Fine Structure of the Myoepithelium of The
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Te2, Part Iii
TERMINOLOGIA EMBRYOLOGICA Second Edition International Embryological Terminology FIPAT The Federative International Programme for Anatomical Terminology A programme of the International Federation of Associations of Anatomists (IFAA) TE2, PART III Contents Caput V: Organogenesis Chapter 5: Organogenesis (continued) Systema respiratorium Respiratory system Systema urinarium Urinary system Systemata genitalia Genital systems Coeloma Coelom Glandulae endocrinae Endocrine glands Systema cardiovasculare Cardiovascular system Systema lymphoideum Lymphoid system Bibliographic Reference Citation: FIPAT. Terminologia Embryologica. 2nd ed. FIPAT.library.dal.ca. Federative International Programme for Anatomical Terminology, February 2017 Published pending approval by the General Assembly at the next Congress of IFAA (2019) Creative Commons License: The publication of Terminologia Embryologica is under a Creative Commons Attribution-NoDerivatives 4.0 International (CC BY-ND 4.0) license The individual terms in this terminology are within the public domain. Statements about terms being part of this international standard terminology should use the above bibliographic reference to cite this terminology. The unaltered PDF files of this terminology may be freely copied and distributed by users. IFAA member societies are authorized to publish translations of this terminology. Authors of other works that might be considered derivative should write to the Chair of FIPAT for permission to publish a derivative work. Caput V: ORGANOGENESIS Chapter 5: ORGANOGENESIS -
Expression of Integrins and Basement Membrane Components by Wound Keratinocytes
Expression of integrins and basement membrane components by wound keratinocytes. H Larjava, … , R H Kramer, J Heino J Clin Invest. 1993;92(3):1425-1435. https://doi.org/10.1172/JCI116719. Research Article Extracellular matrix proteins and their cellular receptors, integrins, play a fundamental role in keratinocyte adhesion and migration. During wound healing, keratinocytes detach, migrate until the two epithelial sheets confront, and then regenerate the basement membrane. We examined the expression of different integrins and their putative ligands in keratinocytes during human mucosal wound healing. Migrating keratinocytes continuously expressed kalinin but not the other typical components of the basement membrane zone: type IV collagen, laminin, and type VII collagen. When the epithelial sheets confronted each other, these missing basement membrane components started to appear gradually through the entire wound area. The expression of integrin beta 1 subunit was increased in keratinocytes during migration. The beta 1-associated alpha 2 and alpha 3 subunits were expressed constantly by wound keratinocytes whereas the alpha 5 subunit was present only in keratinocytes during reepithelialization. Furthermore, migrating cells started to express alpha v-integrins which were not present in the nonaffected epithelium. All keratinocytes also expressed the alpha 6 beta 4 integrin during migration. In the migrating cells, the distribution of integrins was altered. In normal mucosa, beta 1-integrins were located mainly on the lateral plasma membrane and alpha 6 beta 4 at the basal surface of basal keratinocytes in the nonaffected tissue. In wounds, integrins were found in filopodia of migrating keratinocytes, and also surrounding cells in […] Find the latest version: https://jci.me/116719/pdf Expression of Integrins and Basement Membrane Components by Wound Keratinocytes Hannu Lariava, * Tuula Salo,t Kirsi Haapasalmi, * Randall H. -
Modelling Breast Epithelial-Endothelial Interaction in Three-Dimensional Cell Culture
Modelling breast epithelial-endothelial interaction in three-dimensional cell culture A thesis submitted for the degree of Master of Science Sævar Ingþórsson Department of Medicine University of Iceland Instructors and Masters Project Committee: Þórarinn Guðjónsson, Ph.D Magnús Karl Magnússon, MD Kristján Leósson, Ph.D Reykjavik, Iceland September 2008 Samspil æðaþels og eðlilegs og illkynja þekjuvefjar úr brjóstkirtli í þrívíðri frumurækt Ritgerð til meistaragráðu Sævar Ingþórsson Háskóli Íslands Læknadeild Leiðbeinendur og meistaranámsnefnd: Þórarinn Guðjónsson, Ph.D Magnús Karl Magnússon, MD Kristján Leósson, Ph.D Reykjavík, September 2008 Ágrip Brjóstkirtillinn samanstendur af tveimur megingerðum þekjuvefsfruma, kirtilþekju- og vöðvaþekjufrumum. Saman mynda þessar frumugerðir hina greinóttu formgerð brjóstkirtilsins. Kirtilvefurinn er umlukinn æðaríkum stoðvef sem inniheldur margar mismunandi frumugerðir, þ.m.t. bandvefsfrumur og æðaþelsfrumur. Þroskun og sérhæfing kirtilsins er mjög háð samskiptum hans við millifrumuefni brjóstsins og frumur stoðvefjarins. Mest áhersla hefur verið lögð á rannsóknir á bandvefsfrumum í þessu tilliti, en minni athygli beint að æðaþelsfrumum, sem voru lengi taldar gegna því hlutverki einu að miðla súrefni og næringu um líkamann. Á síðustu árum hefur verið sýnt fram á að nýmyndun æða í krabbameinsæxlum spili stórt hlutverk í framþróun æxlisvaxtar og hefur það verið tengt slæmum horfum. Nýlegar rannsóknir hafa sýnt fram á mikilvægt hlutverk æðaþels í þroskun og sérhæfingu ýmissa líffæra, til dæmis í heila, lifur og beinmerg sem og í framþróun krabbameins. Nýleg þekking bendir einnig til mikilvægra áhrifa æðaþels á þroskun eðlilegs og illkynja brjóstvefjar. Markmið verkefnisins er að kanna áhrif brjóstaæðaþels á eðlilegar og illkynja brjóstaþekjufrumulínur og nota til þess þrívíð ræktunarlíkön sem þróuð voru á rannsóknastofunni, sem og að endurbæta þessi líkön til frekari rannsókna á samskiptum æðaþels og þekjufruma. -
Sweat Gland Myoepithelial Cell Differentiation
Journal of Cell Science 112, 1925-1936 (1999) 1925 Printed in Great Britain © The Company of Biologists Limited 1999 JCS4638 Human sweat gland myoepithelial cells express a unique set of cytokeratins and reveal the potential for alternative epithelial and mesenchymal differentiation states in culture Margarete Schön1,*, Jennifer Benwood1, Therese O’Connell-Willstaedt2 and James G. Rheinwald1,2,‡ 1Division of Dermatology/Department of Medicine, Brigham and Women’s Hospital, and 2Division of Cell Growth and Regulation, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA *Present address: Department of Dermatology, Heinrich-Heine University, Moorenstrasse 5, 40225 Düsseldorf, Germany ‡Author for correspondence (e-mail: [email protected]) Accepted 9 April; published on WWW 26 May 1999 SUMMARY We have characterized precisely the cytokeratin expression myoepithelial cells, a constituent of secretory glands. pattern of sweat gland myoepithelial cells and have Immunostaining of skin sections revealed that only sweat identified conditions for propagating this cell type and gland myoepithelial cells expressed the same pattern of modulating its differentiation in culture. Rare, unstratified keratins and α-sma and lack of E-cadherin as the cell type epithelioid colonies were identified in cultures initiated we had cultured. Interestingly, our immunocytochemical from several specimens of full-thickness human skin. These analysis of ndk, a skin-derived cell line of uncertain cells divided rapidly in medium containing serum, identity, suggests that this line is of myoepithelial origin. epidermal growth factor (EGF), and hydrocortisone, and Earlier immunohistochemical studies by others had found maintained a closely packed, epithelioid morphology when myoepithelial cells to be K7-negative. -
Nomina Histologica Veterinaria, First Edition
NOMINA HISTOLOGICA VETERINARIA Submitted by the International Committee on Veterinary Histological Nomenclature (ICVHN) to the World Association of Veterinary Anatomists Published on the website of the World Association of Veterinary Anatomists www.wava-amav.org 2017 CONTENTS Introduction i Principles of term construction in N.H.V. iii Cytologia – Cytology 1 Textus epithelialis – Epithelial tissue 10 Textus connectivus – Connective tissue 13 Sanguis et Lympha – Blood and Lymph 17 Textus muscularis – Muscle tissue 19 Textus nervosus – Nerve tissue 20 Splanchnologia – Viscera 23 Systema digestorium – Digestive system 24 Systema respiratorium – Respiratory system 32 Systema urinarium – Urinary system 35 Organa genitalia masculina – Male genital system 38 Organa genitalia feminina – Female genital system 42 Systema endocrinum – Endocrine system 45 Systema cardiovasculare et lymphaticum [Angiologia] – Cardiovascular and lymphatic system 47 Systema nervosum – Nervous system 52 Receptores sensorii et Organa sensuum – Sensory receptors and Sense organs 58 Integumentum – Integument 64 INTRODUCTION The preparations leading to the publication of the present first edition of the Nomina Histologica Veterinaria has a long history spanning more than 50 years. Under the auspices of the World Association of Veterinary Anatomists (W.A.V.A.), the International Committee on Veterinary Anatomical Nomenclature (I.C.V.A.N.) appointed in Giessen, 1965, a Subcommittee on Histology and Embryology which started a working relation with the Subcommittee on Histology of the former International Anatomical Nomenclature Committee. In Mexico City, 1971, this Subcommittee presented a document entitled Nomina Histologica Veterinaria: A Working Draft as a basis for the continued work of the newly-appointed Subcommittee on Histological Nomenclature. This resulted in the editing of the Nomina Histologica Veterinaria: A Working Draft II (Toulouse, 1974), followed by preparations for publication of a Nomina Histologica Veterinaria. -
Nails Develop from Thickened Areas of Epidermis at the Tips of Each Digit Called Nail Fields
Nail Biology: The Nail Apparatus Nail plate Proximal nail fold Nail matrix Nail bed Hyponychium Nail Biology: The Nail Apparatus Lies immediately above the periosteum of the distal phalanx The shape of the distal phalanx determines the shape and transverse curvature of the nail The intimate anatomic relationship between nail and bone accounts for the bone alterations in nail disorders and vice versa Nail Apparatus: Embryology Nail field develops during week 9 from the epidermis of the dorsal tip of the digit Proximal border of the nail field extends downward and proximally into the dermis to create the nail matrix primordium By week 15, the nail matrix is fully developed and starts to produce the nail plate Nails develop from thickened areas of epidermis at the tips of each digit called nail fields. Later these nail fields migrate onto the dorsal surface surrounded laterally and proximally by folds of epidermis called nail folds. Nail Func7on Protect the distal phalanx Enhance tactile discrimination Enhance ability to grasp small objects Scratching and grooming Natural weapon Aesthetic enhancement Pedal biomechanics The Nail Plate Fully keratinized structure produced throughout life Results from maturation and keratinization of the nail matrix epithelium Attachments: Lateral: lateral nail folds Proximal: proximal nail fold (covers 1/3 of the plate) Inferior: nail bed Distal: separates from underlying tissue at the hyponychium The Nail Plate Rectangular and curved in 2 axes Transverse and horizontal Smooth, although -
Histological Variations in Myoepithelial Cells and Arrectores Pilorum Muscles Among Caudal, Metatarsal and Preorbital Glands In
NOTE Anatomy Histological Variations in Myoepithelial Cells and Arrectores Pilorum Muscles among Caudal, Metatarsal and Preorbital Glands in Hokkaido Sika Deer (Cervus nippon yesoensis Heude, 1884) Nobuo OZAKI1), Masatsugu SUZUKI1)* and Noriyuki OHTAISHI1) 1)Laboratory of Wildlife Biology, The Graduate School of Veterinary Medicine, Hokkaido University, Kita-ku, Sapporo 060–0818, Japan (Received 1 April 2003/Accepted 15 October 2003) ABSTRACT. The morphological characteristics of myoepithelial cells and arrectores pilorum muscles were investigated in caudal, metatarsal and preorbital glands of Hokkaido sika deer (Cervus nippon yesoensis Heude, 1884) using immunohistochemistry for α-smooth muscle actin. In the metatarsal, preorbital and general skin glands, myoepithelial cell layers continuously embraced the secretory epithelium, while in the caudal gland, discontinuous myoepithelial cell rows surrounded the apocrine tubules. There was a trend that the widths of the myoepithelial cells of the caudal and preorbital glands appeared to be thinner than those of the metatarsal and general skin glands. In the metatarsal gland, the arrectores pilorum muscles were highly developed and considerably larger than those in other skin glands. KEY WORDS: arrectores pilorum muscle, myoepithelial cell, sika deer. J. Vet. Med. Sci. 66(3): 283–285, 2004 The specialized skin glands in the cervid species include were incubated for 15 min at room temperature with a bioti- forehead, preorbital, tarsal, metatarsal, interdigital and cau- nylated rabbit antibody against mouse IgG, IgA and IgM dal glands [15], most of which contain both apocrine and (Nichirei). Then they were rinsed three times (10 min each) sebaceous glandular elements [1, 7, 12]. In Hokkaido sika in PBS and incubated for 10 min at room temperature in a deer (Cervus nippon yesoensis Heude, 1884), the existence streptavidin-biotin peroxidase complex (Nichirei). -
Basement Membrane
J Clin Pathol: first published as 10.1136/jcp.s3-12.1.59 on 1 January 1978. Downloaded from J. clin. Path., 31, Suppl. (Roy. Coll. Path.), 12, 59-66 Basement membrane JOHN T. IRELAND From the Southern General Hospital, Glasgow, and the University of Glasgow Basement membrane has attracted less attention will be reviewed with the aim of providing new than the other components of connective tissue. But, insight into the function of basement membrane in like the other extracellular fibres and matrix health and disease. materials, it can profoundly influence both the structure and function of advanced life forms. Basement membrane turnover Usually taking the shape of thin, structureless cementing material between epithelial and con- Much evidence has accumulated from various nective tissue, basement membranes are widely sources (Farquhar et al., 1961; Andres et al., 1962; distributed throughout the body. They are found Kurtz and Feldman, 1962; Vernier, 1964; Pierce, as extracellular components of blood capillaries, 1966; Thoenes, 1967; Lee et al., 1969; Walker, 1973) renal glomeruli and tubules, alveoli, retina, lens to show that visceral epithelium is responsible for capsule, muscle parasarcolemma, sweat glands, basement membrane synthesis (Fig. 2). Until recently, Schwann cells, and breast ducts. Although sharing however, its rate of turnover had been less clear. The similar morphological, biochemical, and antigenic elegant, long-termsequentialstudiesof Walker (1973), properties, basement membrane can be developed using the argyric technique, confirmed the view that for different functions in special situations. In the turnover is slow. Clearance of silver from the rat lens capsule of the eye, for example, it provides glomerulus is exclusively undirectional from the copyright. -
The Mammary Myoepithelial Cell MEJDI MOUMEN, AURÉLIE CHICHE, STÉPHANIE CAGNET, VALÉRIE PETIT, KARINE RAYMOND, MARISA M
Int. J. Dev. Biol. 55: 763-771 doi: 10.1387/ijdb.113385mm www.intjdevbiol.com The mammary myoepithelial cell MEJDI MOUMEN, AURÉLIE CHICHE, STÉPHANIE CAGNET, VALÉRIE PETIT, KARINE RAYMOND, MARISA M. FARALDO, MARIE-ANGE DEUGNIER and MARINA A. GLUKHOVA* CNRS, UMR 144 Institut Curie "Compartimentation et Dynamique Cellulaires", Paris, France ABSTRACT Over the last few years, the discovery of basal-type mammary carcinomas and the association of the regenerative potential of the mammary epithelium with the basal myoepithelial cell population have attracted considerable attention to this second major mammary lineage. Howe- ver, many questions concerning the role of basal myoepithelial cells in mammary morphogenesis, functional differentiation and disease remain unanswered. Here, we discuss the mechanisms that control the myoepithelial cell differentiation essential for their contractile function, summarize new data concerning the roles played by cell-extracellular matrix (ECM), intercellular and paracrine interactions in the regulation of various aspects of the mammary basal myoepithelial cell functional activity. Finally, we analyze the contribution of the basal myoepithelial cells to the regenerative potential of the mammary epithelium and tumorigenesis. KEY WORDS: differentiation, extracellular matrix, intercellular signaling, stem cells, tumorigenesis Introduction in permanent reciprocal interactions with the connective tissue surrounding the mammary epithelium. Functionally differentiated mammary gland consists of secretory The myoepithelium -
The Nail Bed, Part I. the Normal Nail Bed Matrix, Stem Cells, Distal Motion and Anatomy
Central Journal of Dermatology and Clinical Research Review Article *Corresponding author Nardo Zaias, Department of Dermatology Mount Sinai Medical Center, Miami Beach, FL. 33140, 4308 The Nail Bed, Part I. The Normal Alton rd. Suite 750, USA, Email: [email protected] Submitted: 25 November 2013 Nail Bed Matrix, Stem Cells, Distal Accepted: 28 December 2013 Published: 31 December 2013 Copyright Motion and Anatomy © 2014 Zaias Nardo Zaias* OPEN ACCESS Department of Dermatology Mount Sinai Medical Center, USA Abstract The nail bed (NB) has its own matrix that originates from distinctive stem cells. The nail bed matrix stem cells (NBMSC) lie immediately distal to the nail plate (NP) matrix cells and are covered by the keratogenous zone of the most distal NPM (LUNULA). The undivided NBMS cells move distally along the NB basement membrane toward the hyponychium; differentiating and keratinizing at various locations, acting as transit amplifying cells and forming a thin layer of NB corneocytes that contact the overlying onychocytes of the NP, homologous to the inner hair root sheath. At the contact point, the NB corneocytes express CarcinoEmbryonic Antigen (CEA), a glycoprotein-modulating adherence which is also found in hair follicles and tumors. Only when both the NP and the NB are normal do they synchronously move distally. The normal NB keratinizes, expressing keratin K-5 and K-17 without keratohyaline granules. However, during trauma or disease states, it reverts to keratinization with orthokeratosis and expresses K-10, as seen in developmental times. Psoriasis is the only exception. Nail Bed epidermis can express hyperplasia and giant cells in some diseases. -
Índice De Denominacións Españolas
VOCABULARIO Índice de denominacións españolas 255 VOCABULARIO 256 VOCABULARIO agente tensioactivo pulmonar, 2441 A agranulocito, 32 abaxial, 3 agujero aórtico, 1317 abertura pupilar, 6 agujero de la vena cava, 1178 abierto de atrás, 4 agujero dental inferior, 1179 abierto de delante, 5 agujero magno, 1182 ablación, 1717 agujero mandibular, 1179 abomaso, 7 agujero mentoniano, 1180 acetábulo, 10 agujero obturado, 1181 ácido biliar, 11 agujero occipital, 1182 ácido desoxirribonucleico, 12 agujero oval, 1183 ácido desoxirribonucleico agujero sacro, 1184 nucleosómico, 28 agujero vertebral, 1185 ácido nucleico, 13 aire, 1560 ácido ribonucleico, 14 ala, 1 ácido ribonucleico mensajero, 167 ala de la nariz, 2 ácido ribonucleico ribosómico, 168 alantoamnios, 33 acino hepático, 15 alantoides, 34 acorne, 16 albardado, 35 acostarse, 850 albugínea, 2574 acromático, 17 aldosterona, 36 acromatina, 18 almohadilla, 38 acromion, 19 almohadilla carpiana, 39 acrosoma, 20 almohadilla córnea, 40 ACTH, 1335 almohadilla dental, 41 actina, 21 almohadilla dentaria, 41 actina F, 22 almohadilla digital, 42 actina G, 23 almohadilla metacarpiana, 43 actitud, 24 almohadilla metatarsiana, 44 acueducto cerebral, 25 almohadilla tarsiana, 45 acueducto de Silvio, 25 alocórtex, 46 acueducto mesencefálico, 25 alto de cola, 2260 adamantoblasto, 59 altura a la punta de la espalda, 56 adenohipófisis, 26 altura anterior de la espalda, 56 ADH, 1336 altura del esternón, 47 adipocito, 27 altura del pecho, 48 ADN, 12 altura del tórax, 48 ADN nucleosómico, 28 alunarado, 49 ADNn, 28 -
Science of the Nail Apparatus David A.R
1 CHAPTER 1 Science of the Nail Apparatus David A.R. de Berker 1 and Robert Baran 2 1 Bristol Dermatology Centre , Bristol Royal Infi rmary , Bristol , UK 2 Nail Disease Center, Cannes; Gustave Roussy Cancer Institute , Villejuif , France Gross anatomy and terminology, 1 Venous drainage, 19 Physical properties of nails, 35 Embryology, 3 Effects of altered vascular supply, 19 Strength, 35 Morphogenesis, 3 Nail fold vessels, 19 Permeability, 35 Tissue differentiation, 4 Glomus bodies, 20 Radiation penetration, 37 Factors in embryogenesis, 4 Nerve supply, 21 Imaging of the nail apparatus, 37 Regional anatomy, 5 Comparative anatomy and function, 21 Radiology, 37 Histological preparation, 5 The nail and other appendages, 22 Ultrasound, 37 Nail matrix and lunula, 7 Phylogenetic comparisons, 23 Profi lometry, 38 Nail bed and hyponychium, 9 Physiology, 25 Dermoscopy (epiluminescence), 38 Nail folds, 11 Nail production, 25 Photography, 38 Nail plate, 15 Normal nail morphology, 27 Light, 40 Vascular supply, 18 Nail growth, 28 Other techniques, 41 Arterial supply, 18 Nail plate biochemical analysis, 31 Gross anatomy and terminology with the ventral aspect of the proximal nail fold. The intermediate matrix (germinative matrix) is the epithe- Knowledge of nail unit anatomy and terms is important for lial structure starting at the point where the dorsal clinical and scientific work [1]. The nail is an opalescent win- matrix folds back on itself to underlie the proximal nail. dow through to the vascular nail bed. It is held in place by The ventral matrix is synonymous with the nail bed the nail folds, origin at the matrix and attachment to the nail and starts at the border of the lunula, where the inter- bed.