamics and Water/Energy Exchange at High Latitudes

Total Page:16

File Type:pdf, Size:1020Kb

Environmental Variation, Vegetation Distribution, Carbon Dynamics and Water/Energy Exchange at High Latitudes Journal of Vegetation Science 13: 301-314, 2002 © IAVS; Opulus Press Uppsala. Printed in Sweden - Environmental variation, vegetation distribution, carbon dynamics, and water/energy exchange - 301 Environmental variation, vegetation distribution, carbon dynamics and water/energy exchange at high latitudes McGuire, A.D.1*; Wirth, C.2; Apps, M.3; Beringer, J.4; Clein, J.5; Epstein, H.6; Kicklighter, D.W.7; Bhatti, J.3; Chapin III, F.S.5; de Groot, B.3; Efremov, D.8; Eugster, W.9; Fukuda, M.10; Gower, T.11; Hinzman, L.12; Huntley, B.13; Jia, G.J.6; Kasischke, E.14; Melillo, J.7; Romanovsky, V.15; Shvidenko, A.16; Vaganov, E.17 & Walker, D.5 1U.S. Geological Survey, Alaska Cooperative Fish and Wildlife Research Unit, University of Alaska Fairbanks, Fairbanks, AK 99775, USA; 2Max-Plank Institut für Biogeochemie, Postfach 100164, D-07701 Jena, Germany; 3Canadian Forest Service, Northern Forestry Center, Edmonton, Alb., T6H 3S5, Canada; 4School of Geography and Environmental Science, Monash University, Clayton, Vic 3800, Australia; 5Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, AK, 99775, USA; 6Dept. of Environmental Sciences, University of Virginia, Charlottesville, VA 22904, USA; 7The Ecosystems Center, Marine Biological Laboratory, 7 MBL Street, Woods Hole, MA 02543, USA; 8Far Eastern Forestry Research Institute, Khaborovsk, 680030, Russia; 9University of Bern, Geographical Institute, Hallerstrasse 12, 3012 Bern, Switzerland; 10Institute of Low Temperature, Hokkaido University, N 19 W8 Sapporo, 060 Japan; 11Dept. of Forest Ecology and Management, Univer- sity of Wisconsin, Madison, WI 53706, USA; 12Institute of Northern Engineering, University of Alaska Fairbanks, Fairbanks, AK 99775, USA; 13Environmental Research Centre, University of Durham, Durham DH1 3LE, United Kingdom; 14Dept. of Geography, University of Maryland, College Park, MD 20742, USA; 15Geophysical Institute, University of Alaska Fairbanks, Fairbanks, AK 99775, USA; 16International Institute for Applied Systems Analysis, A-2361 Laxenburg, Austria; 17Institute of Forestry, Russian Academy of Sciences, Krasnoyarsk, 660036, Russia; *Corresponding author; E-mail [email protected] Abstract. The responses of high latitude ecosystems to global Introduction change involve complex interactions among environmental variables, vegetation distribution, carbon dynamics, and water As high latitude ecosystems contain ca. 40% of the and energy exchange. These responses may have important world’s soil carbon inventory that is potentially reactive consequences for the earth system. In this study, we evaluated in response to near-term climate change (McGuire et al. how vegetation distribution, carbon stocks and turnover, and water and energy exchange are related to environmental 1995), functional and structural changes in high latitude variation spanned by the network of the IGBP high latitude ecosystems have the potential to influence carbon transects. While the most notable feature of the high latitude exchange with the atmosphere (Smith & Shugart 1993; transects is that they generally span temperature gradients McGuire & Hobbie 1997; McGuire et al. 2000). Regions from southern to northern latitudes, there are substantial affected by permafrost are especially vulnerable to differences in temperature among the transects. Also, along climate change because of altered drainage. Thermakarst each transect temperature co-varies with precipitation and lakes and wetlands may become large sources of methane photosynthetically active radiation, which are also variable (Reeburgh & Whalen 1992; Zimov et al. 1997). among the transects. Both climate and disturbance interact to Reductions in the water table of tundra ecosystems influence latitudinal patterns of vegetation and soil carbon storage among the transects, and vegetation distribution appears substantially enhance the release of carbon from high to interact with climate to determine exchanges of heat and latitude soils (Christensen et al. 1998). In contrast, earlier, moisture in high latitudes. Despite limitations imposed by the longer and warmer growing seasons may increase data we assembled, the analyses in this study have taken an production in tundra and boreal forest to increase carbon important step toward clarifying the complexity of interactions sequestration (Chapin et al. 1995; Frolking et al. 1996; among environmental variables, vegetation distribution, carbon Oechel et al. 2000; McGuire et al. 2000). The replacement stocks and turnover, and water and energy exchange in high of tundra with boreal forest might initially decrease but latitude regions. This study reveals the need to conduct eventually increase carbon storage in high latitudes coordinated global change studies in high latitudes to further (Smith & Shugart 1993). Disturbance in the boreal elucidate how interactions among climate, disturbance, and vegetation distribution influence carbon dynamics and water forest region may substantially influence regional carbon and energy exchange in high latitudes. exchange with the atmosphere (Kasischke et al. 1995; Kurz & Apps 1999; Schulze et al. 1999; Shvidenko & Keywords: Boreal; Climate; Disturbance; Energy; Gradient; Nilsson 2000; Wirth et al. in press). The functional and Tundra. structural responses of carbon storage in high latitude 302 McGuire, A.D. et al. ecosystems have important implications for the rate of Together, these transects provide a network for improving CO2 accumulation in the atmosphere and international our understanding of controls over vegetation dynamics, efforts to stabilize the atmospheric concentration of carbon dynamics, and water and energy exchange in CO2 (Smith & Shugart 1993; McGuire & Hobbie 1997; high latitudes. In this paper, we take a step toward McGuire et al. 2000). clarifying the complexity of these interactions by Responses of high latitude ecosystems to global evaluating how vegetation distribution, carbon stocks change have the potential to influence water and energy and turnover, and water and energy exchange are related exchange with the atmosphere in several ways. Sharp to environmental variation spanned by the network of discontinuities in ecosystem structure, such as the forest- the IGBP high latitude transects. We first briefly describe tundra boundary, are hypothesized to strongly influence the high latitude transects in the network and describe temperature (Eugster et al. 2000). In comparison to the sources of data used in our analyses. We then examine boreal forest, snow-covered tundra and boreal wetlands the environmental variation spanned by the transects have a much higher albedo, absorb less radiation, and and document how the environmental variation relates warm the atmosphere less than boreal forest (Betts & to vegetation distributed along each of the transects. Ball 1997; Chapin et al. 2000). Spatial variation in Next, we compare patterns of carbon storage, net primary vegetation within arctic tundra may have climatic effects production (NPP), and carbon turnover among the that extend beyond arctic tundra (e.g., see Lynch et al. transects in relation to environmental variation, 1999). The open woodlands of boreal Eurasia that result vegetation distribution, and disturbance. We then from repeated surface fires may have a ratio of sensible evaluate how water and energy exchange relates to to latent heat that is a factor of 8 higher than closed environmental variation and vegetation distribution. stands (Schulze et al. 1999; Rebmann et al. in press). During the growing season, deciduous stands have twice the albedo, i.e., reflect twice the short-wave radiation, General description of the High Latitude Transects and have 50% to 80% higher evapotranspiration than coniferous forests (Baldocchi et al. 2000). An expansion The Far East Siberia Transect of boreal forest into regions now occupied by tundra has the potential to reduce albedo and increase spring energy The Far East Siberia Transect (FEST) (also known absorption to enhance atmospheric warming (Chapin et as the ‘Northeast Eurasian transect’ and the ‘Yakutsk al. 2000). Other effects that may enhance atmospheric transect’) is a north-south transect centred on ca. 135∞ E warming include earlier snow melt, which is likely to that has been designed with respect to temperature decrease springtime albedo, and expansion of shrub variability between 52∞ and 70∞ N (Fig. 1). We have tundra, which in summer is likely to decrease evaporation identified 36 study sites in this transect between 120∞ losses because of lower evaporation from mosses (Chapin and 145∞ E where numerous studies have estimated et al. 2000) and in winter is likely to accumulate more carbon stocks of vegetation and the upper soil layers, to drifting snow during the winter and delay snow melt in understand energy, water, and carbon dynamics and to spring (Liston et al. 2002; Sturm et al. 2001). In contrast, reconstruct palaeo-environmental conditions (Hollinger responses of the disturbance regime that increase the et al. 1995, 1998; Schulze et al. 1995; Kobak et al. 1996; proportion of non-forested lands and deciduous forests Vygodskaya et al. 1997). In addition, atmospheric carbon have the potential to reduce spring energy absorption dioxide and methane concentrations have been monitored and work against atmospheric warming (Chapin et al. within this transect by aircraft sampling (Izumi et al. 2000; Eugster et al. 2000). 1993; Machida et al. 1995). Vegetation within this It is clear that the responses of high latitude eco- transect
Recommended publications
  • Celebrating 100 Years of Migratory Bird Conservation
    Wetlands Working Group The Wildlife Society Newsletter, Volume 6, Issue 1 April 2016 In This Issue.... Feature Article Celebrating 100 Years of Canada’s Boreal Forest Wetlands Migratory Bird Conservation 100th Anniversary of the Part 1: Canada Migratory Bird Treaty To honor the 100th anniversary of the Migratory Bird Part 1: Canada Treaty, this year’s WWG newsletters will highlight wetlands of international importance across North America! ASWM Update The Migratory Bird Treaty in Canada was enacted with the passage of the Migratory Birds Convention Act (MBCA) during 1917; subsequent updates occurred during TWS Action Center 1994 and 2005. It is the responsibility of Environment and Climate Change USFWS Resource Protection Canada to develop and implement policies and regulations to ensure the protection Act of migratory birds, their eggs and their nests. Check out their webiste for more information about the MBCA in Canada. IUCN Call for Articles Canada’s diverse habitats support about 450 species of native birds, the majority of Wetlands at Risk which are protected under the MBCA. Through bird-watching, and subsistence and recreational huning, native birds are an integral part of Canada’s heritage. Migratory WWG News birds also play important ecological and biological roles in the environment. A recent Call for nominations report, The State of Canada’s Birds 2012 shows that bird populations in Canada are Student award changing. Although some bird species are doing well, many others are declining. As we celebrate the successes of international bird conservation, it is important to Join us on Facebook! recognize continued and new threats to migratory bird populations.
    [Show full text]
  • How the Logging Industry's Unregulated
    JULY 2020 R: 20-07-B REPORT THE LOGGING LOOPHOLE: HOW THE LOGGING INDUSTRY’S UNREGULATED CARBON EMISSIONS UNDERMINE CANADA’S CLIMATE GOALS AUTHOR Jennifer Skene ACKNOWLEDGMENTS The author would like to express deep gratitude to all the people who contributed their time, expertise, and talents to this report. Special thanks to Dale Marshall for his numerous reviews and tremendously constructive feedback and to Graham Saul and Teagan Yaremchuk for their expert advice and continuous support. Thanks as well to Anthony Swift, who oversaw the conceptualization and creation of this report, and to Tina Swanson for her thoughtful review. Leah Stecher's editing, guidance, and endless patience were, as always, indispensable and tremendously appreciated. This communication and release of this report would also would not have been possible without the tireless dedication of Margie Kelly, Lauren Gonzales, Barbara Hayes, Alex Almendrades, and Andrew Aziz. The author would also like to thank the many people who reviewed various iterations of this report and provided invaluable feedback: Shelley Vinyard, Courtenay Lewis, Ashley Jordan, Danielle Droitsch, Liz Barratt- Brown, Brendan Guy, Josh Axelrod, Sasha Stashwick, Jeff Wells, Jay Malcolm, Dominick DellaSalla, Florence Daviet, Keith Kisselle, Julee Boan, and Tim Gray. Environmental Defence Canada gratefully acknowledges the contributions of the Metcalf Foundation. About NRDC NRDC is an international nonprofit environmental organization with more than 3 million members and online activists. Since 1970, our lawyers, scientists, and other environmental specialists have worked to protect the world’s natural resources, public health, and the environment. NRDC has offices in New York City, Washington, D.C., Los Angeles, San Francisco, Chicago, Montana, and Beijing.
    [Show full text]
  • Meta-Modelling to Quantify Yields of White Spruce and Hybrid Spruce Provenances in the Canadian † Boreal Forest
    Article Meta-Modelling to Quantify Yields of White Spruce and Hybrid Spruce Provenances in the Canadian y Boreal Forest Suborna Ahmed 1,*, Valerie LeMay 1, Alvin Yanchuk 2, Andrew Robinson 3, Peter Marshall 1 and Gary Bull 1 1 Department of Forest Resources Management, University of British Columbia, Rm 2045, 2424 Main Mall, Vancouver, BC V6T 1Z4, Canada; [email protected] (V.L.); [email protected] (P.M.); [email protected] (G.B.) 2 British Columbia Ministry of Forests, Lands and Natural Resources Operations, PO Box 9518, STN Prov Govt, Victoria, BC V8W9C2, Canada; [email protected] 3 CEBRA, School of BioSciences, School of Mathematics & Statistics, University of Melbourne, Melbourne VIC 3010, Australia; [email protected] * Correspondence: [email protected]; Tel.: +1-604-827-2059 This manuscript is part of a Ph.D. thesis by the first author, available online at open.library.ubc.ca. y Received: 26 April 2020; Accepted: 26 May 2020; Published: 28 May 2020 Abstract: Tree improvement programs can improve forest management by increasing timber yields in some areas, thereby facilitating conservation of other forest lands. In this study, we used a meta-analytic approach to quantify yields of alternative white (Picea glauca (Moench) Voss) and hybrid spruce (Picea engelmannii Parry ex Engelmann x Picea glauca (Moench) Voss) stocks across planting sites in the boreal and hemiboreal forests of Canada. We extracted meta-data from published tree improvement program results for five Canadian provinces covering 38 planting sites and 330 white and hybrid spruce provenances. Using these meta-data and a random-coefficients nonlinear mixed-effects modelling approach, we modelled average height over time trajectories for varying planting site characteristics, as well as climate transfer distances between planting sites and provenances.
    [Show full text]
  • A Forest of Blue: Canada's Boreal
    A Forest of Blue Canada’s Boreal the pew environment Group is the also benefitting the report were reviews, conservation arm of the pew Charitable edits, contributions and discussions trusts, a non-governmental organization with sylvain archambault, Chris Beck, that applies a rigorous, analytical Joanne Breckenridge, Matt Carlson, approach to improve public policy, inform david Childs, Valerie Courtois, ronnie the public and stimulate civic life. drever, sean durkan, simon dyer, www.pewenvironment.org Jonathon Feldgajer, suzanne Fraser, Mary Granskou, larry Innes, Mathew the Canadian Boreal Initiative and the Jacobson, steve kallick, sue libenson, Boreal songbird Initiative are projects anne levesque, lisa McCrummen, of the pew environment Group’s tony Mass, suzann Methot, Faisal International Boreal Conservation Moola, lane nothman, Jaline Quinto, Campaign, working to protect the kendra ramdanny, Fritz reid, elyssa largest intact forest on earth. rosen, hugo seguin, Gary stewart, allison Wells and alan Young. Authors Jeffrey Wells, ph.d. the design work for the report was ably Science Adviser for the International carried out through many iterations by Boreal Conservation Campaign Genevieve Margherio and tanja Bos. dina roberts, ph.d. Boreal Songbird Initiative Suggested citation Wells, J., d. roberts, p. lee, r, Cheng peter lee and M. darveau. 2010. a Forest of Global Forest Watch Canada Blue—Canada’s Boreal Forest: the ryan Cheng World’s Waterkeeper. International Global Forest Watch Canada Boreal Conservation Campaign, seattle. Marcel darveau, ph.d. 74 pp. Ducks Unlimited Canada this report is printed on paper that is 100 percent post-consumer recycled fiber, Acknowledgments For their review of and comments on processed chlorine-free.
    [Show full text]
  • Birds at Risk the Importance of Canada’S Boreal Wetlands and Waterways
    Birds at Risk The Importance of Canada’s Boreal Wetlands and Waterways October 2011 Authors: Edward Cheskey, Nature Canada Jeffrey Wells, Ph.D., Boreal Songbird Initiative Susan Casey-Lefkowitz, Natural Resources Defense Council ACKNOWLEDGMENTS The authors would like to acknowledge the invaluable comments and assistance from many colleagues. Any errors in the report are our own. Thank you to Rita Anderson, Peter Ballin, Eric Butterworth, Marie-Claude Chagnon, David Childs, Joan Czapalay, Marcel Darveau, Ian Davidson, Axelle Dudouet, Garry Donaldson, Charles-Antoine Drolet, George Finney, Mark Gloutney, Lisa Goffredi, Mara Kerry, Marilyn Labrecque, Lisa McCrummen, Jon McLaughlin, John Neville, Lane Nothman, Philip Penner, Jaline Quinto, Bev Ramey, Alain Richard, Dina Roberts, Stuart Slattery, Gary Stewart, Chris Sutton, Jackie Waddell, James Whitelaw, and Ahmed Zedan. Special thanks to Peter Lee and Ryan Cheng of Global Forest Watch Canada for providing the maps. We are grateful to Nature Québec for its editorial contributions to the French version of this document. This report builds on A Forest of Blue: Canada’s Boreal Forest, The World’s Water Keeper, released by the Pew Environment Group in March 2011. About Nature Canada Nature Canada is a national not-for-profit whose mandate is to protect and conserve wildlife and habitats in Canada by engaging people and advocating on behalf of nature. With strategies based on sound science and a passion for nature, Nature Canada effects change on issues of national significance, including bird conservation, wilderness protection, and species at risk. We are the Canadian co-partner, with Bird Studies Canada, in BirdLife International. Together we deliver the international Important Bird Areas (IBA) program in Canada, which aims to identify, conserve and monitor a network of sites that provides essential habitat for bird populations.
    [Show full text]
  • Bird Responses to Burns and Clear Cuts in the Boreal Forest of Canada1
    Bird Responses to Burns and Clear Cuts in the Boreal Forest of Canada1 Susan J. Hannon2 and Pierre Drapeau3 ________________________________________ Key words: bird communities, boreal forest, burns, residual canopy trees remain singly or in clumps and clear-cutting, even-age forest management, forest fire, the ground is covered by grass. In recent burns, cavity Black-backed Woodpeckers (Picoides arcticus), log- nesters and species that forage on beetles in the dead ging. trees predominate, whereas clear cuts are dominated by open country or parkland-type species (Table 1). By about 25 years post-disturbance, many of the snags have fallen in burns and the shrubby understory is well developed. Conversely, on clear cuts some of the Introduction residual live trees have died, increasing snag density to levels similar to burns at this age. The shrub layer is Unlike many other ecosystems in North America, the more developed in clear cuts but amount of dead wood boreal forest in Canada still retains a natural fire on the ground is lower than in burns. Generally, snag regime. However, increasing industrial forestry, pri- dependent bird species decreased and shrub-breeding marily clear cutting, could alter natural fire dynamics species increased 25 years after burns, whereas in clear and adversely affect some species. A possible solution cuts there were more species that foraged and nested in to this, promoted by many forest managers, is to cut the canopy trees, because of the retention of live residuals forest in a way that emulates natural fire patterns on the (Table 1; Hobson and Schieck 1999). Eventually, as landscape (e.g.
    [Show full text]
  • Fire Regimes of the Alaskan Boreal Forest
    Fire regimes of the Alaskan boreal forest James Cronan, Donald McKenzie, and Diana Olson DRAFT James Cronan is a research scientist, Donald McKenzie is a research ecologist, and Diana Olson is a University of Idaho-FRAMES project manager, U.S. Department of Agriculture, Forest Service, Pacific Wildland Fire Sciences Lab, 400 N 34th Street, Suite 201, Seattle, WA 98103. Fire regimes of the Alaskan boreal forest James Cronan, Donald McKenzie, Diana Olson Authors U.S. Department of Agriculture, Forest Service Pacific Northwest Research Station Portland, OR DRAFT General Technical Report PNW-GTR-XXX Month 201x Published in cooperation with: University of Washington, School of Forest Resources Yale School of Forestry and Environmental Studies University of Idaho U.S. Department of the Interior, Bureau of Land Management, Alaska Fire Service Abstract Cronan, J; McKenzie, D; Olson, D. 201X. Fire regimes of the Alaskan boreal forest. Gen. Tech. Rep. PNW-GTR-XXX. Portland, OR: U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station. XXX p. Fire regimes are described for the boreal forest of Alaska. Information was compiled from published and unpublished work and represents a comprehensive literature review. Contemporary fire regimes are discussed based on six components: ignitions, seasonality, intensity, fire size, severity, and fire frequency. Fire regimes are stratified by major vegetation types present within the boreal forest including black spruce forest, white spruce forest, hardwood forest, and tundra. Multi-scale temporal patterns of fire regimes are presented and future changes to fire regimes and impacts on the boreal forest are discussed. Keywords: fire regime, fire history, boreal forest, Alaska, literature review.
    [Show full text]
  • An Analysis of Controls on Fire Activity in Boreal Canada
    Ecological Applications, 24(6), 2014, pp. 1341–1356 Ó 2014 by the Ecological Society of America An analysis of controls on fire activity in boreal Canada: comparing models built with different temporal resolutions 1,2,7 3 4 1 2 MARC-ANDRE´PARISIEN, SEAN A. PARKS, MEG A. KRAWCHUK, JOHN M. LITTLE, MIKE D. FLANNIGAN, 5 6 LYNN M. GOWMAN, AND MAX A. MORITZ 1Northern Forestry Centre, Canadian Forest Service, Natural Resources Canada, 5320 122nd Street, Edmonton, Alberta T6H 3S5 Canada 2Western Partnership for Wildland Fire Science, University of Alberta, Department of Renewable Resources, 751 General Services Building, Edmonton, Alberta T6G 2H1Canada 3Rocky Mountain Research Station, Aldo Leopold Wilderness Research Institute, USDA Forest Service, 790 East Beckwith Avenue, Missoula, Montana 59801 USA 4Department of Geography, Simon Fraser University, Robert C. Brown Hall 7123, 8888 University Drive, Burnaby, British Columbia V5A 1S6 Canada 5Great Lakes Forestry Centre, Canadian Forest Service, Natural Resources Canada, 1219 Queen Street East, Sault Ste. Marie, Ontario P6A 2E5 Canada 6Department of Environmental Science, Policy and Management, University of California, 137 Mulford Hall 3114, Berkeley, California 94720 USA Abstract. Fire regimes of the Canadian boreal forest are driven by certain environmental factors that are highly variable from year to year (e.g., temperature, precipitation) and others that are relatively stable (e.g., land cover, topography). Studies examining the relative influence of these environmental drivers on fire activity suggest that models making explicit use of interannual variability appear to better capture years of climate extremes, whereas those using a temporal average of all available years highlight the importance of land-cover variables.
    [Show full text]
  • Conserving a BOREAL ICON
    CONSERVING A BOREAL ICON Part of: MANITOBA’s BOREAL WOODLAND CARIBOU RECOVERY STRATEGY This document is part of “TomorrowNow - Manitoba’s Green Plan”; an eight-year strategic action plan for mobilizing Manitobans to work together to protect the environment while ensuring a prosperous and environmentally-conscious economy. In addition to the actions outlined in this plan, the province has other initiatives underway to ensure we protect the environment and sustainably manage our natural resources now, for tomorrow. Manitoba’s goal is to be one of the most sustainable places to live on earth. Copies of this publication may be downloaded at: www.manitoba.ca/conservation/wildlife Content (excluding cover photos) may be used without permission, with appropriate credit to the source. For more information To learn more about species at risk in Manitoba, please visit the Manitoba Conservation and Water Stewardship Wildlife Branch species at risk website at www.manitoba.ca/conservation/wildlife/sar Manitoba Boreal Woodland Caribou Management Committee. 2015. Conserving a Boreal Icon, Manitoba’s Boreal Woodland Caribou Recovery Strategy. Manitoba Conservation and Water Stewardship. Winnipeg, Manitoba. 30 pp. ii MANITOBA’s BOREAL WOODLAND CARIBOU RECOVERY STRATEGY 2015 Minister’s Message Manitoba’s Boreal Woodland Caribou Recovery Strategy is a living financial contributions of many of our funding partners. Countless hours document that outlines management initiatives and direction for have been dedicated to caribou conservation initiatives over the decades conservation of boreal caribou across Manitoba for the next 10 years. by these partners, environmental and wildlife organizations, universities, It was developed to ensure caribou are retained as part of our valued members of the public and Manitoba Conservation and Water boreal ecosystem.
    [Show full text]
  • Canada's Boreal Forest
    TEACHING KIT Volume 8: Canada’s Boreal Forest Town of Oakville Town Photo: Photo: Photo: First Photo: Nations Program Forestry National Forest Week 2007: The Forest Capital of Canada 2007 ~ September 23 to 29 Oakville, Ontario Canada is recognized around the world as a forested nation. Forestry is the Recognizing leadership is an important way to inspire ongoing dedication founding industry of Canada and as such, exists as both a historical legacy and innovation in any domain. To honour those who demonstrate leader- and a continuing tradition. ship in understanding the valuable role forests play in the socio-economic and environmental health of Canadian communities — past, present and The tales of the squared timber era in eastern Canada and clearing of for- future — the Canadian Forestry Association instituted the Forest Capital ested land for farming are colourful and integral parts of this country’s past. of Canada program in 1979. However, our forests, our forest industry and our outlook toward Canada’s For over 25 years, the CFA has recognized a community or region demon- natural forest resources are all undergoing transition. The theme of strating the passion, stewardship and sound practices that result in National Forest Week 2007 “Canada’s Forests: Tradition and Transition” sustainable forest development, management and conservation. These reflects both historical viewpoints and new ideas. We understand that the range from communities surrounded by forest and directly dependent forest reaches back to antiquity and that it has nurtured all life on our on the forest industry to communities in urban and rural areas that under- land.
    [Show full text]
  • Implementation of Ecosystem Management in Boreal Forests Examples from Eastern Canada
    Implementation of Ecosystem Management in Boreal Forests Examples from Eastern Canada Marie-Andrée Vaillancourt, Sylvie Gauthier, Dan Kneeshaw and Yves Bergeron Sustainable Forest Management Network 3-03 Civ il Electrical Engineering Building University of Alberta Edmonton, Alberta T6G 2G7 CANADA Phone: (780) 492-6659 Fax: (780) 492-8160 Email: [email protected] www.sfmnetwork.ca Cert no. SW-COC-003506 SFM NETWORK PARTNERS AND AFFILIATES AUGUST 2008 GRANTING COUNCILS INSTITUTION PARTNERS • Networks of Centres of Excellence (NCE) Program • University of Alberta • Natural Sciences and Engineering Research (Host Institution; also a Funding Partner) Council of Canada (NSERC) • Concordia University THE SUSTAINABLE FOREST MANAGEMENT NETWORK • Social Sciences and Humanities Research • Dalhousie University Council of Canada (SSHRC) • Lakehead University - • McGill University Established in 1995, the Sustainable Forest Management Network (SFM Network) is an incorporated, non-profit • Memorial University of Newfoundland research organization based at the University of Alberta in Edmonton, Alberta, Canada. FUNDING PARTNERS • Mount Royal College GOVERNMENTS • Royal Roads University The SFM Network’s mission is to: • Canadian Forest Service • Ryerson University • Deliver an internationally-recognized, interdisciplinary program that undertakes relevant university-based • Environment Canada • Simon Fraser University research; • Parks Canada • Thompson Rivers University • Develop networks of researchers, industry, government, Aboriginal, and non-government
    [Show full text]
  • Natural Vegetation of Minnesota at the Time of the Public Land Survey 1847-1907
    Natural Vegetation of Minnesota At the Time of the Public Land Survey 1847-1907 Minnesota Department of Natural Resources _ Biological Report No.1 resettlement Minnesota. topography prevented the spread of fires, and little bluestem and sideoats grama Imagine. " ...rolling prairies ... a dense forest of maple, basswood, and occurred on the thin soils of dry uplands. Pundulation upon undulation as elm developed. Within the coniferous far as the eye can reach ... a view forest biome, fires created a mosaic of Throughout the prairie biome, numerous of peculiar sublimity ..." wrote H.D. forest types from young postfire stands of wetland communities dominated by Ruggles of the western Minnesota aspen-birch and jack pine, to old- sedges and rushes, rather than grasses, landscape in 1835. Early accounts of the growth stands of white and red pine, were interspersed with upland prairie. towering pines in the north abounded spruce-fir, northern white cedar, and The glacial moraine landforms of the with equally vivid impressions. And in maple-basswood-yellow birch forest. prairie region were ideally suited for the south, French explorers extolled the This complex interaction of fire with wetland formation; their hilly knob and vast forests of maple, basswood, and elm, climate, soils, and topography created a kettle-type topography abounded with calling them the "Big Woods." dynamic landscape-a constantly shifting prairie pothole marshes. mosaic of vegetation types. The early European settlers had de­ Aspen Parkland scribed, in astonished detail, the three The aspen parkland formed an ecotone major biomes that meet in Minnesota: Vegetation Types of the Prairie between the prairie and coniferous forest tallgrass prairie, northern coniferous and Deciduous Forest of extreme northwest Minnesota and forest, and eastern deciduous forest.
    [Show full text]