Effects of the Invasive Plant Spotted Knapweed

Total Page:16

File Type:pdf, Size:1020Kb

Effects of the Invasive Plant Spotted Knapweed EFFECTS OF THE INVASIVE PLANT SPOTTED KNAPWEED (Centaurea stoebe L.) ON GRASSLAND ARTHROPOD COMMUNITITIES: USE OF GENOMIC BARCODING TOOLS FOR ECOSYSTEMS RECLAMATION MANAGEMENT By BY: JORDANN GRACE FOSTER B.Sc. Carleton University, 2016 A thesis submitted in partial fulfillment of the requirements for the degree of: MASTER OF SCIENCE IN ENVIRONMENTAL SCIENCE Thesis Examining Committee: Lauchlan Fraser (PhD), Professor and Thesis Supervisor, Department of Natural Resource Sciences, Thompson Rivers University. Jonathan Van Hamme (PhD), Professor and Committee Member, Department of Biological Sciences, Thompson Rivers University. Rob Higgins (PhD), Associate Professor and Committee Member, Department of Biological Sciences, Thompson Rivers University Louis Gosselin (PhD), Professor and Committee Member, Department of Biological Sciences, Thompson Rivers University Adam Ford (PhD), Assistant Professor and External Examiner, Department of Biology, University of British Columbia Okanagan Campus © Jordann Grace Foster 2019 ii ABSTRACT British Columbia’s (BC) grasslands are home to 30 percent of the province’s species at risk and are one of Canada’s most endangered ecosystems. In BC’s Southern interior, human activities such as mining, recreation, and in certain instances, heavy livestock grazing, are altering grassland ecosystems; the increased soil disturbance may leave them susceptible to the colonization of invasive species. Invasive species can cause changes to native plant communities and nutrient cycling, and by doing so, may alter the amount and quality of habitat available for animals such as arthropods. Arthropods are diverse and contribute to energy flow and nutrient cycling, and are therefore an important group to study as a way of determining the effects of changes to ecosystem function. Spotted knapweed (Centaurea stoebe L.), a perennial forb native to Eastern Europe, is considered one of the most ecologically harmful invasive species in Western North America. The objectives of this study were (1) to determine if spotted knapweed is altering arthropod community structure and density in grassland habitats; and (2) to DNA metabarcode all arthropod specimens collected using methodology that could be implemented to expedite site restoration efforts. To address these objectives, pitfall traps were installed at sites that were colonized, in differing densities, by spotted knapweed, and DNA metabarcoding was conducted on specimens collected. The results suggest that spotted knapweed density indirectly correlates with arthropod functional groups through changes in plant community composition. These indirect effects show different correlations between the functional groups; suggesting that both top down and bottom up control is at play upon the introduction of spotted knapweed. Decreases in herbivore and detritivore biomass was associated with increasing spotted knapweed density. Omnivore, predator, and parasite biomass had more intricate interactions. DNA metabarcoding results indicated a more complex interaction between Orthoptera and spotted knapweed density than suggested by a simple positive correlation. All other arthropod orders sampled were not obviously influenced by spotted knapweed. This study describes a relatively rapid and inexpensive technique for monitoring arthropod biodiversity with a DNA metabarcoding methodology applicable to both invasive species conservation efforts and for guiding remediation work in disturbed grassland sites. Keywords: Invasive plant, arthropod, functional groups, metabarcoding, grassland, reclamation, remediation iii TABLE OF CONTENTS ABSTRACT .................................................................................................................................... ii ACKNOWLEDGEMENTS ........................................................................................................... vi LIST OF FIGURES ...................................................................................................................... vii LIST OF TABLES ....................................................................................................................... viii CHAPTER 1: GENERAL INTRODUCTION ............................................................................... 1 Grasslands ................................................................................................................................................................ 1 Arthropods ................................................................................................................................................................ 1 Spotted knapweed ..................................................................................................................................................... 2 DNA metabarcoding ................................................................................................................................................. 3 Objectives .................................................................................................................................................................. 5 REFERENCES ............................................................................................................................... 6 CHAPTER 2: ARE ARTHROPOD COMMUNITIES IN GRASSLAND ECOSYSTEMS AFFECTED BY THE ABUNDANCE OF AN INVASIVE PLANT? .......................................... 9 INTRODUCTION .......................................................................................................................... 9 METHODS ................................................................................................................................... 11 Study area ............................................................................................................................................................... 11 Site selection ........................................................................................................................................................... 14 Sampling protocol .................................................................................................................................................. 14 Arthropod specimen sorting ................................................................................................................................... 16 Data analysis .......................................................................................................................................................... 17 RESULTS ..................................................................................................................................... 17 Plant community characteristics ............................................................................................................................ 17 Arthropod functional biomass and diversity .......................................................................................................... 18 Arthropod community trophic interactions ........................................................................................................... 21 DISCUSSION ............................................................................................................................... 25 Plant community characteristics ............................................................................................................................ 25 Overall arthropod functional biomass and diversity ............................................................................................. 26 Herbivores .............................................................................................................................................................. 26 iv Omnivores ............................................................................................................................................................... 27 Predators ................................................................................................................................................................. 27 Parasites .................................................................................................................................................................. 28 Detritivores ............................................................................................................................................................. 28 Arthropod community trophic interactions ........................................................................................................... 29 Conclusion .............................................................................................................................................................. 30 REFERENCES ............................................................................................................................. 32 CHAPTER 3: DNA BARCODING AS AN EXPEDITED METHOD OF ARTHROPOD IDENTIFICATION....................................................................................................................... 38 INTRODUCTION ........................................................................................................................ 38 METHODS ................................................................................................................................... 40 DNA extraction ......................................................................................................................................................
Recommended publications
  • Diptera: Calyptratae)
    Systematic Entomology (2020), DOI: 10.1111/syen.12443 Protein-encoding ultraconserved elements provide a new phylogenomic perspective of Oestroidea flies (Diptera: Calyptratae) ELIANA BUENAVENTURA1,2 , MICHAEL W. LLOYD2,3,JUAN MANUEL PERILLALÓPEZ4, VANESSA L. GONZÁLEZ2, ARIANNA THOMAS-CABIANCA5 andTORSTEN DIKOW2 1Museum für Naturkunde, Leibniz Institute for Evolution and Biodiversity Science, Berlin, Germany, 2National Museum of Natural History, Smithsonian Institution, Washington, DC, U.S.A., 3The Jackson Laboratory, Bar Harbor, ME, U.S.A., 4Department of Biological Sciences, Wright State University, Dayton, OH, U.S.A. and 5Department of Environmental Science and Natural Resources, University of Alicante, Alicante, Spain Abstract. The diverse superfamily Oestroidea with more than 15 000 known species includes among others blow flies, flesh flies, bot flies and the diverse tachinid flies. Oestroidea exhibit strikingly divergent morphological and ecological traits, but even with a variety of data sources and inferences there is no consensus on the relationships among major Oestroidea lineages. Phylogenomic inferences derived from targeted enrichment of ultraconserved elements or UCEs have emerged as a promising method for resolving difficult phylogenetic problems at varying timescales. To reconstruct phylogenetic relationships among families of Oestroidea, we obtained UCE loci exclusively derived from the transcribed portion of the genome, making them suitable for larger and more integrative phylogenomic studies using other genomic and transcriptomic resources. We analysed datasets containing 37–2077 UCE loci from 98 representatives of all oestroid families (except Ulurumyiidae and Mystacinobiidae) and seven calyptrate outgroups, with a total concatenated aligned length between 10 and 550 Mb. About 35% of the sampled taxa consisted of museum specimens (2–92 years old), of which 85% resulted in successful UCE enrichment.
    [Show full text]
  • Geometrid Larvae of the Alpi Marittime Natural Park
    Geometrid larvae of the Alpi Marittime Natural Park (district of Valdieri, Cuneo, Italy), with descriptions of the larvae of two Gnophini Pierce, 1914 (Insecta: Lepidoptera: Geometridae) Gareth Edward KING Departamento de Biología (Zoología), Universidad Autónoma de Madrid, 28069 Cantoblanco, Madrid (Spain) [email protected] Félix Javier GONZÁLEZ-ESTÉBANEZ Departamento de Biodiversidad y Gestión Ambiental, Universidad de León, 24071 León (Spain) [email protected] Published on 31 December 2015 urn:lsid:zoobank.org:pub:36697C66-C6FF-4FC0-BD97-303C937A0BEF King G. E. & González-Estébanez F. J. 2015. — Geometrid larvae of the Alpi Marittime Natural Park (district of Valdieri, Cuneo, Italy), with descriptions of the larvae of two Gnophini Pierce, 1914 (Insecta: Lepidoptera: Geometridae), in Daugeron C., Deharveng L., Isaia M., Villemant C. & Judson M. (eds), Mercantour/Alpi Marittime All Taxa Biodiversity Inventory. Zoosystema 37 (4): 621-631. http://dx.doi.org/10.5252/z2015n4a8 KEY WORDS Insecta, ABSTRACT Lepidoptera, Examination of 14 plant families in the Alpi Marittime Alps Natural Park (Valdieri, Italy) resulted in Geometridae, Gnophini, the collection of 103 larvae of 28 geometrid taxa; these belong to three subfamilies, with Ennominae Italy, Duponchel, 1845 being the most representative (13 taxa = 46.4%). Th e fi nal instar (L5) of two taxa Maritime Alps, in the tribe Gnophini Pierce, 1914, Gnophos furvata meridionalis Wehrli, 1924 and Charissa pullata larvae, morphology, ([Denis & Schiff ermüller], 1775) is described, including its chaetotaxy. Biological data and observa- chaetotaxy. tions are provided for all taxa. RÉSUMÉ Les larves de Geometridae collectées dans le Parc naturel des Alpi Marittime (district Valdieri, Cuneo, Italie), MOTS CLÉS Insecta, avec la description des larves de deux espèces de Gnophini Pierce, 1914 (Insecta: Lepidoptera: Geometridae).
    [Show full text]
  • Spotted Knapweed Centaurea Stoebe Ssp. Micranthos (Gugler) Hayek
    spotted knapweed Centaurea stoebe ssp. micranthos (Gugler) Hayek Synonyms: Acosta maculosa auct. non Holub, Centaurea biebersteinii DC., C. maculosa auct. non Lam, C. maculosa ssp. micranthos G. Gmelin ex Gugler Other common names: None Family: Asteraceae Invasiveness Rank: 86 The invasiveness rank is calculated based on a species’ ecological impacts, biological attributes, distribution, and response to control measures. The ranks are scaled from 0 to 100, with 0 representing a plant that poses no threat to native ecosystems and 100 representing a plant that poses a major threat to native ecosystems. Description Ecological Impact Spotted knapweed is a biennial to short-lived perennial Impact on community composition, structure, and plant. Stems are 30½ to 91 cm tall and generally interactions: Spotted knapweed often forms dense branched. Rosette leaves are compound with several stands in natural communities. Infestations reduce the irregularly lobed segments. Stem leaves are alternate, 5 vigor of native plants, decrease the species diversity of to 15 cm long, more or less hairy, and resin-dotted. plant communities, and degrade the forage quality of Lower stem leaves are narrowly divided, while the wildlife habitats. Winter-ranging elk may avoid foraging upper stem leaves are undivided. Flower heads are 19 to in spotted knapweed dominated communities (Rice et al. 25½ mm wide and are composed of purple disc florets 1997). Knapweeds are allelopathic, inhibiting the (Royer and Dickinson 1999, Whitson et al. 2000). establishment and growth of surrounding vegetation (Whitson et al. 2000). Impact on ecosystem processes: Infestations of spotted knapweed have been shown to increase the erosion of topsoil.
    [Show full text]
  • Coleoptera) Deposited in the Natural History Museum of Barcelona, Spain
    Arxius de Miscel·lània Zoològica, 12(2014): 13–82 ISSN:Viñolas 1698 & –Masó0476 The collection of type specimens of the family Carabidae (Coleoptera) deposited in the Natural History Museum of Barcelona, Spain A. Viñolas & G. Masó Viñolas, A. & Masó, G., 2014. The collection of type specimens of the family Carabidae (Coleoptera) deposited in the Natural History Museum of Barcelona, Spain. Arxius de Miscel·lània Zoològica, 12: 13–82. Abstract The collection of type specimens of the family Carabidae (Coleoptera) deposited in the Natural History Museum of Barcelona, Spain.— The type collection of the family Carabidae (Coleop- tera) deposited in the Natural History Museum of Barcelona, Spain, has been organised, revised and documented. It contains 430 type specimens belonging to 155 different taxa. Of note are the large number of hypogean species, the species of Cicindelidae from Asenci Codina’s collection, and the species of Harpalinae extracted from Jacques Nègre’s collec- tion. In this paper we provide all the available information related to these type specimens. We therefore provide the following information for each taxon, species or subspecies: the original and current taxonomic status, original citation of type materials, exact transcription of original labels, and preservation condition of specimens. Moreover, the differences between original descriptions and labels are discussed. When a taxonomic change has occurred, the references that examine those changes are included at the end of the taxa description. Key words: Collection type, Coleoptera, Carabidae taxonomic revision family, Ground beetles. Resumen La colección de ejemplares tipo de la familia Carabidae(Coleoptera) depositados en el Museo de Ciencias Naturales de Barcelona, España.— Se ha organizado, revisado y documentado la colección de especímenes tipo de la familia Carabidae (Coleoptera) de- positados en el Museo de Ciencias Naturales de Barcelona.
    [Show full text]
  • Integrated Weed Control Project Western WA
    Integrated Weed Control Project – Western Washington Non-native invasive plant species threaten biological diversity, decrease forage and habitat for wildlife and livestock, increase wind and water erosion and decrease land values throughout Washington. Many years of manual and chemical control are required to impact large infested areas, which results in significant expenses for landowners and public agencies. Biological control offers an inexpensive control method that can provide long-term weed suppression. Biocontrol agents are self-perpetuating and can disperse to new and undetected weed infestations or those difficult to reach with other control practices. J.Andreas Although it can take agents several years to establish and begin impacting weed infestations, biocontrol is often a highly effective tool and in many cases is the best management option. Stem-mining beetle on Dalmatian toadflax. WSU Extension heads the Integrated Weed Control Project (IWCP) aimed at promoting the use of biocontrol agents for invasive plant management. Project Goals: • Establish biocontrol agents and manage them on a statewide scale to suppress noxious weeds. • Increase public awareness of the benefits and appropriate use of biocontrol as part of an integrated management strategy. • Foster and expand the westside component of the statewide project by providing biocontrol agents, information and expertise to land-managers from county, state and federal agencies, conservation organizations, tribes and private and industry landowners. IWCP in Thurston County County Highlights! The IWCP partners with the Thurston • An hour-long television County Noxious Weed Control Program to special featuring the provide biocontrol education and TCNWCP, The Nature implementation in the region. The TCNWCP Conservancy and the finds suitable release sites through field IWCP aired on Thurston surveys and works with IWCP personnel County TV over 20 times to redistribute biocontrol agents throughout since July 2007.
    [Show full text]
  • Univerzita Palackého V Olomouci Přírodovědecká Fakulta Katedra Zoologie a Ornitologická Laboratoř
    UNIVERZITA PALACKÉHO V OLOMOUCI PŘÍRODOVĚDECKÁ FAKULTA KATEDRA ZOOLOGIE A ORNITOLOGICKÁ LABORATOŘ Studie druhů tribu Gnophini České a Slovenské republiky (Lepidoptera: Geometridae) Diplomová práce Vypracovala: Eva CHYTRÁ Studijní program, obor: Biologie, Biologie‐ geografie Forma studia: prezenční Termín odevzdání práce: duben 2010 Vedoucí práce: RNDr. Alois ČELECHOVSKÝ, Ph.D. Olomouc, Česká republika 2010 1 Prohlašuji, že předložená diplomová práce je mým původním autorským dílem, které jsem vypracovala samostatně. Veškerou literaturu a další zdroje, z nichž jsem při zpracování čerpala, v práci řádně cituji a uvádím v seznamu použité literatury. V Olomouci, 20. 4. 2010 ....................................... 2 Děkuji vedoucímu diplomové práce RNDr. Aloisi Čelechovskému, Ph.D. za všestrannou a obětavou pomoc, poskytnutí cenných poznatků, podkladů a odborné vedení při zpracovávání této diplomové práce. Děkuji panu Prof. RNDr. Zdeňku Laštůvkovi, CSc. za poskytnutí materiálu. Děkuji Pavle Wewiórkové za pomoc s překladem určovacího klíče. Děkuji Mgr. Miloši Kristovi, Ph.D. za pomoc při vyhledávání ve sbírkách Vlastivědného muzea v Olomouci. Děkuji také svým nejbližším, kteří mě podporovali a umožnili mi věnovat se této práci. 3 Jméno a příjmení autora: Chytrá Eva Název práce: Studie druhů tribu Gnophini České a Slovenské republiky (Lepidoptera: Geometridae) Typ práce: diplomová práce Pracoviště: Katedra zoologie a Ornitologická laboratoř, PřF UP v Olomouci, tř. Svobody 26, Olomouc Vedoucí práce: RNDr. Alois Čelechovský, Ph. D. Rok obhajoby: 2010 Abstrakt: Tato diplomová práce je podrobnou studií českých a slovenských druhů tribu Gnophini (Geometridae, Lepidoptera). Jedná se o druhy rodů Gnophos, Charissa, Elophos, Glacies, Psodos a Siona. Uvedené rody, s výjimkou druhu Siona lineata, zahrnují taxony zoogeograficky významné, vyznačující se specifickými ekologickými nároky, proto bývá jejich výskyt často značně lokální, ostrůvkovitý.
    [Show full text]
  • Native Plant Establishment Success Influenced Yb Spotted Knapweed (Centaurea Stoebe) Control Method
    Grand Valley State University ScholarWorks@GVSU Funded Articles Open Access Publishing Support Fund 2014 Native Plant Establishment Success Influenced yb Spotted Knapweed (Centaurea stoebe) Control Method Laurelin M. Martin Grand Valley State University Neil W. MacDonald Grand Valley State University, [email protected] Tami E. Brown Grand Valley State University Follow this and additional works at: https://scholarworks.gvsu.edu/oapsf_articles Part of the Biology Commons ScholarWorks Citation Martin, Laurelin M.; MacDonald, Neil W.; and Brown, Tami E., "Native Plant Establishment Success Influenced by Spotted Knapweed (Centaurea stoebe) Control Method" (2014). Funded Articles. 15. https://scholarworks.gvsu.edu/oapsf_articles/15 This Article is brought to you for free and open access by the Open Access Publishing Support Fund at ScholarWorks@GVSU. It has been accepted for inclusion in Funded Articles by an authorized administrator of ScholarWorks@GVSU. For more information, please contact [email protected]. RESEARCH ARTICLE Native Plant Establishment Success Influenced by Spotted Knapweed (Centaurea stoebe) Control Method Laurelin M. Martin, Neil W. MacDonald and Tami E. Brown ABSTRACT Invasive species frequently need to be controlled as part of efforts to reestablish native species on degraded sites. While the effectiveness of differing control methods are often reported, the impacts these methods have on the establishment of a native plant community are often unknown. To determine methods that effectively reduce spotted knapweed (Cen- taurea stoebe) while enhancing native species establishment, we tested 12 treatment combinations consisting of an initial site preparation (mowing, mowing + clopyralid, or mowing + glyphosate), in factorial combination with annual adult knapweed hand pulling and/or burning. We established 48 plots and applied site preparation treatments during summer 2008, seeded 23 native forbs and grasses during spring 2009, pulled adult knapweed annually from 2009–2012, and burned in the early spring 2012.
    [Show full text]
  • Terrestrial Insects: a Hidden Biodiversity Crisis? 1
    Chapter 7—Terrestrial Insects: A Hidden Biodiversity Crisis? 1 Chapter 7 Terrestrial Insects: A Hidden Biodiversity Crisis? C.H. Dietrich Illinois Natural History Survey OBJECTIVES Like most other elements of the biota, the terrestrial insect fauna of Illinois has undergone drastic change since European colonization of the state. Although data are sparse or entirely lacking for most species, it is clear that many formerly abundant native species are now exceedingly rare while a few previously uncommon or undocumented species, both native and exotic, are now abundant. Much of this change may be attributable to fragmentation and loss of native habitats (e.g., deforestation, draining of wetlands, agricultural conversion and intensification, urbanization), although other factors such as invasion by exotic species (including plants, insects and pathogens), misuse of pesticides, and improper management of native ecosystems have probably also been involved. Data from Illinois and elsewhere in the north temperate zone provide evidence that at least some groups of terrestrial insects have undergone dramatic declines over the past several decades, suggesting that insects are no less vulnerable to anthropogenic environmental change than other groups of organisms Yet, insects continue to be under-represented on official lists of threatened or endangered species and conservation programs focus primarily on vertebrates and plants. This chapter summarizes available information on long-term changes in the terrestrial insect fauna of Illinois, reviews possible causes for these changes, highlights some urgent research needs, and provides recommendations for conservation and management of terrestrial insect communities. INTRODUCTION Insects are among the most important “little things that run the world” (1).
    [Show full text]
  • Environmental Assessment Twin Falls District Noxious Weed and Invasive
    United States Department of the Interior Bureau of Land Management Environmental Assessment Twin Falls District Noxious Weed and Invasive Plant Treatment DOI-BLM-ID-T000-2012-0001-EA U.S. Department of the Interior Bureau of Land Management Twin Falls District 2878 Addison Avenue East Twin Falls, ID 83301 Phone: (208) 735-2060 FAX: (208) 735-2076 Table of Contents CHAPTER 1 - PURPOSE AND NEED FOR ACTION .............................................................. 13 Background ............................................................................................................................... 13 Introduction ............................................................................................................................... 14 Location of Proposed Action ................................................................................................ 15 Purpose and Need for Action .................................................................................................... 19 Conformance with Applicable Land Use Plans ........................................................................ 19 FMDA ................................................................................................................................... 20 Jarbidge RMP........................................................................................................................ 20 Craters of the Moon Monument MP ..................................................................................... 21 Owyhee Canyonlands Wilderness
    [Show full text]
  • Bugs & Beasties of the Western Rhodopes
    Bugs and Beasties of the Western Rhodopes (a photoguide to some lesser-known species) by Chris Gibson and Judith Poyser [email protected] Yagodina At Honeyguide, we aim to help you experience the full range of wildlife in the places we visit. Generally we start with birds, flowers and butterflies, but we don’t ignore 'other invertebrates'. In the western Rhodopes they are just so abundant and diverse that they are one of the abiding features of the area. While simply experiencing this diversity is sufficient for some, as naturalists many of us want to know more, and in particular to be able to give names to what we see. Therein lies the problem: especially in eastern Europe, there are few books covering the invertebrates in any comprehensive way. Hence this photoguide – while in no way can this be considered an ‘eastern Chinery’, it at least provides a taster of the rich invertebrate fauna you may encounter, based on a couple of Honeyguide holidays we have led in the western Rhodopes during June. We stayed most of the time in a tight area around Yagodina, and almost anything we saw could reasonably be expected to be seen almost anywhere around there in the right habitat. Most of the photos were taken in 2014, with a few additional ones from 2012. While these creatures have found their way into the lists of the holiday reports, relatively few have been accompanied by photos. We have attempted to name the species depicted, using the available books and the vast resources of the internet, but in many cases it has not been possible to be definitive and the identifications should be treated as a ‘best fit’.
    [Show full text]
  • Multi-Trophic Level Interactions Between the Invasive Plant
    MULTI-TROPHIC LEVEL INTERACTIONS BETWEEN THE INVASIVE PLANT CENTAUREA STOEBE, INSECTS AND NATIVE PLANTS by Christina Rachel Herron-Sweet A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Land Resources and Environmental Sciences MONTANA STATE UNIVERSITY Bozeman, Montana May 2014 ©COPYRIGHT by Christina Rachel Herron-Sweet 2014 All Rights Reserved ii DEDICATION To my parents and grandparents, who instilled in me the value of education and have been my biggest supporters along the way. iii ACKNOWLEDGEMENTS Special thanks go to my two advisers Drs. Jane Mangold and Erik Lehnhoff for all their tremendous support, advice and feedback during my graduate program. My two other committee members Drs. Laura Burkle and Jeff Littlefield also deserve a huge thank you for the time and effort they put into helping me with various aspects of my project. This research would not have been possible without the dedicated crew of field and lab helpers: Torrin Daniels, Darcy Goodson, Daniel France, James Collins, Ann de Meij, Noelle Orloff, Krista Ehlert, and Hally Berg. The following individuals deserve recognition for their patience in teaching me pollinator identification, and for providing parasitoid identifications: Casey Delphia, Mike Simanonok, Justin Runyon, Charles Hart, Stacy Davis, Mike Ivie, Roger Burks, Jim Woolley, David Wahl, Steve Heydon, and Gary Gibson. Hilary Parkinson and Matt Lavin also offered their expertise in plant identification. Statistical advice and R code was generously offered by Megan Higgs, Sean McKenzie, Pamela Santibanez, Dan Bachen, Michael Lerch, Michael Simanonok, Zach Miller and Dave Roberts. Bryce Christiaens, Lyn Huyser, Gil Gale and Craig Campbell provided instrumental consultation on locating field sites, and the Circle H Ranch, Flying D Ranch and the United States Forest Service graciously allowed this research to take place on their property.
    [Show full text]
  • Online Dictionary of Invertebrate Zoology: A
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Armand R. Maggenti Online Dictionary of Invertebrate Zoology Parasitology, Harold W. Manter Laboratory of September 2005 Online Dictionary of Invertebrate Zoology: A Mary Ann Basinger Maggenti University of California-Davis Armand R. Maggenti University of California, Davis Scott Lyell Gardner University of Nebraska - Lincoln, [email protected] Follow this and additional works at: https://digitalcommons.unl.edu/onlinedictinvertzoology Part of the Zoology Commons Maggenti, Mary Ann Basinger; Maggenti, Armand R.; and Gardner, Scott Lyell, "Online Dictionary of Invertebrate Zoology: A" (2005). Armand R. Maggenti Online Dictionary of Invertebrate Zoology. 16. https://digitalcommons.unl.edu/onlinedictinvertzoology/16 This Article is brought to you for free and open access by the Parasitology, Harold W. Manter Laboratory of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Armand R. Maggenti Online Dictionary of Invertebrate Zoology by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Online Dictionary of Invertebrate Zoology 2 abdominal filament see cercus A abdominal ganglia (ARTHRO) Ganglia of the ventral nerve cord that innervate the abdomen, each giving off a pair of principal nerves to the muscles of the segment; located between the alimentary canal and the large ventral mus- cles. abactinal a. [L. ab, from; Gr. aktis, ray] (ECHINOD) Of or per- taining to the area of the body without tube feet that nor- abdominal process (ARTHRO: Crustacea) In Branchiopoda, mally does not include the madreporite; not situated on the fingerlike projections on the dorsal surface of the abdomen. ambulacral area; abambulacral. abactinally adv. abdominal somite (ARTHRO: Crustacea) Any single division of abambulacral see abactinal the body between the thorax and telson; a pleomere; a pleonite.
    [Show full text]