Natural Vegetation of Minnesota at the Time of the Public Land Survey 1847-1907

Total Page:16

File Type:pdf, Size:1020Kb

Natural Vegetation of Minnesota at the Time of the Public Land Survey 1847-1907 Natural Vegetation of Minnesota At the Time of the Public Land Survey 1847-1907 Minnesota Department of Natural Resources _ Biological Report No.1 resettlement Minnesota. topography prevented the spread of fires, and little bluestem and sideoats grama Imagine. " ...rolling prairies ... a dense forest of maple, basswood, and occurred on the thin soils of dry uplands. Pundulation upon undulation as elm developed. Within the coniferous far as the eye can reach ... a view forest biome, fires created a mosaic of Throughout the prairie biome, numerous of peculiar sublimity ..." wrote H.D. forest types from young postfire stands of wetland communities dominated by Ruggles of the western Minnesota aspen-birch and jack pine, to old- sedges and rushes, rather than grasses, landscape in 1835. Early accounts of the growth stands of white and red pine, were interspersed with upland prairie. towering pines in the north abounded spruce-fir, northern white cedar, and The glacial moraine landforms of the with equally vivid impressions. And in maple-basswood-yellow birch forest. prairie region were ideally suited for the south, French explorers extolled the This complex interaction of fire with wetland formation; their hilly knob and vast forests of maple, basswood, and elm, climate, soils, and topography created a kettle-type topography abounded with calling them the "Big Woods." dynamic landscape-a constantly shifting prairie pothole marshes. mosaic of vegetation types. The early European settlers had de­ Aspen Parkland scribed, in astonished detail, the three The aspen parkland formed an ecotone major biomes that meet in Minnesota: Vegetation Types of the Prairie between the prairie and coniferous forest tallgrass prairie, northern coniferous and Deciduous Forest of extreme northwest Minnesota and forest, and eastern deciduous forest. Upland Prairie and Prairie Wetland Tallgrass prairie, at the time of the public land survey in the l850s, covered one­ third of the state. It occupied a wide variety of landforms, including beach Dittmer Wildlife Management Area, Mahnomen County adjacent Canada. It covered vast acreages within the poorly drained flatlands left by Glacial Lake Agassiz. Sometimes referred to as brush prairie, the aspen parkland was a fire-maintained The vegetation types that defined these mosaic of wet prairie, sedge meadow, biomes were distributed on the landscape shrub thicket, and aspen groves. according to climate, soil, and landform patterns. Natural disturbances such as Oak Woodland and Brushland fire, severe drought, windstorm, and The oak woodland and brushland was a insect outbreaks modified the vegetation Prairie Coteau Scientific and Natural Area, common ecotonal type between the Pipestone County on a local and regional scale. Of these, prairie and deciduous forest. Fire, more fire was the most important disturbance ridges and swales, glacial lake beds, than landform type or climate, was the agent. morainic hills, steep bluffs, and rolling significant factor influencing the position till plains. Along these landforms, and extent of this community. Frequent fires-started by lightning and important differences occurred in the by Indians for hunting and other pur­ plants and animals that compose the The oak woodland and brushland 'poses-helped to maintain the species prairie ecosystem. The most striking vegetation type has often been referred to composition and treeless structure of the indicator was the predictable change in as savanna. However, in Minnesota the tallgrass prairie. Where fires were less dominance of a few major prairie grasses. image of a tall grass prairie dotted with frequent or intense, trees invaded the The distribution pattern of these grasses trees to create an orchard-like appearance prairie in scattered groves to form coincided with differences in soil is more myth than fact. Careful study of woodland and parkland communities. moisture levels related to topography. In the original public land survey records This created a vegetational ecotone general, prairie cordgrass and bluejoint has led to a new interpretation. The oak known as the prairie/forest border. dominated the wet lowlands; big woodland and brushland ranged from Within the deciduous forest biome, where bluestem and Indian grass occupied the small groves of trees intermixed with firebreaks such as rivers, lakes, and rough deep fertile soils of the moist uplands; open prairie to a chaparral-like commu- original public land survey covered over relatively rare in the state. It was 3,000 square miles in the south-central generally restricted to rich, morainic soils part of the state. The early settlers called where fire frequencies were low. The this area the "Big Woods." Smaller areas most conspicuous area of northern of maple-basswood occurred in the hardwoods was the narrow belt along the rugged, stream-dissected lands of North Shore Highlands that stretches southeastern Minnesota and in the west­ from Duluth to the Canadian border. It central part of the state. The boundaries was also found in fire-protected pockets of this forest were in large part controlled across north-central Minnesota, as far by the frequency of fire . The dominant west as Cass Lake. Cedar Creek Natural History Area, Anoka County Great Lakes Pine Forest The Great Lakes pine forest occurs in nity of scrub forest and dense shrub Minnesota primarily on thin glacial till thicket. The structure of the community was largely determined by soil conditions and fire frequency. The oaks, especially bur oak and northern pin oak, were the dominant trees. In the southeast, white oak and black oak were also common. Floodplain Forest Floodplain forests occupy both major and minor water courses throughout the state. Wolsfeld Woods Scientific and Natural They are especially well developed in the Area, Hennepin County valleys of the Mississippi, Minnesota, and Red rivers. The lowland sites trees are highly fire-sensitive and were occupied by these forests are subjected to restricted to areas where natural fire­ periodic flood and drought. Spring breaks such as rivers, lakes, and rough topography prevented the spread of fire Boundary Waters Canoe Area, Cook County from the adjacent prairie lands. over bedrock in the Canadian-Minnesota border lakes area and in the gravelly Vegetation Types moraines and sandy outwash plains in the north-central part of the state. This forest of the Conifer Forest is defined by its characteristic trees­ eastern white pine and red pine. Northern Hardwood Forest In Minnesota, the northern hardwood Historically, tree composition and age forest is dominated by sugar maple, structure of the pine forest were largely basswood, yellow birch, and red oak. determined by natural fire cycles. Fires Conifers, particularly white pine, of varying frequency and intensity northern white cedar, and balsam fir are created a dynamic ecosystem composed SI. Croix River, Chisago County often found scattered through the forest. of early postfire stands of jack pine and Due to the fire-sensitivity of the domi­ red pine and mature old-growth stands of nant trees, this forest association was floodwaters enrich the soil as they white pine. In general, red pine was deposit silt over the forest floor. Silver more abundant than white pine and maple, American elm, green ash, black occurred on coarsely-textured, dry sites willow, and cottonwood are the dominant prone to fires. White pine stands trees and poison ivy and stinging nettle occurred on the mesic sites of lake -the characteristic understory plants. margins and lower slopes less subject to fires. Maple-Basswood Forest Minnesota's maple-basswood forests, Jack Pine Forest dominated by elm, basswood, sugar This forest community occurs on the maple, and red oak, occur at the western driest, least fertile soils of the pine edge of the deciduous forest biome of region. It is especially prevalent on eastern North America. The largest sandy outwash plains in north-central continuous area of maple-basswood Minnesota and on bedrock outcrops north forest in Minnesota at the time of the Tettegouche State Park, Lake County of Lake Superior. Jack pine grows in sota-a region characterized by a short, contrast, fens and swamps develop on moist growing season and deep snow. mildly acid to highly alkaline peat The dominant tree species, balsam fir, deposits affected by mineral-rich ground­ white spruce, black spruce, trembling water. Fens are composed of grasses and aspen, and white birch occur in pure or sedges, while swamps are dominated by mixed stands. woody plants-either coniferous trees (e.g., northern white cedar) or deciduous Species composition varies considerably trees (e.g., black ash). in response to differences in site condi­ tions and natural fire cycles. Balsam fir, Changes in the Natural owing to its great shade tolerance, tends Vegetation Since Settlement to form extensive stands in the absence of frequent fires. Natural disturbances, After more than a century of European including fire, wind, and spruce budworm settlement, nearly all the natural commu­ epidemics often result in extensive areas nities composing the three major biomes of even-aged stands of spruce-fir or have been substantially altered. The vast aspen-birch forest. Far less extensive, tallgrass prairie that once covered one­ Boundary Waters Canoe Area, Lake County and found mainly in extreme northeast third of the state has been reduced to less pure stands or in mixtures with aspen, Minnesota, old-growth white cedar than one percent of its original expanse. northern red oak, and red pine. Most forests occur on fire-protected uplands. The largest continuous area of climax natural stands originate following fire. deciduous forest-the "Big Woods"-is Fire opens the habitat to direct sunlight Peatland now restricted to small, scattered islands and exposes a mineral soil seedbed-both Extensive peatlands blanket the nearly of forest surrounded by cropland. The requirements for jack pine reproduction. flat landscape left when the waters great stands of virgin pine that once The dry, open conditions under the jack drained from the ancient glacial lakes of defined the North Woods have been pine canopy allow for a variety of north-central Minnesota.
Recommended publications
  • Grassland & Shrubland Vegetation
    Grassland & Shrubland Vegetation Missoula Draft Resource Management Plan Handout May 2019 Key Points Approximately 3% of BLM-managed lands in the planning area are non-forested (less than 10% canopy cover); the other 97% are dominated by a forested canopy with limited mountain meadows, shrublands, and grasslands. See table 1 on the following page for a break-down of BLM-managed grassland and shrubland in the planning area classified under the National Vegetation Classification System (NVCS). The overall management goal of grassland and shrubland resources is to maintain diverse upland ecological conditions while providing for a variety of multiple uses that are economically and biologically feasible. Alternatives Alternative A (1986 Garnet RMP, as Amended) Maintain, or where practical enhance, site productivity on all public land available for livestock grazing: (a) maintain current vegetative condition in “maintain” and “custodial” category allotments; (b) improve unsatisfactory vegetative conditions by one condition class in certain “improvement” category allotments; (c) prevent noxious weeds from invading new areas; and, (d) limit utilization levels to provide for plant maintenance. Alternatives B & C (common to all) Proposed objectives: Manage uplands to meet health standards and meet or exceed proper functioning condition within site or ecological capability. Where appropriate, fire would be used as a management agent to achieve/maintain disturbance regimes supporting healthy functioning vegetative conditions. Manage surface-disturbing activities in a manner to minimize degradation to rangelands and soil quality. Mange areas to conserve BLM special status species plants. Ensure consistency with achieving or maintaining Standards of Rangeland Health and Guidelines for Livestock Grazing Management for Montana, North Dakota, and South Dakota.
    [Show full text]
  • Understanding the Causes of Bush Encroachment in Africa: the Key to Effective Management of Savanna Grasslands
    Tropical Grasslands – Forrajes Tropicales (2013) Volume 1, 215−219 Understanding the causes of bush encroachment in Africa: The key to effective management of savanna grasslands OLAOTSWE E. KGOSIKOMA1 AND KABO MOGOTSI2 1Department of Agricultural Research, Ministry of Agriculture, Gaborone, Botswana. www.moa.gov.bw 2Department of Agricultural Research, Ministry of Agriculture, Francistown, Botswana. www.moa.gov.bw Keywords: Rangeland degradation, fire, indigenous ecological knowledge, livestock grazing, rainfall variability. Abstract The increase in biomass and abundance of woody plant species, often thorny or unpalatable, coupled with the suppres- sion of herbaceous plant cover, is a widely recognized form of rangeland degradation. Bush encroachment therefore has the potential to compromise rural livelihoods in Africa, as many depend on the natural resource base. The causes of bush encroachment are not without debate, but fire, herbivory, nutrient availability and rainfall patterns have been shown to be the key determinants of savanna vegetation structure and composition. In this paper, these determinants are discussed, with particular reference to arid and semi-arid environments of Africa. To improve our current under- standing of causes of bush encroachment, an integrated approach, involving ecological and indigenous knowledge systems, is proposed. Only through our knowledge of causes of bush encroachment, both direct and indirect, can better livelihood adjustments be made, or control measures and restoration of savanna ecosystem functioning be realized. Resumen Una forma ampliamente reconocida de degradación de pasturas es el incremento de la abundancia de especies de plan- tas leñosas, a menudo espinosas y no palatables, y de su biomasa, conjuntamente con la pérdida de plantas herbáceas. En África, la invasión por arbustos puede comprometer el sistema de vida rural ya que muchas personas dependen de los recursos naturales básicos.
    [Show full text]
  • Edition 2 from Forest to Fjaeldmark the Vegetation Communities Highland Treeless Vegetation
    Edition 2 From Forest to Fjaeldmark The Vegetation Communities Highland treeless vegetation Richea scoparia Edition 2 From Forest to Fjaeldmark 1 Highland treeless vegetation Community (Code) Page Alpine coniferous heathland (HCH) 4 Cushion moorland (HCM) 6 Eastern alpine heathland (HHE) 8 Eastern alpine sedgeland (HSE) 10 Eastern alpine vegetation (undifferentiated) (HUE) 12 Western alpine heathland (HHW) 13 Western alpine sedgeland/herbland (HSW) 15 General description Rainforest and related scrub, Dry eucalypt forest and woodland, Scrub, heathland and coastal complexes. Highland treeless vegetation communities occur Likewise, some non-forest communities with wide within the alpine zone where the growth of trees is environmental amplitudes, such as wetlands, may be impeded by climatic factors. The altitude above found in alpine areas. which trees cannot survive varies between approximately 700 m in the south-west to over The boundaries between alpine vegetation communities are usually well defined, but 1 400 m in the north-east highlands; its exact location depends on a number of factors. In many communities may occur in a tight mosaic. In these parts of Tasmania the boundary is not well defined. situations, mapping community boundaries at Sometimes tree lines are inverted due to exposure 1:25 000 may not be feasible. This is particularly the or frost hollows. problem in the eastern highlands; the class Eastern alpine vegetation (undifferentiated) (HUE) is used in There are seven specific highland heathland, those areas where remote sensing does not provide sedgeland and moorland mapping communities, sufficient resolution. including one undifferentiated class. Other highland treeless vegetation such as grasslands, herbfields, A minor revision in 2017 added information on the grassy sedgelands and wetlands are described in occurrence of peatland pool complexes, and other sections.
    [Show full text]
  • Existing Vegetation Classification and Mapping
    Existing Vegetation Classification and Mapping Technical Guide Version 1.0 Guide Version Classification and Mapping Technical Existing Vegetation United States Department of Agriculture Existing Vegetation Forest Service Classification and Ecosystem Management Coordination Staff Mapping Technical Guide Gen. Tech. Report WO-67 Version 1.0 April 2005 United States Department of Agriculture Existing Vegetation Forest Service Classification and Ecosystem Management Coordination Staff Mapping Technical Guide Gen. Tech. Report WO-67 Version 1.0 April 2005 Ronald J. Brohman and Larry D. Bryant Technical Editors and Coordinators Authored by: Section 1: Existing Vegetation Classification and Mapping Framework David Tart, Clinton K. Williams, C. Kenneth Brewer, Jeff P. DiBenedetto, and Brian Schwind Section 2: Existing Vegetation Classification Protocol David Tart, Clinton K. Williams, Jeff P. DiBenedetto, Elizabeth Crowe, Michele M. Girard, Hazel Gordon, Kathy Sleavin, Mary E. Manning, John Haglund, Bruce Short, and David L. Wheeler Section 3: Existing Vegetation Mapping Protocol C. Kenneth Brewer, Brian Schwind, Ralph J. Warbington, William Clerke, Patricia C. Krosse, Lowell H. Suring, and Michael Schanta Team Members Technical Editors Ronald J. Brohman National Resource Information Requirements Coordinator, Washington Office Larry D. Bryant Assistant Director, Forest and Range Management Staff, Washington Office Authors David Tart Regional Vegetation Ecologist, Intermountain Region, Ogden, UT C. Kenneth Brewer Landscape Ecologist/Remote Sensing Specialist, Northern Region, Missoula, MT Brian Schwind Remote Sensing Specialist, Pacific Southwest Region, Sacramento, CA Clinton K. Williams Plant Ecologist, Intermountain Region, Ogden, UT Ralph J. Warbington Remote Sensing Lab Manager, Pacific Southwest Region, Sacramento, CA Jeff P. DiBenedetto Ecologist, Custer National Forest, Billings, MT Elizabeth Crowe Riparian/Wetland Ecologist, Deschutes National Forest, Bend, OR William Clerke Remote Sensing Program Manager, Southern Region, Atlanta GA Michele M.
    [Show full text]
  • Chapter 3 Vegetation Diversity 3
    Chapter 3 Vegetation Diversity Vegetation Diversity INTRODUCTION Biodiversity has been defined as the variety of living organisms; the genetic differences among them; and the communities, ecosystems and landscapes in which they occur (Noss 1990, West 1995). Biodiversity has leapt to the forefront of issues due to a variety of reasons; changing societal values, accelerated species extinctions, global environmental change, aesthetic values, and the value of goods and services supplied (West 1995). Maintenance of ecological functions, processes, and disturbance regimes is as important as preserving species, their populations, genetic structure, biotic communities, and landscapes. Hence ecosystem-level processes, services, and disturbances must be considered within the arena of biodiversity concerns (West and Whitford 1995). The biological diversity that is supported by a particular area is generally a positive function of the degree of environmental heterogeneity occurring over space and time within that area (Longland and Young 1995). Vegetation is a cornerstone of biological diversity. Vegetation exerts its influence into almost every facet of the biophysical world. Many biophysical processes and functions depend on or are connected to vegetative conditions. Vegetation is an integral part of ecosystem composition, function, and structure. Vegetation shapes and in turn, is shaped by the ecosystems in which it occurs. It provides plant and animal habitat, and determines wildfire and insect hazards. Leaves, branches, and roots contribute to soil productivity and stability. Large wood in streams increases physical complexity, providing more habitat diversity. Vegetation shades streams, helping to maintain desirable water temperature, and also acts as a physical and biological barrier or filter for sediment and debris flowing from adjacent hillsides toward streams.
    [Show full text]
  • Accelerating the Development of Old-Growth Characteristics in Second-Growth Northern Hardwoods
    United States Department of Agriculture Accelerating the Development of Old-growth Characteristics in Second-growth Northern Hardwoods Karin S. Fassnacht, Dustin R. Bronson, Brian J. Palik, Anthony W. D’Amato, Craig G. Lorimer, Karl J. Martin Forest Northern General Technical Service Research Station Report NRS-144 February 2015 Abstract Active management techniques that emulate natural forest disturbance and stand development processes have the potential to enhance species diversity, structural complexity, and spatial heterogeneity in managed forests, helping to meet goals related to biodiversity, ecosystem health, and forest resilience in the face of uncertain future conditions. There are a number of steps to complete before, during, and after deciding to use active management for this purpose. These steps include specifying objectives and identifying initial targets, recognizing and addressing contemporary stressors that may hinder the ability to meet those objectives and targets, conducting a pretreatment evaluation, developing and implementing treatments, and evaluating treatments for success of implementation and for effectiveness after application. In this report we discuss these steps as they may be applied to second-growth northern hardwood forests in the northern Lake States region, using our experience with the ongoing managed old-growth silvicultural study (MOSS) as an example. We provide additional examples from other applicable studies across the region. Quality Assurance This publication conforms to the Northern Research Station’s Quality Assurance Implementation Plan which requires technical and policy review for all scientific publications produced or funded by the Station. The process included a blind technical review by at least two reviewers, who were selected by the Assistant Director for Research and unknown to the author.
    [Show full text]
  • Celebrating 100 Years of Migratory Bird Conservation
    Wetlands Working Group The Wildlife Society Newsletter, Volume 6, Issue 1 April 2016 In This Issue.... Feature Article Celebrating 100 Years of Canada’s Boreal Forest Wetlands Migratory Bird Conservation 100th Anniversary of the Part 1: Canada Migratory Bird Treaty To honor the 100th anniversary of the Migratory Bird Part 1: Canada Treaty, this year’s WWG newsletters will highlight wetlands of international importance across North America! ASWM Update The Migratory Bird Treaty in Canada was enacted with the passage of the Migratory Birds Convention Act (MBCA) during 1917; subsequent updates occurred during TWS Action Center 1994 and 2005. It is the responsibility of Environment and Climate Change USFWS Resource Protection Canada to develop and implement policies and regulations to ensure the protection Act of migratory birds, their eggs and their nests. Check out their webiste for more information about the MBCA in Canada. IUCN Call for Articles Canada’s diverse habitats support about 450 species of native birds, the majority of Wetlands at Risk which are protected under the MBCA. Through bird-watching, and subsistence and recreational huning, native birds are an integral part of Canada’s heritage. Migratory WWG News birds also play important ecological and biological roles in the environment. A recent Call for nominations report, The State of Canada’s Birds 2012 shows that bird populations in Canada are Student award changing. Although some bird species are doing well, many others are declining. As we celebrate the successes of international bird conservation, it is important to Join us on Facebook! recognize continued and new threats to migratory bird populations.
    [Show full text]
  • Hemlock Hardwood Pine Forest
    Appendix B: Habitats Hemlock Hardwood Pine Forest Photo by Ben Kimball Acres in NH: 2,039,406 Percent of NH Area: 34 Acres Protected: 387,487 Percent Protected: 19 Habitat Distribution Map Habitat Description The hemlock‐hardwood‐pine forest is a transitional forest region in New Hampshire (Sperduto 2011). This forest occurs between the northern hardwood ‐ conifer forest to the north and at higher elevations (mostly above 1,400 ft.) and the Appalachian oak ‐ pine forests to the south and at lower elevations (mostly below 900 ft.). This transitional forest lacks most boreal species and central hardwood species that characterize these other forests, but has many Alleghanian species such as white pine (Pinus strobus) and hemlock (Tsuga canadensis). Many of the other species of this system are common throughout the eastern United States. Hemlock ‐ hardwood ‐ pine forests are found throughout the state from the White Mountains south below about 1,500 ft. Dry‐mesic to mesic glacial till soils are most abundant, but this system also occupies river terraces, sand plains, and stabilized talus areas covered by a forest canopy. It includes dry, sandy soils with red oak and white pine that have not been burned enough to support pitch pine sand plains system. These areas are likely to succeed to hemlock and/or beech over the long term without the return of fire. The main matrix forest community that defines this system is hemlock ‐ beech ‐ oak ‐ pine forest. Hemlock and American beech (Fagus grandifolia) are the primary late‐successional trees in this community, with maximum ages of about 600 and 300 years, respectively.
    [Show full text]
  • How the Logging Industry's Unregulated
    JULY 2020 R: 20-07-B REPORT THE LOGGING LOOPHOLE: HOW THE LOGGING INDUSTRY’S UNREGULATED CARBON EMISSIONS UNDERMINE CANADA’S CLIMATE GOALS AUTHOR Jennifer Skene ACKNOWLEDGMENTS The author would like to express deep gratitude to all the people who contributed their time, expertise, and talents to this report. Special thanks to Dale Marshall for his numerous reviews and tremendously constructive feedback and to Graham Saul and Teagan Yaremchuk for their expert advice and continuous support. Thanks as well to Anthony Swift, who oversaw the conceptualization and creation of this report, and to Tina Swanson for her thoughtful review. Leah Stecher's editing, guidance, and endless patience were, as always, indispensable and tremendously appreciated. This communication and release of this report would also would not have been possible without the tireless dedication of Margie Kelly, Lauren Gonzales, Barbara Hayes, Alex Almendrades, and Andrew Aziz. The author would also like to thank the many people who reviewed various iterations of this report and provided invaluable feedback: Shelley Vinyard, Courtenay Lewis, Ashley Jordan, Danielle Droitsch, Liz Barratt- Brown, Brendan Guy, Josh Axelrod, Sasha Stashwick, Jeff Wells, Jay Malcolm, Dominick DellaSalla, Florence Daviet, Keith Kisselle, Julee Boan, and Tim Gray. Environmental Defence Canada gratefully acknowledges the contributions of the Metcalf Foundation. About NRDC NRDC is an international nonprofit environmental organization with more than 3 million members and online activists. Since 1970, our lawyers, scientists, and other environmental specialists have worked to protect the world’s natural resources, public health, and the environment. NRDC has offices in New York City, Washington, D.C., Los Angeles, San Francisco, Chicago, Montana, and Beijing.
    [Show full text]
  • Vegetation Classification and Mapping Project Report
    U.S. Geological Survey-National Park Service Vegetation Mapping Program Acadia National Park, Maine Project Report Revised Edition – October 2003 Mention of trade names or commercial products does not constitute endorsement or recommendation for use by the U. S. Department of the Interior, U. S. Geological Survey. USGS-NPS Vegetation Mapping Program Acadia National Park U.S. Geological Survey-National Park Service Vegetation Mapping Program Acadia National Park, Maine Sara Lubinski and Kevin Hop U.S. Geological Survey Upper Midwest Environmental Sciences Center and Susan Gawler Maine Natural Areas Program This report produced by U.S. Department of the Interior U.S. Geological Survey Upper Midwest Environmental Sciences Center 2630 Fanta Reed Road La Crosse, Wisconsin 54603 and Maine Natural Areas Program Department of Conservation 159 Hospital Street 93 State House Station Augusta, Maine 04333-0093 In conjunction with Mike Story (NPS Vegetation Mapping Coordinator) NPS, Natural Resources Information Division, Inventory and Monitoring Program Karl Brown (USGS Vegetation Mapping Coordinator) USGS, Center for Biological Informatics and Revised Edition - October 2003 USGS-NPS Vegetation Mapping Program Acadia National Park Contacts U.S. Department of Interior United States Geological Survey - Biological Resources Division Website: http://www.usgs.gov U.S. Geological Survey Center for Biological Informatics P.O. Box 25046 Building 810, Room 8000, MS-302 Denver Federal Center Denver, Colorado 80225-0046 Website: http://biology.usgs.gov/cbi Karl Brown USGS Program Coordinator - USGS-NPS Vegetation Mapping Program Phone: (303) 202-4240 E-mail: [email protected] Susan Stitt USGS Remote Sensing and Geospatial Technologies Specialist USGS-NPS Vegetation Mapping Program Phone: (303) 202-4234 E-mail: [email protected] Kevin Hop Principal Investigator U.S.
    [Show full text]
  • Meta-Modelling to Quantify Yields of White Spruce and Hybrid Spruce Provenances in the Canadian † Boreal Forest
    Article Meta-Modelling to Quantify Yields of White Spruce and Hybrid Spruce Provenances in the Canadian y Boreal Forest Suborna Ahmed 1,*, Valerie LeMay 1, Alvin Yanchuk 2, Andrew Robinson 3, Peter Marshall 1 and Gary Bull 1 1 Department of Forest Resources Management, University of British Columbia, Rm 2045, 2424 Main Mall, Vancouver, BC V6T 1Z4, Canada; [email protected] (V.L.); [email protected] (P.M.); [email protected] (G.B.) 2 British Columbia Ministry of Forests, Lands and Natural Resources Operations, PO Box 9518, STN Prov Govt, Victoria, BC V8W9C2, Canada; [email protected] 3 CEBRA, School of BioSciences, School of Mathematics & Statistics, University of Melbourne, Melbourne VIC 3010, Australia; [email protected] * Correspondence: [email protected]; Tel.: +1-604-827-2059 This manuscript is part of a Ph.D. thesis by the first author, available online at open.library.ubc.ca. y Received: 26 April 2020; Accepted: 26 May 2020; Published: 28 May 2020 Abstract: Tree improvement programs can improve forest management by increasing timber yields in some areas, thereby facilitating conservation of other forest lands. In this study, we used a meta-analytic approach to quantify yields of alternative white (Picea glauca (Moench) Voss) and hybrid spruce (Picea engelmannii Parry ex Engelmann x Picea glauca (Moench) Voss) stocks across planting sites in the boreal and hemiboreal forests of Canada. We extracted meta-data from published tree improvement program results for five Canadian provinces covering 38 planting sites and 330 white and hybrid spruce provenances. Using these meta-data and a random-coefficients nonlinear mixed-effects modelling approach, we modelled average height over time trajectories for varying planting site characteristics, as well as climate transfer distances between planting sites and provenances.
    [Show full text]
  • A Conservation Vision for Maine Using Ecological Systems
    A Conservation Vision for Maine Using Ecological Systems Hemlock forest Shrub swamp Cedar swamp Northern hardwood forest Justin Schlawin and Andy Cutko Maine Natural Areas Program Maine Department of Agriculture, Conservation and Forestry February 2014 A Conservation Vision for Maine Using Ecological Systems Contents Summary ....................................................................................................................................................... 3 Introduction: ................................................................................................................................................. 4 Maine’s Conservation Lands: ........................................................................................................................ 4 Ecological Sections: ....................................................................................................................................... 5 Ecological Systems GIS Layer: ....................................................................................................................... 7 Consolidating Comparable Ecological Systems: ........................................................................................ 7 Requirements for Representation ................................................................................................................ 8 Isolating ‘quality’ patches for each ecological system type .................................................................... 12 Aggregation ............................................................................................................................................
    [Show full text]