In a Word the Basics Early Television Analog Broadcasting Light And

Total Page:16

File Type:pdf, Size:1020Kb

In a Word the Basics Early Television Analog Broadcasting Light And LEARN SOMETHING NEW EACH WEEK ON OUR WORLD OF WONDER PAGES! Exploring the realms of history, science, nature and technology 1960 Philco Continental TELEVISIONAlmost everybody has one, and most of us watch too much of it. But few of us know how a television works or how new technologies will change the television. The TV has transformed entertainment and education around the world. 1939 RCA TRK9 Size matters In a word The first TV screens were no bigger than a business card. The demand for larger The word television entered the TV screens seems insatiable. Early large-screen TVs were heavy and clunky when English language in 1907. It is compared with today’s screens, which are becoming ever larger. Recently, the first derived from the Greek word tèle, foldable TV was unveiled; it has a whopping 165-inch screen that disappears into meaning “far,” and the Latin word the floor. The downside is a $400,000 price tag. visio, which means “sight.” It is based on the idea that televisions Light and color received moving pictures over The first television pictures were in distances using telegraph lines. black and white. In the 1960s and The abbreviation TV was intro- ’70s, color TV transmissions and duced in 1948. TV sets were developed. The basics Blue To understand how early televi- light sions worked, think of it as three parts that work together. A TV Red 1980 Zenith camera would turn a picture and Green light big-screen console sound into a signal, a TV trans- 2018 LED light mitter would send the signal TV screen sizes are measured diagonally, large-screen display through the air, and the TV re- from corner to corner. ceiver would capture the signal Pixels and turn it back into pictures and Television technology today Images sound. Over the past 20 years, TVs have become not only you see bigger, but lighter, thinner and smarter. A smart TV on your Sunlight and electric light are Early television connects to the internet, allowing users to stream television are made up white light. There are three pri- music and videos, browse websites and view The first generation of televisions of pixels (picture ele- mary colors of light — red, green photos. used a spinning disc and a neon ments). Each pixel has and blue. The combination of lamp to produce a blurry, orange- Some examples of more recent TV technology three dots that glow these three primary colors creates tinted picture about the size of a and how they work: red, green and blue. white light. business card. These televisions, Liquid Crystal Display (LCD) TVs were first con- Generally, the more built between 1926 and 1935, are ceived in the 1960s. LCD technology uses a unique pixels a screen has, the Going Digital called mechanical televisions. state of matter called liquid crystals. Once very higher its resolution. The transition from analog to Meanwhile, other people were popular, this kind of TV is getting harder to find. The resolution of a flat digital broadcasting began experimenting with electronic LED TVs are illuminated by light-emitting diodes. TV can be defined as around 2000. Digital technology televisions using cathode-ray This TV technology has been around since 2007 the physical size of the can produce TV programming with tubes (CRT). The tubes pro- and allows the TVs to be thinner. screen, measured by movie-quality picture and CD- jected electrons onto the screen, quality sound. Digital technology Organic light-emitting diode (OLED) TVs have an the number of pixels. creating a much higher-quality can also transmit large amounts organic fluorescent compound(small molecules image than the one achieved by of other data into the home, which or polymers) that emit light. They first hit the market mechanical televisions. In the may be accessible by using your in 2012. OLED TVs have better color quality, but early 1940s, most TV stations Did you know? computer, tablet, cellphone or TV. over time this can degrade. Almost as flat as wall- converted from mechanical sys- It is estimated that average paper, OLED TV technology is evolving quickly. High-definition television (HDTV) tems to the electronic television U.S. households get a new is a type of digital service. HDTV Quantum light-emitting diode (QLED) TVs have broadcasting system. TV every 6.9 years. provides high-resolution program- only been around for a few years. Tiny nanopar- On average, people spend ming in a wide-screen format. ticles called quantum dots provide improved color Analog broadcasting two to five hours a day and brightness. QLED screens can be larger, last Early television broadcasting watching television. longer, and are more affordable than OLED TVs. Top TV shows in evolved from existing radio sta- The first TV remote con- the United States tions. Early stations began broad- “Howdy Doody” was trol was created in 1950 by casting both audio and video with a popular TV show that Zenith and was connected Based on Nielsen Media analog signals. ran from 1947 until to the television by a wire. Research, 29 of the 30 most- Analog transmissions took up a 1960. Howdy Doody In 1955, watched broadcasts are Super lot of channel space, or band- was a wooden puppet. Zenith’s Bowls. Super Bowl XLIX, with width. Initially, radio relay towers Each episode opened Flashmatic 114.4 million viewers, is No. 1. were used to handle the load. with the question, "Say, became the first The most-watched In the 1930s, telephone cables kids, what time is it?" wireless remote non-Super Bowl broadcasts: were found to work well for long- control. “M*A*S*H” (series finale) 1983 (106 million viewers) distance television transmissions. The video cassette recorder (VCR) was “Dallas” (“Who shot J.R.?” episode) By the 1950s, a cross-country 1980 (83.6 million) microwave radio relay network launched in 1963 in the “Cheers” (series finale) was designed. This system was U.K. It allowed viewers to 1993 (80.5 million) record their favorite TV replaced by satellites in the late Winter Olympics (ladies’ singles 20th century. shows for the first time. figure skating) Analog television could be wire- Until 1987, Iceland did not 1994 (78.8 million) less (terrestrial television and 1971 receive any TV broadcasts “The Day After” (television film) 1983 (76.7 million) satellite television) or distributed Panasonic on Thursdays. over a cable network. Flying Saucer SOURCES: World Book Encyclopedia, World Book Inc.; Vhttps://www.explainthatstuff.com; https://www.homestratosphere.com; www.tvhistory.tv; https://www.techradar.com © 2021 Triefeldt Studios, Inc. Distributed by Andrews McMeel Syndication LEARN ABOUT IRISES IN THE NEXT INSTALLMENT OF WORLD OF WONDER OUR WEEKLY NEWSPAPERS IN EDUCATION PAGE CAN BE A FUN LEARNING TOOL FOR YOUR KIDS. CHECK BACK EACH THURSDAY FOR A NEW, EXCITING TOPIC! Serving Pinal County For More Than A Century TO SUBSCRIBE: Newspapers (520) 423-8685 in Education CGVNI-NIE World Of Wonder 4-1-21 Television DISP 4/1 (0) Zoe 6x21.5 FULL COLOR • Whole ad is art ol.
Recommended publications
  • Digital Television and the Allure of Auctions: the Birth and Stillbirth of DTV Legislation
    Federal Communications Law Journal Volume 49 Issue 3 Article 2 4-1997 Digital Television and the Allure of Auctions: The Birth and Stillbirth of DTV Legislation Ellen P. Goodman Covington & Burling Follow this and additional works at: https://www.repository.law.indiana.edu/fclj Part of the Communications Law Commons, and the Legislation Commons Recommended Citation Goodman, Ellen P. (1997) "Digital Television and the Allure of Auctions: The Birth and Stillbirth of DTV Legislation," Federal Communications Law Journal: Vol. 49 : Iss. 3 , Article 2. Available at: https://www.repository.law.indiana.edu/fclj/vol49/iss3/2 This Article is brought to you for free and open access by the Law School Journals at Digital Repository @ Maurer Law. It has been accepted for inclusion in Federal Communications Law Journal by an authorized editor of Digital Repository @ Maurer Law. For more information, please contact [email protected]. Digital Television and the Allure of Auctions: The Birth and Stillbirth of DTV Legislation Ellen P. Goodman* I. INTRODUCTION ................................... 517 II. ORIGINS OF THE DTV PRovIsIoNs OF THE 1996 ACT .... 519 A. The Regulatory Process ..................... 519 B. The FirstBills ............................ 525 1. The Commerce Committee Bills ............. 526 2. Budget Actions ......................... 533 C. The Passage of the 1996Act .................. 537 Ill. THE AFTERMATH OF THE 1996 ACT ................ 538 A. Setting the Stage .......................... 538 B. The CongressionalHearings .................. 542 IV. CONCLUSION ................................ 546 I. INTRODUCTION President Clinton signed into law the Telecommunications Act of 1996 (1996 Act or the Act) on February 8, 1996.1 The pen he used to sign the Act was also used by President Eisenhower to create the federal highway system in 1957 and was later given to Senator Albert Gore, Sr., the father of the highway legislation.
    [Show full text]
  • Digital Television Systems
    This page intentionally left blank Digital Television Systems Digital television is a multibillion-dollar industry with commercial systems now being deployed worldwide. In this concise yet detailed guide, you will learn about the standards that apply to fixed-line and mobile digital television, as well as the underlying principles involved, such as signal analysis, modulation techniques, and source and channel coding. The digital television standards, including the MPEG family, ATSC, DVB, ISDTV, DTMB, and ISDB, are presented toaid understanding ofnew systems in the market and reveal the variations between different systems used throughout the world. Discussions of source and channel coding then provide the essential knowledge needed for designing reliable new systems.Throughout the book the theory is supported by over 200 figures and tables, whilst an extensive glossary defines practical terminology.Additional background features, including Fourier analysis, probability and stochastic processes, tables of Fourier and Hilbert transforms, and radiofrequency tables, are presented in the book’s useful appendices. This is an ideal reference for practitioners in the field of digital television. It will alsoappeal tograduate students and researchers in electrical engineering and computer science, and can be used as a textbook for graduate courses on digital television systems. Marcelo S. Alencar is Chair Professor in the Department of Electrical Engineering, Federal University of Campina Grande, Brazil. With over 29 years of teaching and research experience, he has published eight technical books and more than 200 scientific papers. He is Founder and President of the Institute for Advanced Studies in Communications (Iecom) and has consulted for several companies and R&D agencies.
    [Show full text]
  • Research on the Safe Broadcasting of Television Program
    MATEC Web of Conferences 63, 04002 (2016) DOI: 10.1051/matecconf/20166304002 MMME 2016 Research on the Safe Broadcasting of Television Program Jin Bao SONG1,a, Jin Hong SONG2 and Jian Ping CHAI1 1Information Engineering School, Communication University of China, Beijing, China 2Shandong Gold Mining Jiaojia Gold Mine (Laizhou) co.,LTD Abstract. The existing way of broadcasting and television monitoring has a lot of problems in China. On the basis of the signal technical indicators monitoring in the present broadcasting and television monitoring system, this paper further extends the function of the monitoring network in order to broaden the services of monitoring business and improve the effect and efficiency of monitoring work. The problem of identifying video content and channel in television and related electronic media is conquered at a low cost implementation way and the flexible technology mechanism. The coverage for video content and identification of the channel is expanded. The informative broadcast entries are generated after a series of video processing. The value of the numerous broadcast data is deeply excavated by using big data processing in order to realize a comprehensive, objective and accurate information monitoring for the safe broadcasting of television program. 1 Introduction paper is the development of cheap monitoring hardware devices which can be widely deployed to the village, so The existing way of broadcasting and television the actual situation of the user terminal broadcasting can monitoring has a lot of problems in China. Firstly, the be monitored by the administration of radio, film and existing way of monitoring is the front-end monitoring television.
    [Show full text]
  • Are You Ready for Digital TV? 20 January 2009
    Are you ready for digital TV? 20 January 2009 (PhysOrg.com) -- If everything goes as planned, on Q: If I install a digital converter box to my Feb. 17 the long-awaited switch from analog to television set, what will I get? digital broadcasting will take place and millions of DS: Provided that the digital converter box has a analog television sets across the nation will go reasonably good antenna, you would be able to black. Temple University electrical and computer receive the over-the-air digital signals that the engineering Professor Dennis Silage, an expert in broadcasters are transmitting; basically, your local both analog and digital communications, has television stations. You have to hook the converter answered some questions about this digital TV box up to an antenna and even a simple a ‘rabbit transition and what it will mean for consumers. ear’ antenna may work for you. We’re going back to the future, if you remember when you used to Q: Why are we switching from analog? have rabbit ear antennas on your TV and you had DS: Analog is a 60-plus-year-old technology that to play around with them to get the best picture. has basically lasted the test of time, but doesn’t Now, because of the digital conversion, your local really allow more advanced services, such as television stations also have subsidiary channels additional channels and information using the that would be very interesting to see. They may existing the broadcast spectrum. It’s not as have as many as three subsidiary channels.
    [Show full text]
  • Comparing Digital Television in Transition Between Japan and the U.S
    A Service of Leibniz-Informationszentrum econstor Wirtschaft Leibniz Information Centre Make Your Publications Visible. zbw for Economics Kanayama, Tsutomu Conference Paper Broadcasting Policy and Regulation in transition before dawn of a New Paradigm: Comparing Digital Television in Transition between Japan and the U.S. 14th Asia-Pacific Regional Conference of the International Telecommunications Society (ITS): "Mapping ICT into Transformation for the Next Information Society", Kyoto, Japan, 24th-27th June, 2017 Provided in Cooperation with: International Telecommunications Society (ITS) Suggested Citation: Kanayama, Tsutomu (2017) : Broadcasting Policy and Regulation in transition before dawn of a New Paradigm: Comparing Digital Television in Transition between Japan and the U.S., 14th Asia-Pacific Regional Conference of the International Telecommunications Society (ITS): "Mapping ICT into Transformation for the Next Information Society", Kyoto, Japan, 24th-27th June, 2017, International Telecommunications Society (ITS), Calgary This Version is available at: http://hdl.handle.net/10419/168497 Standard-Nutzungsbedingungen: Terms of use: Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen Documents in EconStor may be saved and copied for your Zwecken und zum Privatgebrauch gespeichert und kopiert werden. personal and scholarly purposes. Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle You are not to copy documents for public or commercial Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
    [Show full text]
  • Improved Television Systems: NTSC and Beyond
    • Improved Television Systems: NTSC and Beyond By William F. Schreiber After a discussion ofthe limits to received image quality in NTSC and a excellent results. Demonstrations review of various proposals for improvement, it is concluded that the have been made showing good motion current system is capable ofsignificant increase in spatial and temporal rendition with very few frames per resolution. and that most of these improvements can be made in a second,2 elimination of interline flick­ er by up-conversion, 3 and improved compatible manner. Newly designed systems,for the sake ofmaximum separation of luminance and chromi­ utilization of channel capacity. should use many of the techniques nance by means of comb tilters. ~ proposedfor improving NTSC. such as high-rate cameras and displays, No doubt the most important ele­ but should use the component. rather than composite, technique for ment in creating interest in this sub­ color multiplexing. A preference is expressed for noncompatible new ject was the demonstration of the Jap­ systems, both for increased design flexibility and on the basis oflikely anese high-definition television consumer behaL'ior. Some sample systems are described that achieve system in 1981, a development that very high quality in the present 6-MHz channels, full "HDTV" at the took more than ten years.5 Orches­ CCIR rate of 216 Mbits/sec, or "better-than-35mm" at about 500 trated by NHK, with contributions Mbits/sec. Possibilities for even higher efficiency using motion compen­ from many Japanese companies, im­ sation are described. ages have been produced that are comparable to 35mm theater quality.
    [Show full text]
  • Fcc Written Response to the Gao Report on Dtv Table of Contents
    FCC WRITTEN RESPONSE TO THE GAO REPORT ON DTV TABLE OF CONTENTS I. TECHNICAL GOALS 1. Develop Technical Standard for Digital Broadcast Operations……………………… 1 2. Pre-Transition Channel Assignments/Allotments……………………………………. 5 3. Construction of Pre-Transition DTV Facilities……………………………………… 10 4. Transition Broadcast Stations to Final Digital Operations………………………….. 16 5. Facilitate the production of set top boxes and other devices that can receive digital broadcast signals in connection with subscription services………………….. 24 6. Facilitate the production of television sets and other devices that can receive digital broadcast signals……………………………………………………………… 29 II. POLICY GOALS 1. Protect MVPD Subscribers in their Ability to Continue Watching their Local Broadcast Stations After the Digital Transition……………………………….. 37 2. Maximize Consumer Benefits of the Digital Transition……………………………... 42 3. Educate consumers about the DTV transition……………………………………….. 48 4. Identify public interest opportunities afforded by digital transition…………………. 53 III. CONSUMER OUTREACH GOALS 1. Prepare and Distribute Publications to Consumers and News Media………………. 59 2. Participate in Events and Conferences……………………………………………… 60 3. Coordinate with Federal, State and local Entities and Community Stakeholders…… 62 4. Utilize the Commission’s Advisory Committees to Help Identify Effective Strategies for Promoting Consumer Awareness…………………………………….. 63 5. Maintain and Expand Information and Resources Available via the Internet………. 63 IV. OTHER CRITICAL ELEMENTS 1. Transition TV stations in the cross-border areas from analog to digital broadcasting by February 17, 2009………………………………………………………………… 70 2. Promote Consumer Awareness of NTIA’s Digital-to-Analog Converter Box Coupon Program………………………………………………………………………72 I. TECHNICAL GOALS General Overview of Technical Goals: One of the most important responsibilities of the Commission, with respect to the nation’s transition to digital television, has been to shepherd the transformation of television stations from analog broadcasting to digital broadcasting.
    [Show full text]
  • Digital Television: Has the Revolution Stalled?
    iBRIEF / Media & Communications Cite as 2001 Duke L. & Tech. Rev. 0014 3/26/2001 April 26, 2001 DIGITAL TELEVISION: HAS THE REVOLUTION STALLED? When digital television technology first hit the scene it garnered great excitement, with its promise of movie theater picture and sound on a fraction of the bandwidth of analog. A plan was implemented to transition from the current analog broadcasting system to a digital system effective December 23, 2006. As we reach the half point of this plan, the furor begins to die as the realities of the difficult change sink in. The History of Digital Television ¶1 The technological possibilities of digital television are immense.1 It could provide the broadcast of theater quality sound and picture via cable, antenna or satellite; multicasting which enables the transmission of multiple programs within one digital signal; and signals for data communications that could potentially bring to the TV the capabilities of web pages and interactive compact discs.2 ¶2 The motivation behind the development of digital television technologies can be traced back to the history of analog broadcasting. As television became a viable medium in the United States at the start of the Second World War, the establishment of technical standards in transmission and reception equipment was of vital importance. In 1940, the National Television Systems Committee (NTSC) met to determine guidelines for the transmission and reception of television signals. With the US leading the charge into early broadcasting in the late 1940s, the technology available at the time became entrenched and remains a part of our lives today, with the familiar 525-line low-resolution screens that bring us the evening news.
    [Show full text]
  • Identifying and Locating Cable TV Interference Application Note
    Application Note Identifying and Locating Cable TV Interference A Primer for Public Safety Engineers and Cellular Operators Introduction In the early days of cable TV systems, the signals being sent over the cables were the same signals that were transmitted over the air. This minimized the extent of interference problems. Problems in those days would often manifest as ghosting and would look like a multipath reflection. However as cable TV systems offered more and more TV channels and other services, signals transmitted over the cables covered virtually the entire spectrum from 7 MHz to over 1 GHz. See table 1. There are many different services that operate over the air in that frequency range. All those services can be subject to interfering signals radiating from cable TV systems and in turn over the air signals can leak into the cable TV plant and cause interference. As cable TV systems began to expand the frequency range in the cable, interference started to be experienced by aeronautical users in the 100 to 140 MHz range and amateur radio operators in the 50 MHz to 54 MHz, 144 to 148 MHz, 220 to 225 MHz, and the 440 to 450 MHz bands. First responders could also experience interference when operating near a leaky cable plant. Problems in the 700 and 850 MHz cellular bands emerged as the frequencies in the cables were pushed higher and higher to provide more channels for cable TV customers. As the 600 MHz frequency range begins to be used by cellular operators, problems are likely to be seen there as well.
    [Show full text]
  • Preparing for the Broadcast Analog Television Turn-Off: How to Keep Cable Subscribers’ Tvs from Going Dark
    White Paper Preparing for the Broadcast Analog Television Turn-Off: How to Keep Cable Subscribers’ TVs from Going Dark Learn about the NTSC-to-ATSC converter/ receiver and how TANDBERG Television’s RX8320 ATSC Broadcast Receiver solves the Analog Turn-Off issues discussed in this paper Matthew Goldman Vice President of Technology TANDBERG Television, part of the Ericsson Group First presented at SCTE Cable-Tec Expo® 2008 in Philadelphia, Pennsylvania © TANDBERG Television 2008. All rights reserved. Table of Contents 1. The “Great Analog Television Turn-Off” ..............................................................................................3 1.1 Receiving Over-the-Air TV Transmissions ..............................................................................3 1.2 ATSC DTV to NTSC Analog Conversion ...................................................................................5 2. Video Down-Conversion .........................................................................................................................5 2.1 Active Format Description ..........................................................................................................8 2.2 Bar Data .............................................................................................................................................9 2.3 Color Space Correction ................................................................................................................9 3. Audio Processing .......................................................................................................................................9
    [Show full text]
  • Analog Video and the Composite Video
    Basics of Video Multimedia Systems (Module 1 Lesson 3) Summary: Sources: H Types of Video H My research notes H H Analog vs. Digital Video Conventional Analog Television Dr. Kelin J. Kuhn H Digital Video http://www.ee.washington.edu/conselec/CE/kuhn /ntsc/95x4.htm m Chroma Sub-sampling H Dr. Ze-Nian Li’s course m HDTV std. material at: H Computer Video http://www.cs.sfu.ca/CourseCentral/365/li/ formats Types of Video Signals H Component video -- each primary is sent as a separate video signal. m The primaries can either be RGB or a luminance-chrominance transformation of them (e.g., YIQ, YUV). m Best color reproduction m Requires more bandwidth and good synchronization of the three components H Composite video -- color (chrominance) and luminance signals are mixed into a single carrier wave. m Some interference between the two signals is inevitable. H S-Video (Separated video, e.g., in S-VHS) -- a compromise between component analog video and the composite video. It uses two lines, one for luminance and another for composite chrominance signal. Analog Video Analog video is represented as a continuous (time varying) signal; Digital video is represented as a sequence of digital images NTSC Video PAL (SECAM) Video m 525 scan lines per frame, 30 fps m 625 scan lines per frame, 25 (33.37 msec/frame). frames per second (40 m Interlaced, each frame is divided msec/frame) into 2 fields, 262.5 lines/field m Interlaced, each frame is divided m 20 lines reserved for control into 2 fields, 312.5 lines/field information at the beginning of m Color representation: each field m Uses YUV color model m So a maximum of 485 lines of visible data • Laserdisc and S-VHS have actual resolution of ~420 lines • Ordinary TV -- ~320 lines • Each line takes 63.5 microseconds to scan.
    [Show full text]
  • Digital Television: an Overview
    Order Code RL31260 CRS Report for Congress Received through the CRS Web Digital Television: An Overview Updated June 22, 2005 Lennard G. Kruger Specialist in Science and Technology Resources, Science, and Industry Division Congressional Research Service ˜ The Library of Congress Digital Television: An Overview Summary Digital television (DTV) is a new television service representing the most significant development in television technology since the advent of color television in the 1950s. DTV can provide sharper pictures, a wider screen, CD-quality sound, better color rendition, and other new services currently being developed. The nationwide deployment of digital television is a complex and multifaceted enterprise. A successful deployment requires: the development by content providers of compelling digital programming; the delivery of digital signals to consumers by broadcast television stations, as well as cable and satellite television systems; and the widespread purchase and adoption by consumers of digital television equipment. The Telecommunications Act of 1996 (P.L. 104-104) provided that initial eligibility for any DTV licenses issued by the Federal Communications Commission (FCC) should be limited to existing broadcasters. Because DTV signals cannot be received through the existing analog television broadcasting system, the FCC decided to phase in DTV over a period of years, so that consumers would not have to immediately purchase new digital television sets or converters. Thus, broadcasters were given new spectrum for digital signals, while retaining their existing spectrum for analog transmission so that they can simultaneously transmit analog and digital signals to their broadcasting market areas. Congress and the FCC set a target date of December 31, 2006 for broadcasters to cease broadcasting their analog signals and return their existing analog television spectrum to be auctioned for commercial services (such as broadband) or used for public safety communications.
    [Show full text]