Baixar Baixar

Total Page:16

File Type:pdf, Size:1020Kb

Baixar Baixar Iheringia Série Botânica Jardim Botânico de Porto Alegre Museu de Ciências Naturais ISSN ON-LINE 2446-8231 Karyotype inconsistencies in the taxonomy of the genus Oxalis (Oxalidaceae) Amália Ibiapino Moura1 , Ykaro Richard Oliveira2,* , Paulo Henrique da Silva2 , Yennifer Mata-Sucre1 , Reginaldo de Carvalho3 , Margareth Ferreira de Sales3 , Maria Carolina de Abreu4 1Programa de Pós-Graduação em Biologia Vegetal. Universidade Federal do Pernambuco (UFPE). Laboratório de Evolução e Citogenética Vegetal. CEP: 50670-901, Recife, Pernambuco, Brasil. 2Secretaria do Estado da Educação (SEDUC). CEP: 64600-000, Picos, Piauí, Brasil. 3Programa de Pós-Graduação em Botânica. Universidade Federal Rural de Pernambuco (UFRPE). CEP 52171-900, Recife, Pernambuco, Brasil. 4Laboratório de Botânica. Universidade Federal do Piauí (UFPI), Campus Senador Helvídio Nunes de Barros. CEP: 64600-000, Picos, Piauí, Brasil. *Autor para correspondência: [email protected] Recebido em 05.X.2018 Aceito em 16.I.2020 DOI 10.21826/2446-82312020v75e2020003 ABSTRACT – The family Oxalidaceae consists of six genera, of which Oxalis is the most representative. This genus is subdivided into four subgenera, and its species present great morphological variation, which makes it difficult to identify them. The aim of this study was to make a survey of scientific publications which presented chromosome numbers of species of Oxalis, and to compare the chromosome numbers to the taxonomic classification proposed by Alicia Lourteig. Published chromosome counts were found for 112 species. We infered that there is apparently no relation between the chromosome numbers of the species of Oxalis and the taxonomic classification proposed by Lourteig, as species belonging to a same subgenus did not present a coherent pattern in chromosome numbers. Keywords: chromosome number, cytogenetics, polyploidy RESUMO – Inconsistências cariotípicas na taxonomia do gênero Oxalis (Oxalidaceae). A família Oxalidaceae é constituída por seis gêneros no qual Oxalis é o mais representativo. Esse gênero é subdividido em quatro subgêneros e suas espécies apresentam grande variação nas características morfológicas, o que dificulta a identificação taxonômica das mesmas. Este trabalho teve como objetivo fazer o levantamento de artigos científicos que apresentassem o número cromossômico das espécies do gênero Oxalis e relacionar o número cromossômico com a classificação taxonômica proposta por Alicia Lourteig. Foram encontradas publicações evidenciando o número cromossômico de 112 espécies. A partir deste estudo podemos inferir que não há relações entre o número cromossômicos das espécies de Oxalis e a classificação taxonômica estabelecida por Lourteig, já que espécies pertencentes ao mesmo subgênero não apresentaram padrão no número cromossômico. Palavras-chave: citogenética, número cromossômico, poliploidia INTRODUCTION Oxalis, establishing a relationship among the sections is still difficult due to the high morphological variation The family Oxalidaceae R.Brown is included in the and phenotypic plasticity (Lourteig 1994, 2000, Azkue order Oxalidales and includes six genera and approximately 2000, Emshwiller & Doyle 2002). Phylogenetic studies 770 species distributed mainly in tropical regions (Judd of Oxalis are scarce and the relationships among the 2009, Stevens 2001). Biophytum DC. and Oxalis L. are subgenera and sections are unclear (Abreu et al. 2012). native in Brazil and Averrhoa L. is cultivated in the country In Brazil, some regional works related to the taxonomy of (Fiaschi & Conceição 2005, Abreu et al. 2013). Oxalis is the group can be highlighted, such as the one performed in cosmopolitan and presents about 500 species and can be the Atlantic Forest, in which 63 species are cited (Abreu divided into four subgenera: Monoxalis (Small) Lourt., & Fiaschi 2009); nine species were recorded in the state Trifidus Lourt., Thamnoxys (Endl.) Reiche and Oxalis. It of Pernambuco (Abreu 2007); four species were recorded is believed that South America and Africa are the centers by Souza & Bianchini (2000) in São Paulo and 23 species of dispersion and probably of origin of this genus (Knuth, by Fiaschi & Conceição (2005) and records of 42 species 1930 Denton 1973, Lourteig 1994, 2000, Azkue 2000). in the state of Santa Catarina (Lourteig 1983). Although this subdivision facilitates the complex and Probably the most comprehensive taxonomic studies confusing taxonomy of the South American species of of the genus were performed by Knuth (1930) and Salter Iheringia, Série Botânica, Porto Alegre, 75: e2020003, 2020 Diagramação: www.editoraletra1.com.br 2 MOURA et al. (1944) for South African species and Lourteig (1994, 2000) in greenhouses and root tips or floral buds were used for for South American ones. However, this genus presents obtaining the samples for the analysis of the chromosomes. many difficulties of identification, mainly because of the Regarding the methodology used in these researches, use of morphological characteristics that are not very clear the samples were pretreated with 0.2% or 0.5% colchicine (Abreu 2007). For example, Oxalis stem has a variable from 4 to 24 hours or with 8-hydroxyquinoline for 24 hours. morphology in tubers, rhizomes and true bulbs (Vaio et al. Carnoy (ethanol: acetic acid 3: 1) was used as fixative for 2013). Therefore, cytotaxonomy represents an important 24 hours at room temperature. The samples were digested tool for the determination of the taxonomic positioning in enzymatic solutions of 2% pectinase and 20% cellulase of taxa (Stace 1989). Studies on the cytotaxonomy of the at 37 °C for 45 minutes, and were crushed in slide and then genus point to a wide variation in chromosome number immersed in liquid nitrogen to remove of the glass slide. and karyotype. It is a multibasic genus x = 5, 6, 7, 8, 9 and After air-drying, the material was stained, generally in 2% 11, with diverse morphology, acrocentric, submetacentric, Giemsa. The root tips were also stained with 2% acetic telocentric and metacentric chromosomes (Azkue 2000, orcein. In this case, after being removed from the fixative, Azkue & Martinez 1983, 1984, 1988, 1990). the root tips were placed in test tubes with acetic orcein Therefore, the aim of this work was to analyze scientific and HCL, then the mixture was heated and after cooling, studies in which the number of chromosomes of the species the material was placed on the slide and crushed. These belonging to the genus Oxalis were evidenced to establish techniques allowed the chromosomes to be visualized, relations between the chromosome number of these species counted and photographed under an optical microscope. and the taxonomic classification proposed by Lourteig Among the 500 species of Oxalis, 112 were recorded in (1994, 2000). this work as having their chromosomal numbers published (Tab. 1). Numbers n = 5, 6, 7, 9, 11, 12, 14 and 17 were MATERIAL AND METHODS observed from this data. In this study, species with n = 7 are the majority, with 36 representatives. The numbers 2n For the development of this article, studies that = 10, 12, 14, 16, 18, 20, 21, 22, 24, 28, 30, 32, 35, 36, 40, approached cytotaxonomic aspects of species belonging 42, 44, 64 and 72 were recorded; where the mean CN for to the genus Oxalis were investigated. They were obtained the full dataset is 2n = 21.73 ± 12.56 SD and mode 2n = 14 from databases, such as: SciELO (Scientific Eletronic with 32 species and 2n = 12 with 26 species, resulting in a Library Online), ScienceDirect and Web CAPES, using positive skew of data distribution (sk = 0.215). Most of the the keywords: Oxalis, Thamnoxys, chromosome number, data (39–40% of the dataset) were concentrated in seven cytotaxonomy, Oxalidaceae and Oxalidales. In addition, an sections: Articulatae, Cernuae, Corniculatae, Ionoxalis indirect search was performed, observing the bibliographic and Lotoideae (subgroup Oxalis) and Polymorphae and citations, in which mainly the oldest references were Thamnoxys (subgroup Thamnoxys) (Table 2). CNs are requested by the interchange service among libraries. The apparently distributed in different proportions between these collected information was organized into a Microsoft Excel sections and this difference is supported by ANOVA statistic 2010 spreadsheet, following the order, subgenus, section, (F = 2.300, DF = 20, p < 0.01) and linear regresion ( R = species, number n, number 2n and author. Information on 0.06, DF = 125, p = 0.946) (Fig.1), differing significantly subgenera and sections was obtained in Lourteig (1994, among all the 21 considered sections by Lourteig. The 2000). variation of the data for each section is shown in Table 2. In order to test for relationships between the chromosome According to Bedini et al. (2012) and this work, numbers (CN hereafter) and the taxonomic classification by the single chromosome numbers and the quantitative Lourteig (1994, 2000), the following data were calculated studies of CN variation are useful for characterization for the whole dataset and for each section: mean CN and (e.g. distinction) of lineages at the order, family, and, in boxplots, coefficient of variation of CN (CVCN) and CN some instances, the genus level. Regarding the section that profiles by linear regression. ANOVA was used to test each species belonged and its chromosome number, the statistical differences in CN among considered groups, after subgenus Oxalis was registered by species belonging to verification of the normal distribution of the data (Levene the sections:
Recommended publications
  • The 2014 Golden Gate National Parks Bioblitz - Data Management and the Event Species List Achieving a Quality Dataset from a Large Scale Event
    National Park Service U.S. Department of the Interior Natural Resource Stewardship and Science The 2014 Golden Gate National Parks BioBlitz - Data Management and the Event Species List Achieving a Quality Dataset from a Large Scale Event Natural Resource Report NPS/GOGA/NRR—2016/1147 ON THIS PAGE Photograph of BioBlitz participants conducting data entry into iNaturalist. Photograph courtesy of the National Park Service. ON THE COVER Photograph of BioBlitz participants collecting aquatic species data in the Presidio of San Francisco. Photograph courtesy of National Park Service. The 2014 Golden Gate National Parks BioBlitz - Data Management and the Event Species List Achieving a Quality Dataset from a Large Scale Event Natural Resource Report NPS/GOGA/NRR—2016/1147 Elizabeth Edson1, Michelle O’Herron1, Alison Forrestel2, Daniel George3 1Golden Gate Parks Conservancy Building 201 Fort Mason San Francisco, CA 94129 2National Park Service. Golden Gate National Recreation Area Fort Cronkhite, Bldg. 1061 Sausalito, CA 94965 3National Park Service. San Francisco Bay Area Network Inventory & Monitoring Program Manager Fort Cronkhite, Bldg. 1063 Sausalito, CA 94965 March 2016 U.S. Department of the Interior National Park Service Natural Resource Stewardship and Science Fort Collins, Colorado The National Park Service, Natural Resource Stewardship and Science office in Fort Collins, Colorado, publishes a range of reports that address natural resource topics. These reports are of interest and applicability to a broad audience in the National Park Service and others in natural resource management, including scientists, conservation and environmental constituencies, and the public. The Natural Resource Report Series is used to disseminate comprehensive information and analysis about natural resources and related topics concerning lands managed by the National Park Service.
    [Show full text]
  • The Gigas Effect: a Reliable Predictor of Ploidy? Case Studies in Oxalis
    The gigas effect: A reliable predictor of ploidy? Case studies in Oxalis by Frederik Willem Becker Thesis presented in fulfilment of the requirements for the degree of Master of Science in the Faculty of Science at Stellenbosch University Supervisors: Prof. Léanne L.Dreyer, Dr. Kenneth C. Oberlander, Dr. Pavel Trávníček March 2021 Stellenbosch University https://scholar.sun.ac.za Declaration By submitting this thesis electronically, I declare that the entirety of the work contained therein is my own, original work, that I am the sole author thereof (save to the extent explicitly otherwise stated), that reproduction and publication thereof by Stellenbosch University will not infringe any third party rights and that I have not previously in its entirety or in part submitted it for obtaining any qualification. March 2021 …………………………. ………………… F.W. Becker Date Copyright © 2021 Stellenbosch University All rights reserved i Stellenbosch University https://scholar.sun.ac.za Abstract Whole Genome Duplication (WGD), or polyploidy is an important evolutionary process, but literature is divided over its long-term evolutionary potential to generate diversity and lead to lineage divergence. WGD often causes major phenotypic changes in polyploids, of which the most prominent is the Gigas effect. The Gigas effect refers to the enlargement of plant cells due to their increased amount of DNA, causing plant organs to enlarge as well. This enlargement has been associated with fitness advantages in polyploids, enabling them to successfully establish and persist, eventually causing speciation. Using Oxalis as a study system, I examine whether Oxalis polyploids exhibit the Gigas effect using 24 species across the genus from the Oxalis living research collection at the Stellenbosch University Botanical Gardens, Stellenbosch.
    [Show full text]
  • ABSTRACT Oxalis Triangularis (A.St.-Hil) Or Commonly Known As
    ABSTRACT Oxalis triangularis (A.St.-Hil) or commonly known as ‘Pokok Rama-rama’ in Malaysia is a beautiful ornamental plant which is propagated by bulbs. The plant grows to a height of 0.1 m - 0.2 m and is perfect for cultivating in pots or containers. Nowadays, with the emerging and advanced technologies, an efficient protocol has been established for a rapid multiplication of Oxalis triangularis in a large scale production under aseptic conditions. In vitro plant regeneration of Oxalis triangularis was successfully obtained in the present study via petiole and leaf as explants. The petiole explants cultured on MS medium supplemented with 0.5 mg/l α-Naphthaleneacetic acid (NAA) and 1.0 mg/l Kinetin (KIN) produced maximum number of adventitious shoots (12 shoots) while for leaf explants, the best treatment achieved on MS medium supplemented with 1.0 mg/l NAA and 1.5 mg/l 6- Benzylaminopurine (BAP) which produced a maximum of 14 shoots within 8 weeks. Comparison between in vivo plants and in vitro was observed using a Scanning Electron Microscope. The morphological features for both petiole and leaf samples have no differences. Both contain same structures of stomata and trichomes. In vitro flowering which is very important in order to improve quality and shortened physiological process of flowering was observed when adventitious shoots explants cultured on MS medium supplemented with 0.5 mg/l NAA and 0.5 mg/l BAP (90% in vitro flowering). In the synthetic seeds study, two different storage durations were tested (Day 7 and Day 30). The highest frequency of synthetic seeds production in Oxalis triangularis was recorded on Day 7 with 96.67% of conversion frequency.
    [Show full text]
  • Vascular Flora of the Possum Walk Trail at the Infinity Science Center, Hancock County, Mississippi
    The University of Southern Mississippi The Aquila Digital Community Honors Theses Honors College Spring 5-2016 Vascular Flora of the Possum Walk Trail at the Infinity Science Center, Hancock County, Mississippi Hanna M. Miller University of Southern Mississippi Follow this and additional works at: https://aquila.usm.edu/honors_theses Part of the Biodiversity Commons, and the Botany Commons Recommended Citation Miller, Hanna M., "Vascular Flora of the Possum Walk Trail at the Infinity Science Center, Hancock County, Mississippi" (2016). Honors Theses. 389. https://aquila.usm.edu/honors_theses/389 This Honors College Thesis is brought to you for free and open access by the Honors College at The Aquila Digital Community. It has been accepted for inclusion in Honors Theses by an authorized administrator of The Aquila Digital Community. For more information, please contact [email protected]. The University of Southern Mississippi Vascular Flora of the Possum Walk Trail at the Infinity Science Center, Hancock County, Mississippi by Hanna Miller A Thesis Submitted to the Honors College of The University of Southern Mississippi in Partial Fulfillment of the Requirement for the Degree of Bachelor of Science in the Department of Biological Sciences May 2016 ii Approved by _________________________________ Mac H. Alford, Ph.D., Thesis Adviser Professor of Biological Sciences _________________________________ Shiao Y. Wang, Ph.D., Chair Department of Biological Sciences _________________________________ Ellen Weinauer, Ph.D., Dean Honors College iii Abstract The North American Coastal Plain contains some of the highest plant diversity in the temperate world. However, most of the region has remained unstudied, resulting in a lack of knowledge about the unique plant communities present there.
    [Show full text]
  • Towards an Updated Checklist of the Libyan Flora
    Towards an updated checklist of the Libyan flora Article Published Version Creative Commons: Attribution 3.0 (CC-BY) Open access Gawhari, A. M. H., Jury, S. L. and Culham, A. (2018) Towards an updated checklist of the Libyan flora. Phytotaxa, 338 (1). pp. 1-16. ISSN 1179-3155 doi: https://doi.org/10.11646/phytotaxa.338.1.1 Available at http://centaur.reading.ac.uk/76559/ It is advisable to refer to the publisher’s version if you intend to cite from the work. See Guidance on citing . Published version at: http://dx.doi.org/10.11646/phytotaxa.338.1.1 Identification Number/DOI: https://doi.org/10.11646/phytotaxa.338.1.1 <https://doi.org/10.11646/phytotaxa.338.1.1> Publisher: Magnolia Press All outputs in CentAUR are protected by Intellectual Property Rights law, including copyright law. Copyright and IPR is retained by the creators or other copyright holders. Terms and conditions for use of this material are defined in the End User Agreement . www.reading.ac.uk/centaur CentAUR Central Archive at the University of Reading Reading’s research outputs online Phytotaxa 338 (1): 001–016 ISSN 1179-3155 (print edition) http://www.mapress.com/j/pt/ PHYTOTAXA Copyright © 2018 Magnolia Press Article ISSN 1179-3163 (online edition) https://doi.org/10.11646/phytotaxa.338.1.1 Towards an updated checklist of the Libyan flora AHMED M. H. GAWHARI1, 2, STEPHEN L. JURY 2 & ALASTAIR CULHAM 2 1 Botany Department, Cyrenaica Herbarium, Faculty of Sciences, University of Benghazi, Benghazi, Libya E-mail: [email protected] 2 University of Reading Herbarium, The Harborne Building, School of Biological Sciences, University of Reading, Whiteknights, Read- ing, RG6 6AS, U.K.
    [Show full text]
  • The Alien Vascular Flora of Tuscany (Italy)
    Quad. Mus. St. Nat. Livorno, 26: 43-78 (2015-2016) 43 The alien vascular fora of Tuscany (Italy): update and analysis VaLerio LaZZeri1 SUMMARY. Here it is provided the updated checklist of the alien vascular fora of Tuscany. Together with those taxa that are considered alien to the Tuscan vascular fora amounting to 510 units, also locally alien taxa and doubtfully aliens are reported in three additional checklists. The analysis of invasiveness shows that 241 taxa are casual, 219 naturalized and 50 invasive. Moreover, 13 taxa are new for the vascular fora of Tuscany, of which one is also new for the Euromediterranean area and two are new for the Mediterranean basin. Keywords: Vascular plants, Xenophytes, New records, Invasive species, Mediterranean. RIASSUNTO. Si fornisce la checklist aggiornata della fora vascolare aliena della regione Toscana. Insieme alla lista dei taxa che si considerano alieni per la Toscana che ammontano a 510 unità, si segnalano in tre ulteriori liste anche i taxa che si ritengono essere presenti nell’area di studio anche con popolazioni non autoctone o per i quali sussistono dubbi sull’effettiva autoctonicità. L’analisi dello status di invasività mostra che 241 taxa sono casuali, 219 naturalizzati e 50 invasivi. Inoltre, 13 taxa rappresentano una novità per la fora vascolare di Toscana, dei quali uno è nuovo anche per l’area Euromediterranea e altri due sono nuovi per il bacino del Mediterraneo. Parole chiave: Piante vascolari, Xenofte, Nuovi ritrovamenti, Specie invasive, Mediterraneo. Introduction establishment of long-lasting economic exchan- ges between close or distant countries. As a result The Mediterranean basin is considered as one of this context, non-native plant species have of the world most biodiverse areas, especially become an important component of the various as far as its vascular fora is concerned.
    [Show full text]
  • Checklist of the Vascular Alien Flora of Catalonia (Northeastern Iberian Peninsula, Spain) Pere Aymerich1 & Llorenç Sáez2,3
    BOTANICAL CHECKLISTS Mediterranean Botany ISSNe 2603-9109 https://dx.doi.org/10.5209/mbot.63608 Checklist of the vascular alien flora of Catalonia (northeastern Iberian Peninsula, Spain) Pere Aymerich1 & Llorenç Sáez2,3 Received: 7 March 2019 / Accepted: 28 June 2019 / Published online: 7 November 2019 Abstract. This is an inventory of the vascular alien flora of Catalonia (northeastern Iberian Peninsula, Spain) updated to 2018, representing 1068 alien taxa in total. 554 (52.0%) out of them are casual and 514 (48.0%) are established. 87 taxa (8.1% of the total number and 16.8 % of those established) show an invasive behaviour. The geographic zone with more alien plants is the most anthropogenic maritime area. However, the differences among regions decrease when the degree of naturalization of taxa increases and the number of invaders is very similar in all sectors. Only 26.2% of the taxa are more or less abundant, while the rest are rare or they have vanished. The alien flora is represented by 115 families, 87 out of them include naturalised species. The most diverse genera are Opuntia (20 taxa), Amaranthus (18 taxa) and Solanum (15 taxa). Most of the alien plants have been introduced since the beginning of the twentieth century (70.7%), with a strong increase since 1970 (50.3% of the total number). Almost two thirds of alien taxa have their origin in Euro-Mediterranean area and America, while 24.6% come from other geographical areas. The taxa originated in cultivation represent 9.5%, whereas spontaneous hybrids only 1.2%. From the temporal point of view, the rate of Euro-Mediterranean taxa shows a progressive reduction parallel to an increase of those of other origins, which have reached 73.2% of introductions during the last 50 years.
    [Show full text]
  • TESE COMPLETA Maria Carolina
    MARIA CAROLINA DE ABREU Sistemática de Oxalis L. sect. Thamnoxys (Endl.) Progel no Brasil Recife, 2011 MARIA CAROLINA DE ABREU ii Sistemática de Oxalis L. sect. Thamnoxys (Endl.) Progel no Brasil Tese apresentada ao Programa de Pós- graduação em Botânica da Universidade Federal Rural de Pernambuco como requisito obrigatório necessário para a obtenção do título de Doutora em Botânica. Orientadora: Profª Drª. Margareth Ferreira de Sales (UFRPE) Conselheirros: Prof. Dr. Marcos José da Silva (UFG) Prof. Dr. Reginaldo Carvalho (UFRPE) Recife, 2011 iii Ficha Catalográfica A162s Abreu, Maria Carolina de Sistemática de Oxalis sect. Thamnoxys (Endl.) Progel no Brasil / Maria Carolina de Abreu. -- 2011. 151 f. : il. Orientadora: Margareth Ferreira de Sales. Tese (Doutorado em Botânica) – Universidade Federal Rural de Pernambuco, Departamento de Biologia, Recife, 2011. Inclui anexos, apêndices e referências. 1. Oxalidaceae 2. Filogenia 3. Taxonomia 4. Microscopia eletrônica de varredura I. Sales, Margareth Ferreira de, Orientadora II. Título CDD 582 ii MARIA CAROLINA DE ABREU Sistemática de Oxalis L. sect. Thamnoxys (Endl.) Progel no Brasil Tese defendida e aprovada em 14/02/2011 Profª. Drª. Margareth Ferreira de Sales - UFRPE 1ª Examinadora - Orientadora Profº. Dr. André Laurênio de Melo UFRPE – UAST 2ª Examinador Profª. Drª. Carmen Sílvia Zickel - UFRPE 3ª Examinadora Profº. Dr. José Iranildo Miranda de Melo - UEPB 4ª Examinador Drª. Rita de Cássia Araújo Pereira - IPA 5ª Examinadora Profª. Drª. Suzene Izídio da Silva - UFRPE 1ª Suplente Profª. Drª. Ana Paula de Souza Gomes - FIS 2ª Suplente iii DEDICATÓRIA DEDICO aos que são fomento, Instituição, alicerce, pé direito e teto, responsáveis pela minha existência, formação e caráter: Família Abreu.
    [Show full text]
  • Oxalis Pes-Caprae L., 1753
    Método de Evaluación Rápida de Invasividad (MERI) para especies exóticas en México Oxalis pes-caprae (L., 1753) Oxalis pes-caprae L., 1753 Foto: Math Knight & Zachi Evenor, 2009. Fuente Wikimedia. Oxalis pes-caprae es una planta perenne considerada como invasora en algunos países (PIER, 2011a). Puede resultar tóxica, tanto para el hombre como para los animales, ya que contienen ácido oxálico (Muñoz & Navarro, 2010; Plants For a Future, 2012). Produce daños económicos y ambientales. Los primeros se deben a su condición de mala hierba agrícola, ya que invade de manera intensa los cultivos de las zonas cálidas y subtropicales, en especial las plantaciones de cítricos. En las zonas invadidas forma cubiertas densas que acaparan la luz y el espacio, desplazando a la flora nativa, además de inhibir la germinación de sus semillas (MAGRAMA, 2013). Información taxonómica Reino: Plantae División: Magnoliophyta Clase: Magnoliopsida Orden: Oxalidales Familia: Oxalidaceae Género: Oxalis Especie: Oxalis pes-caprae L., 1753 Nombre común: Xocoyole (Vibrans, 2009). Resultado: 0.3609 Categoría de riesgo: Alto 1 Método de Evaluación Rápida de Invasividad (MERI) para especies exóticas en México Oxalis pes-caprae (L., 1753) Descripción de la especie Oxalis pes-caprae es una planta perenne, algo pubescente, cespitosa, con un bulbo profundamente enterrado que emite un tallo anual ascendente, provisto de bulbillos del que surge una roseta basal de hojas. Las hojas tienen peciolos de hasta 20 cm y son palmeadas, con 3 foliolos de 8 a 20 por 12 a 30 mm, obcordados, muy emarginados. Las flores aparecen en inflorescencias cimosas umbeladas, son infundibuliformes. Su cáliz está formado por 5 sépalos libres, lanceolados, y la corola por 5 pétalos de 20 a 25 cm, amarillos.
    [Show full text]
  • The Natural History of Upper Sturt, South Australia Part I
    THE NATURAL HISTORY OF UPPER STURT, SOUTH AUSTRALIA PART I: VEGETATION HISTORY, FLORA AND MACROFUNGI OF A MESSMATE STRINGYBARK FOREST Tony Robinson and Julia Haska PO Box 47 UPPER STURT SA 5156 Email: [email protected] ABSTRACT: An area of Eucalyptus obliqua, Messmate Stringybark Forest in Upper Sturt, Mt Lofty Ranges, South Australia was studied over a 38 year period. The land use history since the area was first settled by Europeans in 1843, to the present day is summarized. The area is now known to support 249 species of plants of which 105 species are introduced and 64 species of macrofungi of which at least 3 are introduced. Although the area has undergone many changes since European settlement it remains an important area of remnant native vegetation. There are ongoing challenges from weed invasion, overgrazing by over-abundant kangaroos and introduced koalas and from potential damage by severe wildfire KEY WORDS: Upper Sturt, land use history, forest, flora, fungi, vegetation INTRODUCTION: This is the first of three papers describing revegetation of cleared land adjacent to areas of relatively natural remnant native vegetation. In this paper, elements of the vegetation, flora and fungi are described in a study area at 16 Pole Road, Upper Sturt in the Mt Lofty Ranges. The second paper describes the vertebrate and invertebrate fauna of the area, while the third paper provides results of fauna and vegetation monitoring in sample sites established in both the re-vegetated area and the remnant natural vegetation in the Upper Sturt study area. A second series of three papers will cover the flora and fauna and a more extensive revegetation program on a study area on the western end of Kangaroo Island (in prep.).
    [Show full text]
  • DISTRIBUTION of PLANT SPECIES with POTENTIAL THERAPEUTIC EFFECT in AREA of the UNIVERSITI TEKNOLOGI MARA (Uitm), KUALA PILAH CAMPUS, NEGERI SEMBILAN, MALAYSIA
    Journal of Academia Vol. 8, Issue 2 (2020) 48 – 57 DISTRIBUTION OF PLANT SPECIES WITH POTENTIAL THERAPEUTIC EFFECT IN AREA OF THE UNIVERSITI TEKNOLOGI MARA (UiTM), KUALA PILAH CAMPUS, NEGERI SEMBILAN, MALAYSIA Rosli Noormi1*, Raba’atun Adawiyah Shamsuddin2, Anis Raihana Abdullah1, Hidayah Yahaya1, Liana Mohd Zulkamal1, Muhammad Amar Rosly1, Nor Shamyza Azrin Azmi1, Nur Aisyah Mohamad1, Nur Syamimi Liyana Sahabudin1, Nur Yasmin Raffin1, Nurul Hidayah Rosali1, Nurul Nasuha Elias1, Nurul Syaziyah Mohamed Shafi1 1School of Biological Sciences, Faculty of Applied Sciences, Universiti Teknologi MARA, Negeri Sembilan Branch, Kuala Pilah Campus, 72000 Kuala Pilah, Negeri Sembilan, Malaysia 2Fuel Cell Institute, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia *Corresponding author: [email protected] Abstract Knowledge of species richness and distribution is decisive for the composition of conservation areas. Plants typically contain many bioactive compounds are used for medicinal purposes for several disease treatment. This study aimed to identify the plant species distribution in area of UiTM Kuala Pilah, providing research scientific data and to contribute to knowledge of the use of the plants as therapeutic resources. Three quadrat frames (1x1 m), which was labeled as Set 1, 2 and 3 was developed, in each set consists of 4 plots (A, B, C and D). Characteristics of plant species were recorded, identified and classified into their respective groups. Our findings show that the most representative classes were Magnoliopsida with the total value of 71.43%, followed by Liliopsida (17.86%) and Lecanoromycetes (10.71%). A total of 28 plant species belonging to 18 families were identified in all sets with the largest family of Rubiaceae.
    [Show full text]
  • Oxalis Articulata Savigny 1798., CONABIO, Junio 2016 Oxalis Articulata Savigny., 1798
    Método de Evaluación Rápida de Invasividad (MERI) para especies exóticas en México Oxalis articulata Savigny 1798., CONABIO, junio 2016 Oxalis articulata Savigny., 1798 Foto: Stan Shebs, 2005. Fuente: Wikimedia Oxalis articulata es una hierba perenne, reportada como invasora en varios países (Invasoras, 2012). Tiene múltiples usos entre ellos el medicinal (Herbario Virtualdel Mediterráneo Occidental, 2016), sin embargo, no debe utilizarse a la ligera, debido a que puede resultar tóxica, tanto para el hombre como para los animales, ya que contienen ácido oxálico (Muñoz G. F. & Navarro C. 2010; Plants For A Future, 2012). Forma densas alfombras que impiden el paso de la luz lo que interfiere en la germinación de especies nativas (Invasoras, 2012). Información taxonómica Reino: Plantae División: Tracheophyta Clase: Magnoliopsida Orden: Oxalidales Familia: Oxalidaceae Género: Oxalis Especie: Oxalis articulata Savigny., 1798 Nombre común: Vinagrillo rosado (Lopéz-Palmeyro, 2011; Herbario Virtual del Mediterráneo Occidental, 2016). Valor de invasividad : 0.3430 Categoría de riesgo : Alto 1 Método de Evaluación Rápida de Invasividad (MERI) para especies exóticas en México Oxalis articulata Savigny 1798., CONABIO, junio 2016 Descripción de la especie Es una hierba perenne, con tallo subterráneo engrosado (tubérculo), de formas caprichosas, que puede llegar a pesar hasta medio kilo, aunque por lo general es mucho menor. Los únicos tallos aéreos que presenta son los que sostienen las flores. Sus hojas presentan largos pecíolos delgados y lámina trifoliolada, semejantes a las de los verdaderos tréboles. Flores rosadas, en umbelas muy vistosas, sostenidas por un pedúnculo largo y delgado. Su fruto es una cápsula alargada, que contiene varias semillas (Lopéz-Palmeyro, 2011).
    [Show full text]