CS1313 Hardware Lesson

Total Page:16

File Type:pdf, Size:1020Kb

CS1313 Hardware Lesson Hardware Outline 1. Hardware Outline 27. Why Have Cache? 2. What is a Computer? 28. Multiple Levels of Cache 3. Components of a Computer 29. Secondary Storage 4. Categories of Computer Hardware 30. Media Types 5. Central Processing Unit (CPU) 31. Speed, Price, Size 6. CPU Examples 32. CD-ROM & DVD-ROM 7. CPU Parts 33. CD-ROM & DVD-ROM: Disadvantage 8. CPU: Control Unit 34. CD-ROM & DVD-ROM: Advantages 9. CPU: Arithmetic/Logic Unit 35. Why Are Floppies So Expensive Per MB? 10. CPU: Registers 36. I/O 11. How Registers Are Used 37. I/O: Input Devices 12. Multicore 38. I/O: Output Devices 13. Multicore History 39. Bits 14. Why Multicore? #1 40. Bytes 15. Why Multicore? #2 41. Words 16. Storage 42. Putting Bits Together 17. Primary Storage 43. Putting Bits Together (cont’d) 18. Cache 44. Powers of 2 19. From Cache to the CPU 45. Powers of 2 vs Powers of 10 20. Main Memory (RAM) 46. KB, MB, GB, TB, PB 21. Main Memory Layout 47. Kilo, Mega, Giga, Tera, Peta 22. RAM vs ROM 48. EB, ZB, YB 23. Speed => Price => Size 49. Moore’s Law 24. How Data Travel Between RAM and CPU 50. Implication of Moore’s Law 25. Loading Data from RAM into the CPU 51. Double, double, … 26. RAM is Slow Hardware Lesson CS1313 Fall 2021 1 What is a Computer? “… [A] programmable electronic device that can store, retrieve and process data.” (N. Dale & D. Orshalick, Introduction to PASCAL and Structured Design, D.C. Heath & Co., Lexington MA, 1983, p. 2) Hardware Lesson CS1313 Fall 2021 2 Components of a Computer Computer Hardware Software Physical Devices Instructions & Data DON’T PANIC! This discussion may be confusing at the moment; it’ll make more sense after you’ve written a few programs. Hardware Lesson CS1313 Fall 2021 3 Categories of Computer Hardware Central Processing Unit (CPU) Storage Primary: Cache, RAM Secondary: Hard disk, removable (e.g., USB thumb drive) I/O Input Devices Output Devices Hardware Lesson CS1313 Fall 2021 4 Central Processing Unit (CPU) The Central Processing Unit (CPU), also called the processor, is the “brain” of the computer. Intel Ice Lake exterior https://2.bp.blogspot.com/-KZiDqFY8mWM/XOKeSN34jqI/AAAAAAAACA0/PuVjQ0_gGYURDodUvaECRfj5_-EWXGI4ACEwYBhgL/s640/ezgif.com-webp-maker%2B%252810%2529.webp Intel Ice Lake quad core innards https://d2skuhm0vrry40.cloudfront.net/2019/articles/2019-05-26-23-55/2019_05_26_23_55_22_PowerPoint_Presentation.png Hardware Lesson CS1313 Fall 2021 5 CPU Examples x86: Intel Celeron/Pentium/Core/i3/i5/i7/i9/Xeon and AMD Athlon/Sempron/Turion/Ryzen/Threadripper/EPYC (and related models from smaller manufacturers) (Windows, MacOS and Linux PCs; some Android tablets) http://en.wikipedia.org/wiki/X86 Market Share: Intel 60.3%, AMD 39.6% https://www.statista.com/statistics/735904/worldwide-x86-intel-amd-market-share/ ARM (in 90% of mobile “applications processors”) http://en.wikipedia.org/wiki/ARM_processor https://seekingalpha.com/article/4414315-why-nvidia-arm-acquisition-should-be-approved https://www.arm.com/-/media/global/company/investors/PDFs/Arm_SBG_Q1_2019_Roadshow_Slides_FINAL.pdf IBM POWER9 (servers) https://en.wikipedia.org/wiki/Power_Architecture Hardware Lesson CS1313 Fall 2021 6 CPU Parts The CPU consists of three main parts: Control Unit Arithmetic/Logic Unit Registers Control Unit Arithmetic/Logic Unit Registers Fetch Next Instruction Add Sub Integer Fetch Data Store Data Mult Div Increment Instruction Ptr Floating Point And Or Execute Instruction … Not … Hardware Lesson CS1313 Fall 2021 7 CPU: Control Unit The Control Unit decides what to do next. For example: memory operations: for example, load data from main memory (RAM) into the registers; store data from the registers into main memory; arithmetic/logical operations: e.g., add, multiply; branch: choose among several possible courses of action. Hardware Lesson CS1313 Fall 2021 8 CPU: Arithmetic/Logic Unit The Arithmetic/Logic Unit (ALU) performs arithmetic and logical operations. Arithmetic operations: e.g., add, subtract, multiply, divide, square root, cosine, etc. Logical operations: e.g., compare two numbers to see which is greater, check whether both of a pair of true/false statements are true, etc. Hardware Lesson CS1313 Fall 2021 9 CPU: Registers Registers are memory-like locations inside the CPU where data and instructions reside that are being used right now. That is, registers hold the operands being used by the current arithmetic or logical operation, and/or the result of the arithmetic or logical operation that was just performed. For example, if the CPU is adding two numbers, then the addend is in some register; the augend is in another register; after the addition is performed, the sum shows up in yet another register. A typical CPU has only a few hundred to a few thousand bytes of registers. Hardware Lesson CS1313 Fall 2021 10 How Registers Are Used Every arithmetic or logical operation has one or more operands and one result. Operands are contained in registers (“source”). A “black box” of circuits performs the operation. The result goes into a register (“destination”). operand Register Ri result Register Rk operand Register Rj Operation circuitry addend in R0 5 12 7 ADD sum in R2 augend in R1 Example: Hardware Lesson CS1313 Fall 2021 11 Multicore A multicore CPU is a chip with multiple, independent “brains,” known as cores. These multiple cores can run completely separate programs, or they can cooperate together to work simultaneously in parallel on different parts of the same program. All of the cores share the same connection to memory – and the same bandwidth (memory speed). Hardware Lesson CS1313 Fall 2021 12 Multicore History (x86) Single core: November 1971 (Intel 4004) Dual core: October 2005 (Intel), March 2006 (AMD) x86 Core Counts 64 Quad core: June 2006 (Intel), Sep 2007 (AMD) 56 Hex core: Sep 2008 (Intel), June 2009 (AMD) 48 40 8-core (Intel & AMD): March 2010 32 12-core (AMD only): March 2010 24 16 16-core: Nov 2011 (AMD only) 8 18-core: Sep 2014 (Intel only) 0 2005 2007 2009 2011 2013 2015 2017 2019 22-core: March 2016 (Intel only) Intel Cores AMD Cores 28-core: July 2017 (Intel only) Note that this is only for x86 – other 32-core: June 2017 (AMD only) processor families (for example, POWER) 56-core: Apr 2019 (Intel only) introduced multicore earlier. 64-core: Aug 2019 (AMD only) http://www.intel.com/pressroom/kits/quickreffam.htm (dual core, quad core) http://ark.intel.com/products/family/34348/Intel-Xeon-Processor-7000-Sequence#@Server (hex core) http://ark.intel.com/ProductCollection.aspx?familyID=594&MarketSegment=SRV (oct core) http://en.wikipedia.org/wiki/Intel_Nehalem_(microarchitecture) (oct core) http://en.wikipedia.org/wiki/AMD_Opteron (12-core) https://en.wikipedia.org/wiki/Broadwell_(microarchitecture) (22-core) https://en.wikipedia.org/wiki/Skylake_(microarchitecture) (28-core) https://en.wikipedia.org/wiki/Cascade_Lake_(microarchitecture) (56-core) https://en.wikipedia.org/wiki/Epyc (64-core, 32-core) Hardware Lesson CS1313 Fall 2021 13 Why Multicore? #1 In the golden olden days (through about 2005), the way to speed up a CPU was to increase its “clock speed.” Every CPU has a little crystal inside it that vibrates at a fixed frequency (for example, 1 GHz = 1 billion vibrations per second). Each operation (add, subtract, multiply, divide, etc) requires a specific number of clock ticks to complete. But, the power density (watts per square cm) of a CPU chip is proportional to the square of the clock speed. So, continuing to increase the clock speed would have been, quite literally, a dead end, because by now such CPU chips would have already reached the power density of the sun. Hardware Lesson CS1313 Fall 2021 14 Why Multicore? #2 D. Etiemble, 2018: “45-year CPU Evolution: One Law and Two Equations.” https://arxiv.org/ftp/arxiv/papers/1803/1803.00254.pdf Derived from: F. Pollack, 1999: “New Microarchitecture Challenges in the Coming Generation of CMOS Process Technologies.” Micro32 conference keynote. 1990 2000 c. 2005 c. 2010 c. 2015 Hardware Lesson CS1313 Fall 2021 15 Storage There are two major categories of storage: Primary Cache Main memory (RAM) Secondary Hard disk Removable (e.g., thumb drive, CD, floppy) Hardware Lesson CS1313 Fall 2021 16 Primary Storage Primary storage is where data and instructions reside when they’re being used by a program that is currently running. Typically is volatile: The data disappear when the power is turned off. Typically comes in two subcategories: Cache Main memory (RAM) Hardware Lesson CS1313 Fall 2021 17 Cache Cache memory is where data and instructions reside when they are going to be used very very soon, or have just been used. Cache is very fast (typically 5% - 100% of the speed of the registers) compared to RAM (~1% of the speed of the registers). Therefore, it’s very expensive (e.g., $17 per MB) https://ark.intel.com/products/77493/Intel-Core-i3-4360-Processor-4M-Cache-3_70-GHz ($149) https://ark.intel.com/products/77490/Intel-Core-i3-4170-Processor-3M-Cache-3_70-GHz ($132) http://www.pricewatch.com/ Therefore, it’s very small (e.g., under 1 MB to 256 MB) https://en.wikipedia.org/wiki/Epyc … but still much bigger than registers. Hardware Lesson CS1313 Fall 2021 18 From Cache to the CPU CPU: Up to 1229 GB/sec on CPU a 1.6 GHz Intel i-8250U Kaby Lake https://i.dell.com/is/image/DellCo ntent//content/dam/global-site- design/product_images/dell_client_ products/notebooks/latitude_notebo oks/13_3590/global_spi/notebooks- Cache: 40 GB/sec (3.3%) latitude-15-3590-campaign-hero- https://www.softpedia.com/get/System/Benchmarks/BenchMem.shtml 504x350-ng.psd?fmt=png- alpha&wid=570&hei=400 Cache Typically, data move between cache and the CPU at speeds closer to that of the CPU performing calculations.
Recommended publications
  • Effective Virtual CPU Configuration with QEMU and Libvirt
    Effective Virtual CPU Configuration with QEMU and libvirt Kashyap Chamarthy <[email protected]> Open Source Summit Edinburgh, 2018 1 / 38 Timeline of recent CPU flaws, 2018 (a) Jan 03 • Spectre v1: Bounds Check Bypass Jan 03 • Spectre v2: Branch Target Injection Jan 03 • Meltdown: Rogue Data Cache Load May 21 • Spectre-NG: Speculative Store Bypass Jun 21 • TLBleed: Side-channel attack over shared TLBs 2 / 38 Timeline of recent CPU flaws, 2018 (b) Jun 29 • NetSpectre: Side-channel attack over local network Jul 10 • Spectre-NG: Bounds Check Bypass Store Aug 14 • L1TF: "L1 Terminal Fault" ... • ? 3 / 38 Related talks in the ‘References’ section Out of scope: Internals of various side-channel attacks How to exploit Meltdown & Spectre variants Details of performance implications What this talk is not about 4 / 38 Related talks in the ‘References’ section What this talk is not about Out of scope: Internals of various side-channel attacks How to exploit Meltdown & Spectre variants Details of performance implications 4 / 38 What this talk is not about Out of scope: Internals of various side-channel attacks How to exploit Meltdown & Spectre variants Details of performance implications Related talks in the ‘References’ section 4 / 38 OpenStack, et al. libguestfs Virt Driver (guestfish) libvirtd QMP QMP QEMU QEMU VM1 VM2 Custom Disk1 Disk2 Appliance ioctl() KVM-based virtualization components Linux with KVM 5 / 38 OpenStack, et al. libguestfs Virt Driver (guestfish) libvirtd QMP QMP Custom Appliance KVM-based virtualization components QEMU QEMU VM1 VM2 Disk1 Disk2 ioctl() Linux with KVM 5 / 38 OpenStack, et al. libguestfs Virt Driver (guestfish) Custom Appliance KVM-based virtualization components libvirtd QMP QMP QEMU QEMU VM1 VM2 Disk1 Disk2 ioctl() Linux with KVM 5 / 38 libguestfs (guestfish) Custom Appliance KVM-based virtualization components OpenStack, et al.
    [Show full text]
  • AMD EPYC™ 7371 Processors Accelerating HPC Innovation
    AMD EPYC™ 7371 Processors Solution Brief Accelerating HPC Innovation March, 2019 AMD EPYC 7371 processors (16 core, 3.1GHz): Exceptional Memory Bandwidth AMD EPYC server processors deliver 8 channels of memory with support for up The right choice for HPC to 2TB of memory per processor. Designed from the ground up for a new generation of solutions, AMD EPYC™ 7371 processors (16 core, 3.1GHz) implement a philosophy of Standards Based AMD is committed to industry standards, choice without compromise. The AMD EPYC 7371 processor delivers offering you a choice in x86 processors outstanding frequency for applications sensitive to per-core with design innovations that target the performance such as those licensed on a per-core basis. evolving needs of modern datacenters. No Compromise Product Line Compute requirements are increasing, datacenter space is not. AMD EPYC server processors offer up to 32 cores and a consistent feature set across all processor models. Power HPC Workloads Tackle HPC workloads with leading performance and expandability. AMD EPYC 7371 processors are an excellent option when license costs Accelerate your workloads with up to dominate the overall solution cost. In these scenarios the performance- 33% more PCI Express® Gen 3 lanes. per-dollar of the overall solution is usually best with a CPU that can Optimize Productivity provide excellent per-core performance. Increase productivity with tools, resources, and communities to help you “code faster, faster code.” Boost AMD EPYC processors’ innovative architecture translates to tremendous application performance with Software performance. More importantly, the performance you’re paying for can Optimization Guides and Performance be matched to the appropriate to the performance you need.
    [Show full text]
  • Family 12H AMD Sempron Processor Product Data Sheet
    Family 12h AMD Sempron™ Processor Product Data Sheet Publication # 50321 Revision: 3.00 Issue Date: December 2011 Advanced Micro Devices © 2011 Advanced Micro Devices, Inc. All rights reserved. The contents of this document are provided in connection with Advanced Micro Devices, Inc. (“AMD”) products. AMD makes no representations or warranties with respect to the accuracy or completeness of the contents of this publication and reserves the right to make changes to specifications and product descriptions at any time without notice. The information contained herein may be of a preliminary or advance nature and is subject to change without notice. No license, whether express, implied, arising by estoppel or otherwise, to any intellectual property rights is granted by this publication. Except as set forth in AMD’s Standard Terms and Conditions of Sale, AMD assumes no liability whatsoever, and disclaims any express or implied warranty, relating to its products including, but not limited to, the implied warranty of merchantability, fitness for a particular purpose, or infringement of any intellectual property right. AMD’s products are not designed, intended, authorized or warranted for use as components in systems intended for surgical implant into the body, or in other applications intended to support or sustain life, or in any other application in which the failure of AMD’s product could create a situation where personal injury, death, or severe property or environmental damage may occur. AMD reserves the right to discontinue or make changes to its products at any time without notice. Trademarks AMD, the AMD Arrow logo, AMD PowerNow!, 3DNow!, AMD Virtualization, AMD-V, Sempron, and combinations thereof are trademarks of Advanced Micro Devices, Inc.
    [Show full text]
  • Evaluation of AMD EPYC
    Evaluation of AMD EPYC Chris Hollowell <[email protected]> HEPiX Fall 2018, PIC Spain What is EPYC? EPYC is a new line of x86_64 server CPUs from AMD based on their Zen microarchitecture Same microarchitecture used in their Ryzen desktop processors Released June 2017 First new high performance series of server CPUs offered by AMD since 2012 Last were Piledriver-based Opterons Steamroller Opteron products cancelled AMD had focused on low power server CPUs instead x86_64 Jaguar APUs ARM-based Opteron A CPUs Many vendors are now offering EPYC-based servers, including Dell, HP and Supermicro 2 How Does EPYC Differ From Skylake-SP? Intel’s Skylake-SP Xeon x86_64 server CPU line also released in 2017 Both Skylake-SP and EPYC CPU dies manufactured using 14 nm process Skylake-SP introduced AVX512 vector instruction support in Xeon AVX512 not available in EPYC HS06 official GCC compilation options exclude autovectorization Stock SL6/7 GCC doesn’t support AVX512 Support added in GCC 4.9+ Not heavily used (yet) in HEP/NP offline computing Both have models supporting 2666 MHz DDR4 memory Skylake-SP 6 memory channels per processor 3 TB (2-socket system, extended memory models) EPYC 8 memory channels per processor 4 TB (2-socket system) 3 How Does EPYC Differ From Skylake (Cont)? Some Skylake-SP processors include built in Omnipath networking, or FPGA coprocessors Not available in EPYC Both Skylake-SP and EPYC have SMT (HT) support 2 logical cores per physical core (absent in some Xeon Bronze models) Maximum core count (per socket) Skylake-SP – 28 physical / 56 logical (Xeon Platinum 8180M) EPYC – 32 physical / 64 logical (EPYC 7601) Maximum socket count Skylake-SP – 8 (Xeon Platinum) EPYC – 2 Processor Inteconnect Skylake-SP – UltraPath Interconnect (UPI) EYPC – Infinity Fabric (IF) PCIe lanes (2-socket system) Skylake-SP – 96 EPYC – 128 (some used by SoC functionality) Same number available in single socket configuration 4 EPYC: MCM/SoC Design EPYC utilizes an SoC design Many functions normally found in motherboard chipset on the CPU SATA controllers USB controllers etc.
    [Show full text]
  • Communication Theory II
    Microprocessor (COM 9323) Lecture 2: Review on Intel Family Ahmed Elnakib, PhD Assistant Professor, Mansoura University, Egypt Feb 17th, 2016 1 Text Book/References Textbook: 1. The Intel Microprocessors, Architecture, Programming and Interfacing, 8th edition, Barry B. Brey, Prentice Hall, 2009 2. Assembly Language for x86 processors, 6th edition, K. R. Irvine, Prentice Hall, 2011 References: 1. Computer Architecture: A Quantitative Approach, 5th edition, J. Hennessy, D. Patterson, Elsevier, 2012. 2. The 80x86 Family, Design, Programming and Interfacing, 3rd edition, Prentice Hall, 2002 3. The 80x86 IBM PC and Compatible Computers, Assembly Language, Design, and Interfacing, 4th edition, M.A. Mazidi and J.G. Mazidi, Prentice Hall, 2003 2 Lecture Objectives 1. Provide an overview of the various 80X86 and Pentium family members 2. Define the contents of the memory system in the personal computer 3. Convert between binary, decimal, and hexadecimal numbers 4. Differentiate and represent numeric and alphabetic information as integers, floating-point, BCD, and ASCII data 5. Understand basic computer terminology (bit, byte, data, real memory system, protected mode memory system, Windows, DOS, I/O) 3 Brief History of the Computers o1946 The first generation of Computer ENIAC (Electrical and Numerical Integrator and Calculator) was started to be used based on the vacuum tube technology, University of Pennsylvania o1970s entire CPU was put in a single chip. (1971 the first microprocessor of Intel 4004 (4-bit data bus and 2300 transistors and 45 instructions) 4 Brief History of the Computers (cont’d) oLate 1970s Intel 8080/85 appeared with 8-bit data bus and 16-bit address bus and used from traffic light controllers to homemade computers (8085: 246 instruction set, RISC*) o1981 First PC was introduced by IBM with Intel 8088 (CISC**: over 20,000 instructions) microprocessor oMotorola emerged with 6800.
    [Show full text]
  • SCAPP Package Spectrum CUDA Access for Parallel Programming
    SCAPP Package Spectrum CUDA Access for Parallel Programming for M4i and M2p cards, English version April 12, 2019 SPECTRUM INSTRUMENTATION GMBH · AHRENSFELDER WEG 13-17 · 22927 GROSSHANSDORF · GERMANY PHONE: +49 (0)4102-6956-0 · FAX: +49 (0)4102-6956-66 · E-MAIL: [email protected] · INTERNET: www.spectrum-instrumentation.com (c) SPECTRUM INSTRUMENTATION GMBH AHRENSFELDER WEG 13-17, 22927 GROSSHANSDORF, GERMANY SBench, digitizerNETBOX and generatorNETBOX are registered trademarks of Spectrum Instrumentation GmbH. Microsoft, Visual C++, Windows, Windows 98, Windows NT, Windows 2000, Windows XP, Windows Vista, Windows 7, Windows 8, Windows 10 and Windows Server are trademarks/registered trademarks of Microsoft Corporation. LabVIEW, DASYLab, Diadem and LabWindows/CVI are trademarks/registered trademarks of National Instruments Corporation. MATLAB is a trademark/registered trademark of The Mathworks, Inc. Delphi and C++Builder are trademarks or registered trademarks of Embarcadero Technologies, Inc. Keysight VEE, VEE Pro and VEE OneLab are trademarks/registered trademarks of Keysight Technologies, Inc. FlexPro is a registered trademark of Weisang GmbH & Co. KG. PCIe, PCI Express, PCI-X and PCI-SIG are trademarks of PCI-SIG. PICMG and CompactPCI are trademarks of the PCI Industrial Computation Manufacturers Group. PXI is a trademark of the PXI Systems Alliance. LXI is a registered trademark of the LXI Consortium. IVI is a registered trademark of the IVI Foundation Oracle and Java are registered trademarks of Oracle and/or its affiliates. Intel and Intel Core i3, Core i5, Core i7, Core i9 and Xeon are trademarks and/or registered trademarks of Intel Corporation. AMD, Opteron, Sempron, Phenom, FX, Ryzen and EPYC are trademarks and/or registered trademarks of Advanced Micro Devices.
    [Show full text]
  • AMD EPYC 7002 Architecture Extends Benefits for Storage-Centric
    Micron Technical Brief AMD EPYC™ 7002 Architecture Extends Benefits for Storage-Centric Solutions Overview With the release of the second generation of AMD EPYC™ family of processors, Micron believes that AMD has extended the benefits of EPYC as a foundation for storage-centric, all-flash solutions beyond the previous generation. As more enterprises are evaluating and deploying commodity server-based software-defined storage (SDS) solutions, platforms built using AMD EPYC 7002 processors continue to provide massive storage flexibility and throughput using the latest generation of PCI Express® (PCIe™) and NVM Express® (NVMe™) SSDs. With this new offering, Micron revisits our previously released analysis of the advantages that AMD EPYC architecture-based servers provide storage-centric solutions. To best assess the AMD EPYC architecture, we discuss the EPYC 7002 for solid-state storage solutions, based on AMD EPYC product features, capabilities and server manufacturer recommendations. We have not included any specific testing performed by Micron. Each OEM/ODM will have differing server implementation and additional support components, which could ultimately affect solution performance. Architecture Overview The new EPYC 7002 series of enterprise-class server processors, AMD created a second generation of its “Zen” microarchitecture and a second- generation Infinity Fabric™ to interconnect up to eight processor core complex die (CCD) per socket. Each CCD can host up to eight cores together with a centralized I/O controller that handles all PCIe and memory traffic (Figure 1). AMD has doubled the performance of each system-on-a- chip (SoC) while reducing the overall power consumption per core through advanced 7nm process technology over the first generation’s 14nm process, doubling memory DIMM size support to 256GB LRDIMMs while also providing a 2x peripheral throughput increase with the introduction of PCIe Generation 4.0 I/O controllers.
    [Show full text]
  • Die Meilensteine Der Computer-, Elek
    Das Poster der digitalen Evolution – Die Meilensteine der Computer-, Elektronik- und Telekommunikations-Geschichte bis 1977 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 und ... Von den Anfängen bis zu den Geburtswehen des PCs PC-Geburt Evolution einer neuen Industrie Business-Start PC-Etablierungsphase Benutzerfreundlichkeit wird gross geschrieben Durchbruch in der Geschäftswelt Das Zeitalter der Fensterdarstellung Online-Zeitalter Internet-Hype Wireless-Zeitalter Web 2.0/Start Cloud Computing Start des Tablet-Zeitalters AI (CC, Deep- und Machine-Learning), Internet der Dinge (IoT) und Augmented Reality (AR) Zukunftsvisionen Phasen aber A. Bowyer Cloud Wichtig Zählhilfsmittel der Frühzeit Logarithmische Rechenhilfsmittel Einzelanfertigungen von Rechenmaschinen Start der EDV Die 2. Computergeneration setzte ab 1955 auf die revolutionäre Transistor-Technik Der PC kommt Jobs mel- All-in-One- NAS-Konzept OLPC-Projekt: Dass Computer und Bausteine immer kleiner, det sich Konzepte Start der entwickelt Computing für die AI- schneller, billiger und energieoptimierter werden, Hardware Hände und Finger sind die ersten Wichtige "PC-Vorläufer" finden wir mit dem werden Massenpro- den ersten Akzeptanz: ist bekannt. Bei diesen Visionen geht es um die Symbole für die Mengendarstel- schon sehr früh bei Lernsystemen. iMac und inter- duktion des Open Source Unterstüt- möglichen zukünftigen Anwendungen, die mit 3D-Drucker zung und lung. Ägyptische Illustration des Beispiele sind: Berkley Enterprice mit neuem essant: XO-1-Laptops: neuen Technologien und Konzepte ermöglicht Veriton RepRap nicht Ersatz werden.
    [Show full text]
  • In the United States District Court for the District of Delaware
    Case 1:19-cv-00368-UNA Document 1 Filed 02/21/19 Page 1 of 58 PageID #: 1 IN THE UNITED STATES DISTRICT COURT FOR THE DISTRICT OF DELAWARE MEDIATEK INC. and ) MEDIATEK USA INC., ) ) Plaintiffs, ) ) C.A. No. _____________________ v. ) ) JURY TRIAL DEMANDED ADVANCED MICRO DEVICES, INC., ) ) Defendant. ) COMPLAINT Plaintiffs MEDIATEK INC. and MEDIATEK USA INC. (together “MediaTek” or “Plaintiffs”), for its Complaint against ADVANCED MICRO DEVICES, INC. (“AMD” or “Defendant”), hereby alleges as follows: PARTIES 1. Plaintiff MEDIATEK INC. is a Taiwanese company incorporated under the laws of Taiwan with its principal place of business located at No. 1, Dusing Road 1, Hsinchu Science Park, Hsinchu City 30078, Taiwan. MediaTek Inc. is the assignee of all patents identified in this Complaint including all rights to sue for past and future damages for infringement of said patents. 2. Plaintiff MEDIATEK USA INC. is a corporation organized and existing under the law of the State of Delaware with its principal place of business located at 2840 Junction Avenue, San Jose, California, 95134 and other locations in Austin, Texas, Bellevue, Washington, Irvine, California, San Diego, California, San Jose, California, and Woburn, Massachusetts. MediaTek USA Inc. is a wholly-owned subsidiary of MediaTek Inc. and has a license under the patents asserted here. Case 1:19-cv-00368-UNA Document 1 Filed 02/21/19 Page 2 of 58 PageID #: 2 3. Upon information and belief, AMD is a corporation organized and existing under the law of the State of Delaware, and maintains its principal place of business at 2485 Augustine Dr., Santa Clara, CA 95054 and principal administrative facilities as well as Corporate Secretary at 7171 Southwest Parkway, M/S B100.2, Austin, Texas 78735.
    [Show full text]
  • AMD's Early Processor Lines, up to the Hammer Family (Families K8
    AMD’s early processor lines, up to the Hammer Family (Families K8 - K10.5h) Dezső Sima October 2018 (Ver. 1.1) Sima Dezső, 2018 AMD’s early processor lines, up to the Hammer Family (Families K8 - K10.5h) • 1. Introduction to AMD’s processor families • 2. AMD’s 32-bit x86 families • 3. Migration of 32-bit ISAs and microarchitectures to 64-bit • 4. Overview of AMD’s K8 – K10.5 (Hammer-based) families • 5. The K8 (Hammer) family • 6. The K10 Barcelona family • 7. The K10.5 Shanghai family • 8. The K10.5 Istambul family • 9. The K10.5-based Magny-Course/Lisbon family • 10. References 1. Introduction to AMD’s processor families 1. Introduction to AMD’s processor families (1) 1. Introduction to AMD’s processor families AMD’s early x86 processor history [1] AMD’s own processors Second sourced processors 1. Introduction to AMD’s processor families (2) Evolution of AMD’s early processors [2] 1. Introduction to AMD’s processor families (3) Historical remarks 1) Beyond x86 processors AMD also designed and marketed two embedded processor families; • the 2900 family of bipolar, 4-bit slice microprocessors (1975-?) used in a number of processors, such as particular DEC 11 family models, and • the 29000 family (29K family) of CMOS, 32-bit embedded microcontrollers (1987-95). In late 1995 AMD cancelled their 29K family development and transferred the related design team to the firm’s K5 effort, in order to focus on x86 processors [3]. 2) Initially, AMD designed the Am386/486 processors that were clones of Intel’s processors.
    [Show full text]
  • Processor Check Utility for 64-Bit Compatibility
    Processor Check Utility for 64-Bit Compatibility VMware Workstation Processor Check Utility for 64-Bit Compatibility VMware Workstation version 5.5 supports virtual machines with 64-bit guest operating systems, running on host machines with the following processors: • AMD™ Athlon™ 64, revision D or later • AMD Opteron™, revision E or later • AMD Turion™ 64, revision E or later • AMD Sempron™, 64-bit-capable revision D or later (experimental support) • Intel™ EM64T VT-capable processors (experimental support) When you power on a virtual machine with a 64-bit guest operating system, Workstation performs an internal check: if the host CPU is not a supported 64-bit processor, you cannot power on the virtual machine. VMware also provides this standalone processor check utility, which you can use without Workstation to perform the same check and determine whether your CPU is supported for virtual machines with 64-bit guest operating systems. Note: On hosts with EM64T VT-capable processors, you may not be able to power on a 64-bit guest, even though the processor check utility indicates that the processor is supported for 64- bit guests. VT functionality can be disabled via the BIOS, but the processor check utility cannot read the appropriate model-specific register (MSR) to detect that the VT functionality has been disabled in the BIOS. Note: In shopping for a processor that is compatible with Workstation 5.5 64-bit guests, you may be unable to determine the revision numbers of a given vendor's offering of AMD Athlon 64, Opteron, Turion 64, or Sempron processors. At this time, the only reliable way to determine whether any of these processors is a revision supported by Workstation 5.5, is by the manufacturing technology (CMOS): any of the AMD Athlon 64, Opteron, Turion 64, or Sempron processors whose manufacturing technology is 90nm SOI (.09 micron SOI) is compatible with Workstation 5.5 64-bit guests.
    [Show full text]
  • The Severest of Them All: Inference Attacks Against Secure Virtual Enclaves Jan Werner Joshua Mason Manos Antonakakis UNC Chapel Hill U
    The SEVerESt Of Them All: Inference Attacks Against Secure Virtual Enclaves Jan Werner Joshua Mason Manos Antonakakis UNC Chapel Hill U. Illinois Georgia Tech [email protected] [email protected] [email protected] Michalis Polychronakis Fabian Monrose Stony Brook University UNC Chapel Hill [email protected] [email protected] ABSTRACT and Communications Security (AsiaCCS ’19), July 9–12, 2019, Auckland, The success of cloud computing has shown that the cost and con- New Zealand. ACM, New York, NY, USA, 13 pages. https://doi.org/10.1145/ venience benefits of outsourcing infrastructure, platform, and soft- 3321705.3329820 ware resources outweigh concerns about confidentiality. Still, many businesses resist moving private data to cloud providers due to in- 1 INTRODUCTION tellectual property and privacy reasons. A recent wave of hardware Of late, the need for a Trusted Execution Environment has risen virtualization technologies aims to alleviate these concerns by of- to the forefront as an important consideration for many parties in fering encrypted virtualization features that support data confiden- the cloud computing ecosystem. Cloud computing refers to the use tiality of guest virtual machines (e.g., by transparently encrypting of on-demand networked infrastructure software and capacity to memory) even when running on top untrusted hypervisors. provide resources to customers [52]. In today’s marketplace, con- We introduce two new attacks that can breach the confidentiality tent providers desire the ability to deliver copyrighted or sensitive of protected enclaves. First, we show how a cloud adversary can material to clients without the risk of data leaks. At the same time, judiciously inspect the general purpose registers to unmask the computer manufacturers must be able to verify that only trusted computation that passes through them.
    [Show full text]