The Clinicoanatomic Uniqueness of the Human Pyramidal Tract And
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Corticospinal Fibers
151 Brain stem Pyramids/Corticospinal Tract 1 PYRAMIDS - CORTICOSPINAL FIBERS The pyramids are two elongated swellings on the ventral aspect of the medulla. Each pyramid contains approximately 1,000,000 CORTICOSPINAL AXONS. As the name suggests, these axons arise from the cerebral cortex and descend to terminate within the spinal cord. The cortical cells that give rise to corticospinal axons are called Betz cells. As corticospinal axons descend from the cortex, they course through the internal capsule, the cerebral peduncle of the midbrain, and the ventral pons (you will learn about these structures later in the course so don’t worry about them now) and onto the ventral surface of the medulla as the pyramids (see below). When corticospinal axons reach the medulla they lie within the pyramids. The pyramids are just big fiber bundles that lie on the ventral surface of the caudal medulla. The fibers in the pyramids are corticospinal. It is important to REMEMBER: THERE HAS BEEN NO CROSSING YET! in this system. The cell bodies of corticospinal axons within the pyramids lie within the IPSILATERAL cerebral cortex. Brain stem 152 Pyramids/Corticospinal Tract At the most caudal pole of the pyramids the corticospinal axons cross over the midline and now continue their descent on the contralateral (to the cell of origin) side. This crossover point is called the PYRAMIDAL DECUSSATION. The crossing fibers enter the lateral funiculus of the spinal cord where they are called the LATERAL CORTICOSPINAL TRACT (“corticospinal” is not good enough, you have to call them lateral corticospinal; LCST - remember this one??). LCST axons exit the tract to terminate upon neurons in the spinal cord gray matter along its entire length. -
Visualization of the Pyramidal Decussation Utilizing Diffusion
OPEN ACCESS RESEARCH Visualization of the pyramidal decussation utilizing diffusion tensor imaging: a feasibility study utilizing generalized q-sampling imaging Erik H Middlebrooks1,*, Jeffrey A Bennett1, Sharatchandra Bidari1, and Alissa Old Crow1 1Department of Radiology, University of Florida College of Medicine, Gainesville, Florida, USA *corresponding author ([email protected]) Abstract Background: The delineating point of the end of the brainstem and beginning of the spinal cord is known as the cervicomedullary junction (CMJ). This point is defined by the decussation of the pyramidal tracts. Abnormal configuration and location of the CMJ have both been implicated in disease processes such as Chiari malformation. Unfortunately, the CMJ is not directly visualized on contemporary imaging techniques. Diffusion tensor imaging (DTI) has given us the ability to directly visualize white matter tracts, but suffers from difficulties with visualizing crossing fibers. Many advanced techniques for visualizing crossing fibers utilize substantially long imaging times or non-clinical magnet strengths making clinical applicability limited. Objective: This study inves- tigates the use of generalized q-sampling imaging with diffusion decomposition on standard DTI acquisitions at 3 Tesla to demonstrate the pyramidal decussation. Methods: Three differing DTI protocols were analyzed in vivo with scan times of 17 minutes, 10 minutes, and 5.5 minutes. Data was processed with standard DTI post-processing, as well as generalized q-sampling imaging with diffusion decomposition. Results: The results of the study show that the pyramidal decussation can be reliably visualized using generalized q-sampling imaging and diffusion decomposition with scan times as low at 10 minutes. Conclusion: Utilizing generalized q-sampling post-processing, the pyramidal decussation can be reliably visualized using clinically feasible DTI sequences with scan times as low as 10 minutes. -
White Matter Tracts - Brain A143 (1)
WHITE MATTER TRACTS - BRAIN A143 (1) White Matter Tracts Last updated: August 8, 2020 CORTICOSPINAL TRACT .......................................................................................................................... 1 ANATOMY .............................................................................................................................................. 1 FUNCTION ............................................................................................................................................. 1 UNCINATE FASCICULUS ........................................................................................................................... 1 ANATOMY .............................................................................................................................................. 1 DTI PROTOCOL ...................................................................................................................................... 4 FUNCTION .............................................................................................................................................. 4 DEVELOPMENT ....................................................................................................................................... 4 CLINICAL SIGNIFICANCE ........................................................................................................................ 4 ARTICLES .............................................................................................................................................. -
Review of Spinal Cord Basics of Neuroanatomy Brain Meninges
Review of Spinal Cord with Basics of Neuroanatomy Brain Meninges Prof. D.H. Pauža Parts of Nervous System Review of Spinal Cord with Basics of Neuroanatomy Brain Meninges Prof. D.H. Pauža Neurons and Neuroglia Neuron Human brain contains per 1011-12 (trillions) neurons Body (soma) Perikaryon Nissl substance or Tigroid Dendrites Axon Myelin Terminals Synapses Neuronal types Unipolar, pseudounipolar, bipolar, multipolar Afferent (sensory, centripetal) Efferent (motor, centrifugal, effector) Associate (interneurons) Synapse Presynaptic membrane Postsynaptic membrane, receptors Synaptic cleft Synaptic vesicles, neuromediator Mitochondria In human brain – neurons 1011 (100 trillions) Synapses – 1015 (quadrillions) Neuromediators •Acetylcholine •Noradrenaline •Serotonin •GABA •Endorphin •Encephalin •P substance •Neuronal nitric oxide Adrenergic nerve ending. There are many 50-nm-diameter vesicles (arrow) with dark, electron-dense cores containing norepinephrine. x40,000. Cell Types of Neuroglia Astrocytes - Oligodendrocytes – Ependimocytes - Microglia Astrocytes – a part of hemoencephalic barrier Oligodendrocytes Ependimocytes and microglial cells Microglia represent the endogenous brain defense and immune system, which is responsible for CNS protection against various types of pathogenic factors. After invading the CNS, microglial precursors disseminate relatively homogeneously throughout the neural tissue and acquire a specific phenotype, which clearly distinguish them from their precursors, the blood-derived monocytes. The ´resting´ microglia -
Extrapyramidal Plasticity Predicts Recovery After Spinal Cord Injury E
www.nature.com/scientificreports OPEN Extrapyramidal plasticity predicts recovery after spinal cord injury E. Huber1, R. Patel 2,3, M. Hupp1, N. Weiskopf 7,8, M. M. Chakravarty2,3,4 & P. Freund 1,5,6,7* Spinal cord injury (SCI) leads to wide-spread neurodegeneration across the neuroaxis. We explored trajectories of surface morphology, demyelination and iron concentration within the basal ganglia- thalamic circuit over 2 years post-SCI. This allowed us to explore the predictive value of neuroimaging biomarkers and determine their suitability as surrogate markers for interventional trials. Changes in markers of surface morphology, myelin and iron concentration of the basal ganglia and thalamus were estimated from 182 MRI datasets acquired in 17 SCI patients and 21 healthy controls at baseline (1-month post injury for patients), after 3, 6, 12, and 24 months. Using regression models, we investigated group diference in linear and non-linear trajectories of these markers. Baseline quantitative MRI parameters were used to predict 24-month clinical outcome. Surface area contracted in the motor (i.e. lower extremity) and pulvinar thalamus, and striatum; and expanded in the motor thalamus and striatum in patients compared to controls over 2-years. In parallel, myelin-sensitive markers decreased in the thalamus, striatum, and globus pallidus, while iron-sensitive markers decreased within the left caudate. Baseline surface area expansions within the striatum (i.e. motor caudate) predicted better lower extremity motor score at 2-years. Extensive extrapyramidal neurodegenerative and reorganizational changes across the basal ganglia-thalamic circuitry occur early after SCI and progress over time; their magnitude being predictive of functional recovery. -
Orienting Head Movements Resulting from Electrical Microstimulation of the Brainstem Tegmentum in the Barn Owl
The Journal of Neuroscience, January 1993, 13(l): 351370 Orienting Head Movements Resulting from Electrical Microstimulation of the Brainstem Tegmentum in the Barn Owl Tom Masino and Eric I. Knudsen Department of Neurobiology, Stanford University, Stanford, California 943055401 The size and direction of orienting movements are repre- movement latency, duration, velocity, and size each dem- sented systematically as a motor map in the optic tectum of onstrated dependencies on stimulus amplitude, frequency, the barn owl (du Lac and Knudsen, 1990). The optic tectum and duration. projects to several distinct regions in the medial brainstem The data demonstrate directly that at the level of the mid- tegmentum, which in turn project to the spinal cord (Masino brain tegmentum there exists a three-dimensional Cartesian and Knudsen, 1992). This study explores the hypothesis that representation of head-orienting movements such that hor- a fundamental transformation in the neural representation izontal, vertical, and roll components of movement are en- of orienting movements takes place in the brainstem teg- coded by anatomically distinct neural circuits. The data sug- mentum. Head movements evoked by electrical microstim- gest that in the projection from the optic tectum to these ulation in the brainstem tegmentum of the alert barn owl were medial tegmental regions, the topographic code for orienting cataloged and the sites of stimulation were reconstructed movement that originates in the tectum is transformed into histologically. Movements elicited from the brainstem teg- this Cartesian code. mentum were categorized into one of six different classes: [Key words: optic tectum, superior colliculus, saccadic saccadic head rotations, head translations, facial move- head movement, brainstem tegmentum, interstitial nucleus ments, vocalizations, limb movements, and twitches. -
Brainstem Dysfunction in Critically Ill Patients
Benghanem et al. Critical Care (2020) 24:5 https://doi.org/10.1186/s13054-019-2718-9 REVIEW Open Access Brainstem dysfunction in critically ill patients Sarah Benghanem1,2 , Aurélien Mazeraud3,4, Eric Azabou5, Vibol Chhor6, Cassia Righy Shinotsuka7,8, Jan Claassen9, Benjamin Rohaut1,9,10† and Tarek Sharshar3,4*† Abstract The brainstem conveys sensory and motor inputs between the spinal cord and the brain, and contains nuclei of the cranial nerves. It controls the sleep-wake cycle and vital functions via the ascending reticular activating system and the autonomic nuclei, respectively. Brainstem dysfunction may lead to sensory and motor deficits, cranial nerve palsies, impairment of consciousness, dysautonomia, and respiratory failure. The brainstem is prone to various primary and secondary insults, resulting in acute or chronic dysfunction. Of particular importance for characterizing brainstem dysfunction and identifying the underlying etiology are a detailed clinical examination, MRI, neurophysiologic tests such as brainstem auditory evoked potentials, and an analysis of the cerebrospinal fluid. Detection of brainstem dysfunction is challenging but of utmost importance in comatose and deeply sedated patients both to guide therapy and to support outcome prediction. In the present review, we summarize the neuroanatomy, clinical syndromes, and diagnostic techniques of critical illness-associated brainstem dysfunction for the critical care setting. Keywords: Brainstem dysfunction, Brain injured patients, Intensive care unit, Sedation, Brainstem -
Optogenetic Activation of Cholinergic Neurons in the PPT Or LDT Induces REM Sleep
Optogenetic activation of cholinergic neurons in the PPT or LDT induces REM sleep Christa J. Van Dorta,b,c,1, Daniel P. Zachsa,b,c, Jonathan D. Kennya,b,c, Shu Zhengb, Rebecca R. Goldblumb,c,d, Noah A. Gelwana,b,c, Daniel M. Ramosb,c, Michael A. Nolanb,c,d, Karen Wangb,c, Feng-Ju Wengb,e, Yingxi Linb,e, Matthew A. Wilsonb,c, and Emery N. Browna,b,d,f,1 aDepartment of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114; and bDepartment of Brain and Cognitive Sciences, cPicower Institute for Learning and Memory, eMcGovern Institute for Brain Research, fHarvard-MIT Division of Health Sciences and Technology, and dInstitute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139 Contributed by Emery N. Brown, December 3, 2014 (sent for review September 19, 2014; reviewed by Helen A. Baghdoyan and H. Craig Heller) Rapid eye movement (REM) sleep is an important component of REM sleep regulation, a method that can modulate specific cell the natural sleep/wake cycle, yet the mechanisms that regulate types in the behaving animal is needed. Optogenetics now pro- REM sleep remain incompletely understood. Cholinergic neurons vides this ability to target specific subpopulations of neurons in the mesopontine tegmentum have been implicated in REM sleep and control them with millisecond temporal resolution (30). regulation, but lesions of this area have had varying effects on REM Therefore, we aimed to determine the role of cholinergic sleep. Therefore, this study aimed to clarify the role of cholinergic neurons in the PPT and LDT in REM sleep regulation using neurons in the pedunculopontine tegmentum (PPT) and laterodor- optogenetics. -
Brainstem Dental 2012.Doc
Dental Neuroanatomy January 12 and 19, 10-12, 2012 Suzanne S. Stensaas, Ph.D. Dear Students: Please print these notes and bring them with you. My style is to use a Tablet PC and I draw on either a Word or pdf copy with colors. Be prepared to draw. Have at least 5 colors. Please try to look at the notes AHEAD OF TIME for each lecture in this course. This way you can see the direction and organization of the lecture and be more familiar with the terms. There will be a quiz (that does not count) at the beginning to cover topics in the two gross anatomy lectures by Dr. Morton in Phase 1. They are G 17B and GL 18 Waxman, S Clinical Neuroanatomy, 26th ed.2010. THE OLD EDITION IS FINE TOO. Review Ch 5 on the spinal cord organization, but not the tracts in the middle or lesions at the end of the chapter. Also review the basic concept of a reflex. Review or skim Ch 12 on the vascular supply of the brain. Just look at pictures and legends for the clinical part at the end. NEW material: Chapter 7 Waxman, Brainstem, but not the cerebellum part. NEW material: Chapter 8 Waxman, Cranial nerves, all of it including autonomic. BEWARE THE CRANIAL NERVES ARE KILLERS! There are about 50 copies of the following bright yellow paperback book, which can be checked out from the Eccles Health Sciences Library and kept for the duration of the course. They are on reserve as: Cranial nerves: anatomy and clinical comments Linda Wilson-Pauwels, 1988 Toronto; Philadelphia: B.C. -
Quadrupedal Motor Systems
Motor systems Chris Thomson BVSc(Hons), Dip ACVIM (Neurol), Dip ECVN, PhD Associate Professor Neurobiology, Dept. of Vet. Med., University of Alaska, Fairbanks, 1 Alaska. Quadrupedal Motor Systems What are their functions? 1. Antigravity support 2. Postural platform for movement 3. Movement initiation, maintenance and termination Fig 5.3 Thomson and Hahn 2 Motor hierarchy • Motor unit – LMN and NMJ • Reflexes • Central pattern generators (CPG) • UMN – Semiautomatic function – brainstem – Skilled/learned function – forebrain EMG study Kiwi chick • Motor planning centres 3 Neuromuscular junction Motor unit = MN + innervated muscle cells Size determines degree of fine control Examples A B B Fig 1.4 Thomson and Hahn A 4 UMN and LMN: the confusing couplet Upper motor neurons (UMN) – central MN • Location: confined to brain and spinal cord – ‘Management’ – Control motor activity » Initiate, regulate, terminate – Lower motor neurons (LMN) – peripheral MN • Location – nerve cell body in CNS, axon in PNS – ‘Workers’ – Connect to muscle of body, limb or head – Key part of the reflex – Spinal and cranial nerves » Cause muscle to contract 5 Motor systems LMN also in CNN and visceral efferents (autonomic) Picture of ‘Stephie’ By Catie, aged 6 6 Reflexes • What is their physiological role in posture and locomotion? – Agonist-antagonist muscle interaction – Antigravity – Gait switch between retraction and protraction Fig 4.3 Thomson and Hahn 7 Fig 5.3 Thomson and Hahn Appendicular muscle reflexes – Agonist-antagonist muscle interaction • Intersegmental -
Isolated Necrosis of Central Tegmental Tracts Due to Neonatal Hypoxic-Ischemic Encephalopathy: MRI Findings
Journal of Neurology & Stroke Case Report Open Access Isolated necrosis of central tegmental tracts due to neonatal hypoxic-ischemic encephalopathy: MRI findings Abstract Volume 11 Issue 1 - 2021 Perinatal hypoxia is an old entity that still prevails today and may lead to neurological Tomás de Andrade Lourenção Freddi, Luiz sequelae that can go unnoticed until a certain age, generating many costs for public health. In this case report, we demonstrate on magnetic resonance imaging an unusual pattern of Fellipe Curvêlo Ciraulo Santos, Nelson Paes perinatal hypoxia in a preterm 5-month-old infant, involving the central tegmental tracts Fortes Diniz Ferreira, Felipe Diego Gomes and briefly discuss its possible pathophysiology. Dantas Department of Radiology, Hospital do Coração, Brazil Keywords: magnetic resonance imaging, asphyxia, hypoxic-ischemic encephalopathy, tegmentum, neonates, brainstem Correspondence: Tomás de Andrade Lourenção Freddi, Hospital do Coração, 147 Desembargador Eliseu Guilherme Street, São Paulo, SP, 04004-030, Brazil, Tel +5511976059280, Email Received: May 25, 2020 | Published: Febrauary 15, 2021 Abbreviations: MRI, magnetic resonance imaging; HII, that connect the red nucleus and the inferior olivary nucleus, being hypoxic-ischemic injury; FLAIR, fluid-attenuated inversion recovery; part of the dentato-rubro-olivary system, called Guillain–Mollaret CTT, central tegmental tract; VGB, vigabatrin triangle.3–5 Introduction Hypoxic-ischemic injury (HII) is one of the most important causes of encephalopathy in neonates, irrespective of gestational age, and may occur in the uterus or during delivery by different intrapartum conditions. In preterm or very low birth weight infants, brain magnetic resonance imaging (MRI) can demonstrate multiple different findings, which a detailed description is beyond the scope of this article, although being periventricular leukomalacia the most frequent (seen in at least 50% of cases). -
Cerebral Cortex
Cerebral Cortex • Research on the structure and function of the brain reveals that there are both specialized and diffuse areas of function • Motor and sensory areas are localized in discrete cortical areas called domains • Many higher mental functions such as memory and language appear to have overlapping domains and are more diffusely located • Broadmann areas are areas of localized function Cerebral Cortex - Generalizations • The cerebral cortex has three types of functional areas – Motor areas / control voluntary motor function – Sensory areas / provide conscious awareness of sensation – Association areas / act mainly to integrate diverse information for purposeful action • Each hemisphere is chiefly concerned with the sensory and motor functions of the opposite (contralateral) side of the body Motor Areas • Cortical areas controlling motor functions lie in the posterior part of the frontal lobes • Motor areas include the primary motor cortex, the premotor cortex, Broca’s area, and the front eye field Primary Motor Cortex • The primary motor cortex is located in the precentral gyrus of the frontal lobe of each hemisphere • Large neurons (pyramidal cells) in these gyri allow us to consciously control the precise or skill voluntary movements of our skeletal muscles Pyramidal cells • These long axons, which project to the spinal cord, form the massive Dendrites voluntary motor tracts called the pyramidal, or corticospinal tracts • All other descending motor tracts issue from brain stem nuclei and consists of chains of two, three, or