Struvite: Definition, Benefits, and Potential Application in Arkansas Agriculture

Total Page:16

File Type:pdf, Size:1020Kb

Struvite: Definition, Benefits, and Potential Application in Arkansas Agriculture ~DMSION OF AGRICULTURE Agriculture and Natural Resources U~ljj RESEARCH & EXTENSION University of Arkansas System FSA9542 Struvite: Definition, Benefits, and Potential Application in Arkansas Agriculture Niyi Omidire Introduction P fertilizers [triple super phosphate Senior Graduate Assistant (TSP), monoammonium phosphate In recent years, increasing levels Crop, Soil and Env Sci (MAP), diammonium phosphate of phosphorus (P) and nitrogen (N) (DAP), rock phosphate, and a chem- in waste streams causing eutrophi- Leah English ically precipitated struvite product cation have gained global attention. Research Program Associate (Crystal Green; CG)], on corn and soy- Additionally, as phosphate is a non- Agri Econ & Agri Bus bean growth on a Calloway silt-loam renewable resource, the price of rock soil (Fraglossudalfs) and on rice grown phosphate, used in the production of Kristofor Brye using a direct-seeded, delayed-flood fertilizer, is expected to increase as Professor production system on a Calhoun silt- reserves are depleted. Consequently, Crop, Soil and Env Sci loam soil (Glossaqualfs) with low soil- it is important to consider options for test P in eastern Arkansas. Prelimi- the efficient use and preservation of Jennie Popp nary field results demonstrate corn, existing phosphate resources. One Professor and Associate Dean soybean and rice yields were at least potential solution may be the precip- Honors College similar, and at times, greater from itation of P and N from liquid waste amendment with ECST than from streams as the mineral struvite Lauren Greenlee other common, commercially avail- (MgNH PO • 6H O). For many Associate Professor 4 4 2 able fertilizer-P sources and the CG Chemical Engineering years, struvite scaling has been a struvite material. From an agronomic major problem for wastewater treat- perspective, preliminary field results ment plants (WWTPs). Recent interest revealed that ECST could serve as in the development of technologies an alternative fertilizer-P source for aimed at removing struvite from multiple row crops grown under field waste streams before struvite forms conditions. Economic analysis based and accumulates in WWTP pipes may on these preliminary results suggests reduce labor and other costs associat- that, in addition to being technically ed with struvite removal, while also viable for crop production, ECST may generating a valuable product for use also prove to be an economically via- in agricultural production. ble fertilizer source, particularly as Struvite is described as a slow-re- nonrenewable P stocks become scarce. lease P fertilizer that can contribute to crop productivity enhancement; What is Struvite? therefore, application of struvite to Struvite, the common name for nutrient-deficient agricultural lands magnesium (Mg2+) ammonium (NH +) could be of great benefit for Arkansas’ 4 Arkansas Is phosphate hexahydrate agriculture. Preliminary field experi- (MgNH PO • 6H O; Johnston and Our Campus ments have been conducted (Summer 4 4 2 Richards, 2003), is a high-value, 2019) to evaluate the effects of elec- slow-release, efficient fertilizer that trochemically precipitated struvite Visit our web site at: can be recovered from both solid (ECST), compared to other common https://www.uaex.uada.edu wastes, such as food, animal and University of Arkansas, United States Department of Agriculture, and County Governments Cooperating human waste (Kataki et al., 2016; Farrow et al., local and global levels. Recovery of nutrients in waste 2017) and wastewaters, such as municipal, indus- streams as struvite has much more to offer society trial and agricultural wastewaters (Westerman, than just the value-added end product. Eutrophica- 2009; Mayer et al., 2016). Equi-molar concentrations tion is a big environmental issue across the world 2+ + 3- (1:1:1) of Mg , NH4 and PO4 with alkaline pH and today. Eutrophication can lead to severe economic, appropriate mixing are necessary to precipitate stru- environmental and human health problems. Reduc- vite as a solid (Rahaman et al., 2008). Struvite has tion in visibility in water bodies and odor problems a molecular weight of 245.43 g mol-1 and is readily from eutrophic algal blooms decrease property values soluble in acidic conditions, sparingly soluble at neu- in the surrounding area (Dodds et al., 2009). Waste- tral conditions, but insoluble in alkaline conditions water treatment plants thus play an important role, (Chirmuley, 1994). as WWTPs are one of the main routes of non-diffuse Struvite fertilizer is granular, concentrated, P losses. The recovery of struvite in WWTPs can non-sludgy, odorless, easy to handle, and free of tra- reduce operating costs by improving sludge dewa- ditional sludge-handling problems (Bouropoulos and tering, reducing biosolids volume, and preventing Koutsoukos, 2000). Pure struvite as a fertilizer has a unwanted deposits in pipes. Removal of struvite from fertilizer grade of approximately 6-28-0 and contains waste streams is a way to reduce eutrophication approximately 16% MgO (Westerman, 2009). Gener- problems (Lee et al., 2007) and groundwater contam- ally, recovered struvite contains between 11 and 26% ination from excess P and N. Sustainable P manage- total P (Johnston and Richards, 2003) depending on ment should therefore focus on P recovery from waste the initial source and method of production, yet only streams. Recovery of struvite from waste streams can about 0.02% is water-soluble (Negrea et al., 2010), reduce offensive odors, which may impact property while the remaining P is acid-soluble (Bridger et al., values in the neighboring areas to with eutrophic 1962), thus making struvite an ideal slow-release water bodies, and can reduce human health hazards source of P for plants. Struvite is treated as P fertil- originating from toxins released by eutrophic blue- izer although struvite is also an effective source of N green algae (cyanobacteria). Furthermore, struvite and Mg. recovery from domestic wastewater could be an opportunity to generate local supplies of P fertiliz- ers for crop production, create job opportunities and Where is Struvite a Problem? improve the economic status of the members of the Over the years, struvite scaling, or deposits, are local communities, and increase biodiversity in water- generally common in WWTPs, causing reductions in bodies due to mitigating eutrophication. Compared flow capacities in pipes and operational inefficiencies. to land-applied biosolids as fertilizer, which can be The removal of struvite has generally been difficult problematic due to handling, odors and low nutrient and costly, with some estimates exceeding $100,000 concentrations, the concentrated nature of nutrients for remediation of struvite scaling in mid-sized in struvite, coupled with easier handling and odorless WWTPs (Ghosh et al., 2019; Forrest et al., 2008). nature, increase the value of struvite as a fertilizer. Therefore, nutrient recovery as struvite, before stru- The positive impacts of wastewater-recovered struvite vite precipitates and accumulates in WWTP pipes in the society can strengthen the economic, social and and on equipment, would be a major relief in the environmental aspects of sustainability. wastewater treatment industry, where 80 to 90 of struvite can be recovered from wastewaters through Water quality degradation, as a result of P load- struvite precipitation processes (Geerts et al., 2015). ing, can increase water scarcity, as polluted waters University of Arkansas researchers are current- may be considered unfit for some specific types of ly experimenting with new technologies that have human use (Davies and Simonovic, 2011). Water potential to remove P from wastewaters and generate scarcity and pollution are closely connected to global energy, thus potentially reducing WWTP operation- food production, population, energy and economics, al costs (related to struvite removal and electricity and may limit societal development if left unchecked usage), while generating an additional income source, (Simonovic, 2002). Removal of struvite from waste struvite for fertilizer. streams can reduce the problem of nutrient enrich- ment occurring at local and global scales, can improve Benefits of Struvite Removal from drinking water quality for humans and animals and availability of water for various human uses, as well Waste Streams as the use of water bodies for recreation. In addition, Management of waste streams is a vital issue, treated wastewaters can be used for irrigation in with both sanitary and environmental concerns at the agriculture. The understanding and optimization of the process of struvite removal from waste streams can enhance the sustainable development of society. Potential Struvite Use in Arkansas Agriculture Agriculture is the backbone of Arkansas’ economy and is precipitated Chemicallyprecipitated product Monoammoniumphosphate (MAP) the largest sector, contributing struvite(ECST) (CrystalGreen) about $21 billion in value added to Arkansas’ economy each year. In 2018, over 7 million acres of crops were planted across Arkan- sas, with rice, corn and soybeans representing almost 75% of all harvested acres (English et al., 2019). As a slow-release P fertil- izer, struvite can contribute to Triplesuper phosphate (TSP) Diammoniumphosphate (DAP) RockPhosphate crop productivity enhancement, Figure 1. Fertilizer-phosphorus sources used in the field studies. and struvite application to nutri- ent-deficient agricultural lands steady nutrient supply for plants and improves fertil-
Recommended publications
  • Precipitation of Phosphate Minerals from Effluent of Anaerobically Digested Swine Manure Alex Y
    University of South Florida Scholar Commons Graduate Theses and Dissertations Graduate School January 2012 Precipitation of Phosphate Minerals from Effluent of Anaerobically Digested Swine Manure Alex Y. Lin University of South Florida, [email protected] Follow this and additional works at: http://scholarcommons.usf.edu/etd Part of the Chemical Engineering Commons, Environmental Engineering Commons, and the Environmental Sciences Commons Scholar Commons Citation Lin, Alex Y., "Precipitation of Phosphate Minerals from Effluent of Anaerobically Digested Swine Manure" (2012). Graduate Theses and Dissertations. http://scholarcommons.usf.edu/etd/4359 This Thesis is brought to you for free and open access by the Graduate School at Scholar Commons. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Scholar Commons. For more information, please contact [email protected]. Precipitation of Phosphate Minerals from Effluent of Anaerobically Digested Swine Manure by Alex Yuan-li Lin A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science Department of Civil and Environmental Engineering College of Engineering University of South Florida Co-Major Professor: Sarina Ergas, Ph.D. Co-Major Professor: Jeffrey Cunningham, Ph.D. Maya Trotz, Ph.D. Date of Approval: November 9, 2012 Keywords: struvite, wastewater, confined animal feeding operation (CAFO), fertilizer, synthetic Copyright © 2012, Alex Yuan-li Lin DEDICATION I dedicate this thesis to all those that have supported me along the way whether directly or indirectly. I would like to thank members of Intervarsity on the USF campus, members of Community Life Church, and my family for their support and encouragement in many ways.
    [Show full text]
  • DESCRIPTIVE HUMAN PATHOLOGICAL MINERALOGY 1179 but Still Occursregularly
    Amerkan Mincraloght, Volume 59, pages I177-1182, 1974 DescriptiveHuman Pathological Mineralogy Rrcneno I. Gmsox P.O. Box I O79, Dauis,C alilornia 95 6 I 6 Absfract Crystallographic, petrographic, and X-ray powder difiraction analysis of approximately 15,000 samples showed that the most common mineral constituents of human pathological concretions are calcium oxalates (whewellite and weddellite), calcium phosphates (apatite, brushite, and whitlockite), and magnesium phosphates (struvite and newberyite). Less are monetite, hannayite, calcite, aragonite, vaterite, halite, gypsum, and hexahydrite."o-rnon of the variables determining which minerals precipitate, the effects of different pH values on deposi- tional conditions are most apparent, and are shown by occurrences and relationships among many of the minerals studied. A pH-sensitive series has been identified among magnesium phosphatesin concretions. Introduction The study was carried out over a period of three The importanceof mineralogyin the field of medi- years.Composition was confirmedby X-ray powder cine lies in the applicationof mineralogicalmethods diffraction and polarizing microscopy;sequence was to study pathologicalmineral depositsin the human arrived at from considerationsof microscopic tex- body. Urology benefitsgreatly becauseconcretions tural and crystallographicrelationships. More than of mineral matter (calculi) are common in the 14,500samples were derivedfrom the urinary sys- urinary system.The value of mineralogicalanalysis tem of kidneys,ureters, bladder, and urethra; the of urinary material was first describedby prien and remaining samples are not statistically significant Frondel (1947). Mineralogistsmay be unawareof and arediscussed only briefly. the variability and nature of such compounds be- Calcium cause reports are usually published in medical Oxalates journals. This investigationreports the mineralogy Whewellite, CaCzOE.H2O,and weddellite, CaCz- and possiblepathological significanceof these min- O4'2H2O,are very uncommonin the mineralworld.
    [Show full text]
  • 1 Raman Spectroscopy of Newberyite, Hannayite and Struvite. Ray L. Frost
    Raman spectroscopy of newberyite, hannayite and struvite. Ray L. Frost• a, Matt L. Weier a, Wayde N. Martens, a Dermot A. Henry b, and Stuart J. Mills b,c a Inorganic Materials Research Program, School of Physical and Chemical Sciences, Queensland University of Technology, GPO Box 2434, Brisbane Queensland 4001, Australia. b Geosciences, Museum Victoria, PO Box 666E, Melbourne, Victoria 3001, Australia. c CSIRO Minerals, Box 312, Clayton South, Victoria 3169, Australia. This is the authors’ version of a paper that was later published as: Frost, Ray, Weier, Matt , Martens, Wayde, Henry, Dermot & Mills, Stuart (2005) Raman spectroscopy of newberyite, hannayite and struvite. Spectrochimica Acta 62(1):pp. 181-188. Copyright 2005 Elsevier Abstract The phosphate minerals hannayite, newberyite and struvite have been studied by Raman spectroscopy using a thermal stage. Hannayite and newberyite are -1 characterised by an intense band at around 980 cm assigned to the ν1 symmetric stretching vibration of the HPO4 units. In contrast the symmetric stretching mode is -1 observed at 942 cm for struvite. The Raman spectra are characterised by multiple ν3 antisymmetric stretching bands and ν2 and ν4 bending modes indicating strong distortion of the HPO4 and PO4 units. Hannayite and newberyite are defined by bands -1 at 3382 and 3350 cm attributed to HOPO3 vibrations and hannayite and struvite by + bands at 2990, 2973 and 2874 assigned to NH4 bands. Raman spectroscopy has proven most useful for the analysis of these ‘cave’ minerals where complex paragenetic relationships exist between the minerals. Keywords: hannayite, newberryite, struvite, phosphate, Raman spectroscopy Introduction Interest in struvite formation also comes from the formation in urinary tracts and kidneys [1-6].
    [Show full text]
  • Bladder Stones in Dogs & Cats By: Dr
    Navarro Small Animal Clinic 5009 Country Club Dr. Victoria, TX 77904 361-573-2491 www.navarrosmallanimalclinic.com Bladder Stones in Dogs & Cats By: Dr. Shana Bohac Dogs, like people, can develop a variety of bladder stones. These stones are rock-like structures that are formed by minerals. Some stones form in alkaline urine, whereas others form when the urine is more acidic. Bladder stones are very common in dogs, particularly small breed dogs. The most common signs that a dog or cat has bladder stones include blood in the urine, and straining to urinate. Blood is seen due to the stones bouncing around and hitting the bladder wall. This can irritate and damage the tissue and can cause cystitis (inflammation of the bladder). Straining to urinate occurs because of the inflammation and irritation of the bladder walls or urethra or muscle spasms. The stone itself can actually obstruct the flow of urine if it blocks the urethra. Small stones can get stuck in the urethra and cause a complete obstruction. This can be life threatening if the obstruction is not relieved since the bladder can rupture as more urine is produced with nowhere to go. Bladder stones form because of changes in the urine pH. Normal dog urine is slightly acidic and contains waste products such as dissolved minerals and enzymes such as urease. Urease breaks down excess ammonia in urine. An overload of ammonia in urine can cause bladder inflammation and thickening known as cystitis. There are a variety of stones that can form in the bladder, some that form in acidic urine, while others form in alkaline urine.
    [Show full text]
  • Current Insights Into the Mechanisms and Management of Infection Stones
    Current insights into the mechanisms and management of infection stones Authors: Erika J. Espinosa-Ortiz, Brian H. Eisner, Dirk Lange, and Robin Gerlach The final publication is available at Springer via https://dx.doi.org/10.1038/s41585-018-0120-z. Espinosa-Ortiz, Erika J., Brian H. Eisner, Dirk Lange, and Robin Gerlach, “Current insights into the mechanisms and management of infection stones,” Nature Reviews Urology, November 2018, 16: 35-53. doi: 10.1038/s41585-018-0120-z. Made available through Montana State University’s ScholarWorks scholarworks.montana.edu Current insights into the mechanisms and management of infection stones Erika J. Espinosa-Ortiz1,2, Brian H. Eisner3, Dirk Lange4* and Robin Gerlach 1,2* Abstract | Infection stones are complex aggregates of crystals amalgamated in an organic matrix that are strictly associated with urinary tract infections. The management of patients who form infection stones is challenging owing to the complexity of the calculi and high recurrence rates. The formation of infection stones is a multifactorial process that can be driven by urine chemistry , the urine microenvironment, the presence of modulator substances in urine, associations with bacteria, and the development of biofilms. Despite decades of investigation, the mechanisms of infection stone formation are still poorly understood. A mechanistic understanding of the formation and growth of infection stones — including the role of organics in the stone matrix, microorganisms, and biofilms in stone formation and their effect on stone characteristics — and the medical implications of these insights might be crucial for the development of improved treatments. Tools and approaches used in various disciplines (for example, engineering, chemistry , mineralogy , and microbiology) can be applied to further understand the microorganism–mineral interactions that lead to infection stone formation.
    [Show full text]
  • Struvite Urolithiasis in Dogs
    Glendale Animal Hospital 623-934-7243 www.familyvet.com Struvite Urolithiasis in Dogs (Struvite Stones in the Urinary Tract of Dogs) Basics OVERVIEW • ”Urolithiasis” is the medical term for the presence of stones (known as “uroliths”) in the urinary tract • The most common minerals found in the stones (uroliths) are used to name the particular stone; in this type of stone, struvite makes up the composition of the stone, and thus the name “struvite urolithiasis”; struvite is magnesium ammonium phosphate • The urinary tract consists of the kidneys, the ureters (the tubes running from the kidneys to the bladder), the urinary bladder (that collects urine and stores it until the pet urinates), and the urethra (the tube from the bladder to the outside, through which urine flows out of the body) • Struvite urolithiasis is the formation of crystalline stones (uroliths) composed of magnesium ammonium phosphate, or struvite, in the urinary tract GENETICS • The high incidence of struvite stones (uroliths) in some breeds of dogs (such as the miniature schnauzer) suggests a familial (runs in certain families or lines of animals) tendency; it is hypothesized that susceptible miniature schnauzers inherit some abnormality of local host defenses of the urinary tract that increases their likelihood to develop urinary tract infection (UTI) • Sterile struvite uroliths were found in a family of English cocker spaniels SIGNALMENT/DESCRIPTION OF PET Species • Dogs Breed Predilections • Miniature schnauzer, shih tzu, bichon frise, miniature poodle, cocker spaniel,
    [Show full text]
  • Optical Properties of Common Rock-Forming Minerals
    AppendixA __________ Optical Properties of Common Rock-Forming Minerals 325 Optical Properties of Common Rock-Forming Minerals J. B. Lyons, S. A. Morse, and R. E. Stoiber Distinguishing Characteristics Chemical XI. System and Indices Birefringence "Characteristically parallel, but Mineral Composition Best Cleavage Sign,2V and Relief and Color see Fig. 13-3. A. High Positive Relief Zircon ZrSiO. Tet. (+) 111=1.940 High biref. Small euhedral grains show (.055) parallel" extinction; may cause pleochroic haloes if enclosed in other minerals Sphene CaTiSiOs Mon. (110) (+) 30-50 13=1.895 High biref. Wedge-shaped grains; may (Titanite) to 1.935 (0.108-.135) show (110) cleavage or (100) Often or (221) parting; ZI\c=51 0; brownish in very high relief; r>v extreme. color CtJI\) 0) Gamet AsB2(SiO.la where Iso. High Grandite often Very pale pink commonest A = R2+ and B = RS + 1.7-1.9 weakly color; inclusions common. birefracting. Indices vary widely with composition. Crystals often euhedraL Uvarovite green, very rare. Staurolite H2FeAI.Si2O'2 Orth. (010) (+) 2V = 87 13=1.750 Low biref. Pleochroic colorless to golden (approximately) (.012) yellow; one good cleavage; twins cruciform or oblique; metamorphic. Olivine Series Mg2SiO. Orth. (+) 2V=85 13=1.651 High biref. Colorless (Fo) to yellow or pale to to (.035) brown (Fa); high relief. Fe2SiO. Orth. (-) 2V=47 13=1.865 High biref. Shagreen (mottled) surface; (.051) often cracked and altered to %II - serpentine. Poor (010) and (100) cleavages. Extinction par- ~ ~ alleL" l~4~ Tourmaline Na(Mg,Fe,Mn,Li,Alk Hex. (-) 111=1.636 Mod. biref.
    [Show full text]
  • Tavistockite and Bialite Discredited
    MINERALOGICAL MAGAZINE, MARCH 1969, VOL. 37, NO. 285 Tavistockite and bialite discredited P. G. EMBREY AND E. E. FEJER Department of Mineralogy, British Museum (Natural History) SUMMARY. Specimens of tavistockite fall into two groups: true tavistockite from the George and Charlotte mine, Tavistock, Devon, and wavellite from the Stenna Gwyn mine, St. Austell, Cornwall. Both were sold as tavistockite by the discoverer, Richard TaIling. Tavistockite proper is a fluorapatite, as shown by optical and X-ray examination, and the alumina and water in the original analysis are certainly derived from kaolinite with which the apatite is intimately associated. The published optical properties attributed to tavistockite were determined by E. S. Larsen on Stenna Gwyn material, and are those of wavellite. Re-examination of a portion of Buttgenbach's type bialite, which he related to tavistockite on optical grounds, shows it to be wavellite. TAVISTOCKITE has been a doubtful species from the time it was first described in 1865 by A. H. Church! as 'Hydrated Calcium-aluminic Phosphate (?)'. Its apparent validity has been established by successive appearances in all the standard works on systematic mineralogy, starting with J. D. Dana's renaming as tavistockite in 1868.2 The present study is perhaps as much historical as mineralogical, since Church's original material cannot be traced and other specimens present a confused picture both in naming and in locality. We have studied seventeen specimens (see table) that are or have at one time been labelled tavistockite, and find that they fall into two distinct groups that may readily be characterized by the mineral assemblages present.
    [Show full text]
  • Canine and Feline Urolithiasis Updates and Challenges India F
    Canine and Feline Urolithiasis Updates and Challenges India F. Lane, DVM, MS, EdD, DACVIM Elizabeth M. Lennon, DVM, PhD, DACVIM The University of Tennessee College of Veterinary Medicine Urolithiasis - General Urolithiasis is common in both dogs and cats. Urolithiasis likely results from a constellation of predisposing factors that ultimately results in precipitation of excretory metabolites in the urine. These precipitates form crystals which can eventually aggregate into stones. The most common uroliths in dogs include struvite (magnesium ammonium phosphate), calcium oxalate, cystine, urate, and silica. The most common feline uroliths include feline calcium oxalate and struvite. In addition to being comprised solely of one type, uroliths can also be composed of multiple stone types, which is referred to as a compound stone. For example, the core of a urolith could be formed of calcium oxalate with a struvite urolith shell. The majority of uroliths are present in the urinary bladder at diagnosis (84%). Other sites include the urethra (7%), the kidney (3%), and less than 1% are present in the ureters, although that number has been increasing in recent years. Urine pH has a significant determining factor on the presence of uroliths. Certain uroliths form in acidic urine, while others form in more basic urine. Calcium oxalate, purine, cystine, silica, and calcium phosphate uroliths form in acidic urine, while infection-induced struvite stones form in basic urine. It is important to recognize that crystalluria (presence of microcrystals in the urine that are observed on urine sediment examination) is not abnormal. Normal individuals can have crystals present in their urine and this does not mean that this animal will form stones.
    [Show full text]
  • Alphabetical List
    LIST L - MINERALS - ALPHABETICAL LIST Specific mineral Group name Specific mineral Group name acanthite sulfides asbolite oxides accessory minerals astrophyllite chain silicates actinolite clinoamphibole atacamite chlorides adamite arsenates augite clinopyroxene adularia alkali feldspar austinite arsenates aegirine clinopyroxene autunite phosphates aegirine-augite clinopyroxene awaruite alloys aenigmatite aenigmatite group axinite group sorosilicates aeschynite niobates azurite carbonates agate silica minerals babingtonite rhodonite group aikinite sulfides baddeleyite oxides akaganeite oxides barbosalite phosphates akermanite melilite group barite sulfates alabandite sulfides barium feldspar feldspar group alabaster barium silicates silicates albite plagioclase barylite sorosilicates alexandrite oxides bassanite sulfates allanite epidote group bastnaesite carbonates and fluorides alloclasite sulfides bavenite chain silicates allophane clay minerals bayerite oxides almandine garnet group beidellite clay minerals alpha quartz silica minerals beraunite phosphates alstonite carbonates berndtite sulfides altaite tellurides berryite sulfosalts alum sulfates berthierine serpentine group aluminum hydroxides oxides bertrandite sorosilicates aluminum oxides oxides beryl ring silicates alumohydrocalcite carbonates betafite niobates and tantalates alunite sulfates betekhtinite sulfides amazonite alkali feldspar beudantite arsenates and sulfates amber organic minerals bideauxite chlorides and fluorides amblygonite phosphates biotite mica group amethyst
    [Show full text]
  • Fertilizer Potential of Struvite As Affected by Nitrogen Form In
    sustainability Article Fertilizer Potential of Struvite as Affected by Nitrogen Form in the Rhizosphere Andrea Danaé Gómez-Suárez 1,2,Cécile Nobile 1 , Michel-Pierre Faucon 1, Olivier Pourret 1 and David Houben 1,* 1 UniLaSalle, AGHYLE, 60026 Beauvais, France; [email protected] (A.D.G.-S.); [email protected] (C.N.); [email protected] (M.-P.F.); [email protected] (O.P.) 2 Facultad de Ciencias Químicas, Universidad La Salle, Mexico City 06140, Mexico * Correspondence: [email protected]; Tel.: +33-3-44-06-93-45 Received: 14 February 2020; Accepted: 10 March 2020; Published: 12 March 2020 Abstract: Struvite is increasingly considered a promising alternative to mined phosphorus (P) fertilizer. However, its solubility is very low under neutral to alkaline pH while it increases with acidification. Here, we investigated whether supplying ammonium to stimulate rhizosphere acidification might improve struvite solubility at the vicinity of roots and, ultimately, enhance P uptake by plants. Using a RHIZOtest design, we studied changes in soil pH, P availability and P uptake by ryegrass in the rhizosphere and bulk soil supplied with either ammonium or nitrate under three P treatments: no-P, triple super phosphate and struvite. We found that supplying ammonium decreased rhizosphere pH by more than three units, which in turn increased soluble P concentrations by three times compared with nitrate treatments. However, there was no difference between P treatments, which was attributed to the increase of soluble Al concentration in the rhizosphere, which subsequently controlled P availability by precipitating it under the form of variscite-like minerals (predicted using Visual MINTEQ).
    [Show full text]
  • Bibliography and Index
    Bulletin No. 203. Series G, Miscellaneous, 23 DEPARTMENT OF THE INTERIOR UNITED STATES GEOLOGICAL SURVEY CHARLES .1). YVALCOTT, DIRECTOR BIBLIOGRAPHY AND INDEX FOR T I-I E Y E A. R 1 9 O 1 BY FRED BOUGHTON "WEEKS WASHINGTON - GOVERNMENT PRINTING OFFICE 1902 CONTENTS, Page. Letter of transmittal....................................................... 5 Introduction ......... 4 ................................................... 7 List of publications examined ............................................. 9 Bibliography ............................................................ 13 Addenda to bibliographies for previous years............................... 95 Classified key to the index ...........'.......... ............................ 97 Index ..................................................................... 103 LETTER OF TRANSM1TTAL. DEPARTMENT OF THE INTERIOR, UNITED STATES GEOLOGICAL SURVEY, Washington, D. 0., July % SIR: I have the honor to transmit herewith the manuscript of a Bibliography and Index of North American Geology, Paleontology, Petrology, and Mineralogy for the Year 1901, and to request that it be published as a Bulletin of the Survey. Yours respectfully, F. B. WEEKS. Hon. CHARLES D. WALCOTT, director United State* Geological Survey. BIBLIOGRAPHY AND INDEX OF NORTH AMERICAN GEOLOGY, PALEONTOLOGY, PETROLOGY, AND MINERALOGY FOR THE YEAR 1901. By FRED BOUGHTON WEEKS. INTRODUCTION. The preparation and arrangement of the material of the Bibliog­ raphy and Index for 1901 is similar to that adopted for the previous publications.(Bulletins Nos. 130, 135, 146, 149, 156, 162, 172, 188, and 189). Several papers that should have been entered in the pre­ vious bulletins are here recorded, and the date of publication is given with each entry. Bibliography. The bibliography consists of full titles of separate papers, arranged alphabetically by authors' names, an abbreviated reference to the publication in which the paper is printed, and a brief description of the contents, each paper being numbered for index reference.
    [Show full text]