Studying the CERN-SPS Energy Range with NA61/SHINE

Total Page:16

File Type:pdf, Size:1020Kb

Studying the CERN-SPS Energy Range with NA61/SHINE EPJ Web of Conferences 70, 00 033 (2014) DOI: 10.1051/epj conf/20147 000 033 C Owned by the authors, published by EDP Sciences, 2014 The Old New Frontier: Studying the CERN-SPS Energy Range with NA61/SHINE Marek Szuba1,a for the NA61/SHINE Collaboration2 1Karlsruhe Institute of Technology, Germany 2CERN, Geneva, Switzerland Abstract. With the Large Hadron Collider entering its third year of granting us insight into the highest collision energies to date, one should nevertheless keep in mind the un- explored physics potential of lower energies. A prime example here is the NA61/SHINE experiment at the CERN Super Proton Synchrotron. Using its large-acceptance hadronic spectrometer, SHINE aims to accomplish a number of physics goals: measuring spec- tra of identified hadrons in hadron-nucleus collisions to provide reference for accelerator neutrino experiments and cosmic-ray observatories, investigating particle properties in the large transverse-momentum range for hadron+hadron and hadron+nucleus collisions for studying the nuclear modification factor at SPS energies, and measuring hadronic ob- servables in a particularly interesting region of the phase diagram of strongly-interacting matter to study the onset of deconfinement and search for the critical point of strongly- interacting matter with nucleus-nucleus collisions. This contribution shall summarise results obtained so far by NA61/SHINE, as well as present the current status and plans of its experimental programme. 1 Introduction There is no doubt that studies of particle collisions at the highest available energies can and do result in important scientific results; the string of discoveries from the Tevatron at Fermilab and the recent observation at the Large Hadron Collider at CERN of what is likely the Higgs boson attest to that. Even so, one should keep in mind the unexplored physics potential of collisions at lower energies. Data from experiments such as those at the Super Proton Synchrotron (SPS) at CERN, operating well below the high-energy frontier, continue to contribute to expanding our knowledge of matter, our world and the universe. Examples of projects depending on such data include: 1.1 Measurement of Neutrino Oscillation Predicted by Pontecorvo 1957 and since then observed experimentally, neutrino oscillation is a quantum-mechanical phenomenon which can make a neutrino produced with a specific flavour be observed later as possessing different flavour [1]. It stems from differences in quantum-phase prop- agation of different neutrino mass eigenstates and as such requires neutrinos to have mass. One way ae-mail: [email protected] This is an Open Access article distributed under the terms of the Creative Commons Attribution License 2.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Article available at http://www.epj-conferences.org or http://dx.doi.org/10.1051/epjconf/20147000033 EPJ Web of Conferences to obtain accurate measurements of neutrino oscillation is to perform it on neutrinos produced in a controlled environment of a particle accelerator: a high-energy beam of protons is collided against a graphite target to produce positive pions and kaons, which subsequently decay into muons and muon neutrinos. One experiment measuring oscillation of beam neutrinos is T2K in Japan, directing particles from the J-PARC facility in Tokai towards the Super-Kamiokande detector 295 km away in Kamioka [2]. Physics goals of T2K are to obtain one of the first measurements of the θ13 mixing angle of the Pontecorvo-Maki-Nakagawa-Sakata (PMNS) neutrino-mixing matrix, to improve precision of mea- θ ff Δ 2 surements of the 23 mixing angle and the mass di erence m23, and in the future to search for ν CP violation. Other experiments of this sort include MINOS and NOνA (NuMI beam at Fer- milab), LBNE (upcoming new ν beam at Fermilab), and OPERA and ICARUS (CNGS beam at CERN) [3][4][5][6][7]. Unfortunately even with well-defined primary beams, estimating the resulting neutrino flux is not a trivial matter. In order to achieve adequate beam intensity the graphite target must be long, leading to secondary interactions. Moreover, a non-negligible contribution to the flux is made by interactions with support structures such as the target holder and cooling systems. In short, good knowledge of properties of the resulting neutrino beam requires good knowledge of hadron production in the target — which in turn may be much easier to study using an identical target at a fixed-target facility oriented towards hadron spectroscopy than having to set up necessary detectors in situ. Given the energies of proton beams typically used for production of neutrino beams, the CERN SPS complex (indeed, in case of the CNGS beam the proton accelerator in question is the SPS) is a perfect candidate for this task. 1.2 Hadron Production in Extensive Air Showers Another domain which can benefit from hadroproduction measurements in the energy range of the SPS are studies of extensive air showers (EAS) produced in Earth’s atmosphere by cosmic rays. De- tecting and measuring EAS is the standard technique for studying ultra high-energy cosmic rays, as such particles reach our planet so infrequently and from so many different directions that it is vir- tually impossible to gather a statistically significant sample through direct measurements (i.e. using satellite- or balloon-based detectors to observe cosmic-ray particles themselves); using EAS detectors makes it both technically and financially easier to cover a much wider area. Examples of modern EAS experiments include KASCADE-Grande in Germany, Pierre Auger Observatory in Argentina and the Telescope Array in the United States [8][9][1]. Improved observation rates of EAS-based cosmic-ray experiments come at a cost of having to accurately reconstruct properties of the original particle from what has undergone multiple levels of interactions with the atmosphere before reaching the detectors. In particular, evolution of the hadronic component of showers remains relatively poorly understood. With primary energies of ultra high-energy cosmic rays remaining largely out of range of man-made accelerators, one is required to employ simulations to provide reference for such evolution — which in turn requires careful tuning of models used for this purpose. This is where measuring hadron spectra at the SPS comes in. Although its energy range falls 15 several orders of magnitude short of the energy of cosmic rays observed by EAS detectors (E0 = 10 − 1020 eV, it provides an excellent match to the energy of the last generation of hadronic interactions in the shower. As many experimental observables (e.g. the number of muons detected by surface detectors) are directly tied to this stage of shower evolution, studying it at the SPS is expected to yield significantly improved predictions. 00033-p.2 ICFP 2012 1.3 High-pT Hadrons in p+p and p+A Colliisions Proton-proton and proton-nucleus collisions constitute important reference systems for a wide range of different studies (for instance spectra, scaling with the number of wounded nucleons or binary collisions, nuclear modification factor and Cronin effect, among others) in nucleus-nucleus reactions. However, in the past data sets of this sort at SPS energies and below were relatively small. This prob- lem becomes particularly pressing in case of high-pT hadrons, originating from hard scatterings and thus useful for probing the perturbative-quantum chromodynamics (QCD) regime of strong interac- tions — they are produced so rarely that most such elementary collisions contain none at all, further reducing effective sample size. Fortunately, development of sophisticated detectors and readout com- ponents capable of coping with high event rates of high-luminosity machines such as the LHC has made it possible to also improve event rates of lower-energy detectors, allowing at last collection of large-statistics p+p and p+A data sets. Analysis of this data is expected to greatly improve precision of many existing results as well as allow new, hitherto-infeasible studies. 1.4 Critical Point and the Onset of Deconfinement of QCD Matter Theoretical predictions based on QCD tell us that above certain energy density, quarks and gluons previously confined to hadrons can undergo a phase transition into the quark-gluon plasma — a state in which they can be considered free. The energy range of the SPS is very important for studying this transition because at these energies one can produce collisions both right below and right above the energy threshold for deconfinement [1]. Moreover, it is also in this energy range that we now expect the critical point of the QCD phase diagram [1]. A number of experimental observables were proposed to be sensitive to the onset of deconfine- ment; these include changes in energy dependence of the pion yield per wounded nucleon (“the kink”), K+ of the π+ ratio (“the horn”) and of the mean transverse mass (“the step”) [1]. On the other hand, the emergence of the critical point is predicted to be observable in event-by-event fluctuations of e.g. multiplicity and average transverse momentum [1]. Indications in favour of this hypothesis has been observed both at the SPS and elsewhere [1][1][1]. 2 The NA61/SHINE Experiment 2.1 Overview and Physics Goals NA61/SHINE (SPS Heavy Ion and Nutrino Experiment) is a fixed-target experiment located in the North Area of the CERN SPS, using a large-acceptance hadronic spectrometer to study a wide range of phenomena in a number of different hadron-hadron, hadron-nucleus and nucleus-nucleus reac- tions [1]. It is the successor of the NA49 experiment, which took data in the years 1994–2002, and reuses most of its predecessor’s hardware and software [1]. Its large acceptance (around 50 % for 2 −4 −1 pT ≤ 2.5 GeV/c), high momentum resolution (σ(p)/p ≈ 10 (GeV/c) ) and tracking efficiency σ dE / dE ≈ ,σ ≈ (over 95 %), and excellent particle-identification capabilities ( ( dx ) dx 4% (tToF) 100 ps) make it an excellent tool for investigating hadron spectra.
Recommended publications
  • Il Nostro Mondo
    IL NOSTRO MONDO THE DESIGN, CONSTRUCTION AND PERFORMANCE OF THE CERN INTERSECTING STORAGE RINGS (ISR) A RECOLLECTION OF WORLD’S FIRST PROTON-PROTON COLLIDER KURT HÜBNER CERN, Geneva, Switzerland 1 Design which had a beam energy of 160 MeV. The interaction points to increase the collision rate The concept of colliding beams appeared design of these colliders started in 1957. but without special lattice insertions as one first in a German patent by Rolf Widerøe In 1961, the Accelerator Research Group would use these days. registered in 1943 and published in 1952. Division was expanded into the Accelerator Combined-function magnets were chosen However, at that time the intensity of beams Division as experienced manpower had as in the PS, i.e. the main magnets had a was too low for an exploitable collision rate as become available after the running-in of the magnetic dipole field to bend the beam and a beam accumulation had not yet been invented. PS in 1960. At the same time it was decided quadrupole field to focus the beam. This type The first ideas of a realistic design were to construct a small accelerator to test rf of magnet provided space for the elaborate published in 1956 by Gerard O’Neill and by the stacking, a technique to be experimentally pole-face windings foreseen to control the MURA Group lead by Donald Kerst in the USA. proven, as it was essential for the performance magnetic field to a very high precision. It also MURA had come up with beam accumulation and success of the ISR.
    [Show full text]
  • Pos(ICRC2019)446
    New Results from the Cosmic-Ray Program of the NA61/SHINE facility at the CERN SPS PoS(ICRC2019)446 Michael Unger∗ for the NA61/SHINE Collaborationy Karlsruhe Institute of Technology (KIT), Postfach 3640, D-76021 Karlsruhe, Germany E-mail: [email protected] The NA61/SHINE experiment at the SPS accelerator at CERN is a unique facility for the study of hadronic interactions at fixed target energies. The data collected with NA61/SHINE is relevant for a broad range of topics in cosmic-ray physics including ultrahigh-energy air showers and the production of secondary nuclei and anti-particles in the Galaxy. Here we present an update of the measurement of the momentum spectra of anti-protons produced in p−+C interactions at 158 and 350 GeV=c and discuss their relevance for the understanding of muons in air showers initiated by ultrahigh-energy cosmic rays. Furthermore, we report the first results from a three-day pilot run aimed at investigating the ca- pability of our experiment to measure nuclear fragmentation cross sections for the understanding of the propagation of cosmic rays in the Galaxy. We present a preliminary measurement of the production cross section of Boron in C+p interactions at 13.5 AGeV=c and discuss prospects for future data taking to provide the comprehensive and accurate reaction database of nuclear frag- mentation needed in the era of high-precision measurements of Galactic cosmic rays. 36th International Cosmic Ray Conference -ICRC2019- July 24th - August 1st, 2019 Madison, WI, U.S.A. ∗Speaker. yhttp://shine.web.cern.ch/content/author-list c Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0).
    [Show full text]
  • NA61/SHINE Facility at the CERN SPS: Beams and Detector System
    Preprint typeset in JINST style - HYPER VERSION NA61/SHINE facility at the CERN SPS: beams and detector system N. Abgrall11, O. Andreeva16, A. Aduszkiewicz23, Y. Ali6, T. Anticic26, N. Antoniou1, B. Baatar7, F. Bay27, A. Blondel11, J. Blumer13, M. Bogomilov19, M. Bogusz24, A. Bravar11, J. Brzychczyk6, S. A. Bunyatov7, P. Christakoglou1, T. Czopowicz24, N. Davis1, S. Debieux11, H. Dembinski13, F. Diakonos1, S. Di Luise27, W. Dominik23, T. Drozhzhova20 J. Dumarchez18, K. Dynowski24, R. Engel13, I. Efthymiopoulos10, A. Ereditato4, A. Fabich10, G. A. Feofilov20, Z. Fodor5, A. Fulop5, M. Ga´zdzicki9;15, M. Golubeva16, K. Grebieszkow24, A. Grzeszczuk14, F. Guber16, A. Haesler11, T. Hasegawa21, M. Hierholzer4, R. Idczak25, S. Igolkin20, A. Ivashkin16, D. Jokovic2, K. Kadija26, A. Kapoyannis1, E. Kaptur14, D. Kielczewska23, M. Kirejczyk23, J. Kisiel14, T. Kiss5, S. Kleinfelder12, T. Kobayashi21, V. I. Kolesnikov7, D. Kolev19, V. P. Kondratiev20, A. Korzenev11, P. Koversarski25, S. Kowalski14, A. Krasnoperov7, A. Kurepin16, D. Larsen6, A. Laszlo5, V. V. Lyubushkin7, M. Mackowiak-Pawłowska´ 9, Z. Majka6, B. Maksiak24, A. I. Malakhov7, D. Maletic2, D. Manglunki10, D. Manic2, A. Marchionni27, A. Marcinek6, V. Marin16, K. Marton5, H.-J.Mathes13, T. Matulewicz23, V. Matveev7;16, G. L. Melkumov7, M. Messina4, St. Mrówczynski´ 15, S. Murphy11, T. Nakadaira21, M. Nirkko4, K. Nishikawa21, T. Palczewski22, G. Palla5, A. D. Panagiotou1, T. Paul17, W. Peryt24;∗, O. Petukhov16 C.Pistillo4 R. Płaneta6, J. Pluta24, B. A. Popov7;18, M. Posiadala23, S. Puławski14, J. Puzovic2, W. Rauch8, M. Ravonel11, A. Redij4, R. Renfordt9, E. Richter-Wa¸s6, A. Robert18, D. Röhrich3, E. Rondio22, B. Rossi4, M. Roth13, A. Rubbia27, A. Rustamov9, M.
    [Show full text]
  • FIAS Scientific Report 2012
    FIAS Scientific Report 2012 Frankfurt Institute for Advanced Studies Editor: Dr. Joachim Reinhardt Ruth-Moufang-Str. 1 reinhardt@fias.uni-frankfurt.de 60438 Frankfurt am Main Germany Tel.: +49 (0)69 798 47600 Fax: +49 (0)69 798 47611 fias.uni-frankfurt.de Vorstand: Prof. Dr. Volker Lindenstruth, Vorsitzender Regierungspräsidium Darmstadt Prof. Dr. Dirk H. Rischke Az:II21.1–25d04/11–(12)–545 Prof. Dr. Dr. h.c. mult. Wolf Singer Finanzamt Frankfurt Prof. Dr. Dres. h.c. Horst Stöcker Steuernummer: 47 250 4216 1 – XXI/101 Prof. Dr. Jochen Triesch Freistellungsbescheid vom 16.08.2010 Geschäftsführer: Gisbert Jockenhöfer FIAS Scientific Report 2012 Table of Contents Preface..........................................................................5 Research highlights 2012 . 6 1. Partner Research Centers 1.1 HIC for FAIR / EMMI . 9 1.2 Bernstein Focus Neurotechnology . 11 2. Graduate Schools 2.1 HGS-HIRe / HQM . 14 2.2 FIGSS . 16 3. FIAS Scientific Life 3.1 Seminars and Colloquia . 20 3.2 Organized Conferences. .23 3.2 FIAS Forum . 25 4. Research Reports 4.1 Nuclear Physics, Particle Physics, Astrophysics . 26 4.2 Neuroscience. .59 4.3 Biology, Chemistry, Molecules, Nanosystems . 75 4.4 Scientific Computing, Information Technology . .101 5. Talks and Publications 5.1 Conference and Seminar Talks . 117 5.2 Conference Abstracts and Posters . 126 5.3 Cumulative List of Publications . 129 3 4 Preface In the year 2012 FIAS has continued to carry out its mission as an independent research institute performing cutting-edge research in the natural and computer sciences. An account of recent scientific accomplishments can be found in the brief individual research reports collected in Section 4.
    [Show full text]
  • Improving the Slow Extraction Efficiency of the CERN Super
    Improving the slow extraction efficiency of the CERN Super Proton Synchrotron Brunner Kristóf Faculty of Science Eötvös Loránd University Supervisors: Barna Dániel, Wigner RCP Christoph Wiesner, CERN May 2018 Contents 1 Introduction4 2 CERN accelerator complex5 2.1 Accelerators..................................... 5 2.2 Experiments..................................... 6 2.2.1 Colliders .................................. 7 2.2.2 Fixed target experiments.......................... 7 2.3 Current and future demands of fixed target experiments.............. 7 3 Introduction to accelerator physics9 3.1 History of linear and circular accelerators ..................... 9 3.2 Design orbit, focusing................................. 11 3.3 Betatron oscillation, the behaviour of single particles ................ 11 3.4 The Twiss-ellipse, the behaviour of the beam ................... 13 3.5 Normalised phase space............................... 15 3.6 Tune and resonances ................................ 16 4 Extraction from a synchrotron 19 4.1 Fast extraction.................................... 19 4.2 Multi-turn extraction ................................ 20 4.3 Sextupole driven slow extraction........................... 21 4.4 Possible enhancements............................... 24 4.4.1 Diffuser................................... 24 4.4.2 Dynamic bump............................... 26 4.4.3 Phase space folding............................. 26 5 Massless septum 28 5.1 Method of phase space folding using a massless septum.............. 29 6 Simulation
    [Show full text]
  • Particle Physics Lecture 4: the Large Hadron Collider and Other Accelerators November 13Th 2009
    Subatomic Physics: Particle Physics Lecture 4: The Large Hadron Collider and other accelerators November 13th 2009 • Previous colliders • Accelerating techniques: linacs, cyclotrons and synchrotrons • Synchrotron Radiation • The LHC • LHC energy and luminosity 1 Particle Acceleration Long-lived charged particles can be accelerated to high momenta using electromagnetic fields. • e+, e!, p, p!, µ±(?) and Au, Pb & Cu nuclei have been accelerated so far... Why accelerate particles? • High beam energies ⇒ high ECM ⇒ more energy to create new particles • Higher energies probe shorter physics at shorter distances λ c 197 MeV fm • De-Broglie wavelength: = 2π pc ≈ p [MeV/c] • e.g. 20 GeV/c probes a distance of 0.01 fm. An accelerator complex uses a variety of particle acceleration techniques to reach the final energy. 2 A brief history of colliders • Colliders have driven particle physics forward over the last 40 years. • This required synergy of - hadron - hadron colliders - lepton - hadron colliders & - lepton - lepton colliders • Experiments at colliders discovered W- boson, Z-boson, gluon, tau-lepton, charm, bottom and top-quarks. • Colliders provided full verification of the Standard Model. DESY Fermilab CERN SLAC BNL KEK 3 SppS̅ at CERNNo b&el HERAPrize for atPhy sDESYics 1984 SppS:̅ Proton anti-Proton collider at CERN. • Given to Carlo Rubbia and Simon van der Meer • Ran from 1981 to 1984. Nobel Prize for Physics 1984 • Centre of Mass energy: 400 GeV • “For their decisive • 6.9 km in circumference contributions to large • Two experiments:
    [Show full text]
  • The Search for Charged Massive Supersymmetric Particles at the LHC
    The Search for Charged Massive Supersymmetric Particles at the LHC Aleksey Pavlov A Senior Project Presented to Cal Poly June 5, 2012 This material is based upon work supported by The National Science Foundation under grant number 0969966. 1 Contents 1 Abstract 3 2 Introduction 3 3 Supersymmetry: An Extension of the Standard Model 5 4 CHAMPs 8 5 The LHC 9 6 The ALICE Detector 12 7 Analysis 14 8 Results 17 2 1 Abstract Charged Massive Particles (CHAMPs) are predicted in the Supersymmetry (SUSY) extension of the Standard Model though they have never been ob- served. We look for CHAMPs in the ALICE Detector at the Large Hadron Collider at CERN. While the main purpose of ALICE is to study Quark- Gluon Plasma, we take advantage of the tracking and time of flight capabil- ities of several sub-detectors in ALICE to look for signs of CHAMPs. These elusive particles are characterized by their slow velocity, high transverse mo- mentum and therefore heavy mass. Our research found a small handful of candidates among a large sample size but more work is required to confirm their identity and exclude the possibility that they have been misidentified. 2 Introduction The Standard Model of Particle Physics (SM) is the modern theory describ- ing how fundamental particles interact and behave. It was developed in the second half of the 20th Century after physicist Sheldon Glashow found a way to combine, or unify, the electromagnetic and electroweak forces [7]. In 1973 Glashow's electroweak theory was experimentally confirmed at CERN, the European Organization for Nuclear Research in Geneva, Switzerland, when nuetral currents through the weak nuclear force were measured.
    [Show full text]
  • In Experimental Particle Physics
    CAPACITORS UP TO 65 KV AND 20 KJ/S... The Maxwell CCS Series is the ultimate HV VERY RELIABLE. Power Supply performer and only choice for low, medium and high repetition rate Pulse Discharge Systems. With voltages to as high as 65 kV and out­ put power to 20 kJ/s, when it comes to relia­ bility, performance and price, we've rewrit­ ten the specifications for High Voltage Capacitor Charging. Maxwell has successfully applied the CCS to every conceivable Pulsed Power Application. Whether you are developing the latest Pulsed Modulator, Solid State Laser, High Energy Storage Bank or Ultra Fast Excimer, call for the specialist "San Diego Chargers." SERIES CCS Capacitor Charging Power Supplies • Output Power 2, 4, 6, 8, 10, 12 kJ/s (20 kJ/s available as custom). • Output Voltages 1, 2, 3, 5, 10, 20, 30, 40, 50, 60, 65 kV. • 208,400,480 VAC 3 phase all standard. • 22/240 VAC single phase to 6 kW available. • 2 year warranty. ^LM I _________ BIBI™ For information on the CCS, visit: ^^^HS_l_« f_l—li http://www.hvpower.com • «^•!J^/"^»™ Or for our extensive range of HV ™ ™ •TECHNOLOGItS Components and Systems, go to: Energy Products http://www.maxweILcom/energy 4949 Greencraig Lane, San Diego, CA 92123 • (619) 576-7545 • FAX (619) 576-7672 Contents Covering current developments in high- energy physics and related fields worldwide CERN Courier is distributed to Member State governments, institutes and laboratories affiliated with CERN, and to their personnel. It is published monthly except January and August, in English and French editions. The views expressed are not CERN necessarily those of the CERN management.
    [Show full text]
  • Bringing the Heavens Down to Earth
    International Journal of High-Energy Physics CERN I COURIER Volume 44 Number 3 April 2004 Bringing the heavens down to Earth ACCELERATORS NUCLEAR PHYSICS Ministers endorse NuPECC looks to linear collider p6 the future p22 POWER CONVERTERS Principles : Technologies : • Linear, Switch Node primary or secondary, Current or voltage stabilized • Hani, or résonant» Buck, from % to the sub ppm level • Boost, 4-quadrant operation Limits : Control : * 1A up to 25kA • Local manual and/or computer control * 3V to 50kV • Interfaces: RS232, RS422, RS485, IEEE488/GPIB, •O.lkVAto 3MVA • CANbus, Profibus DP, Interbus S, Ethernet • Adaptation to EPICS • DAC and ADC 16 to 20 bit resolution and linearity Applications : Electromagnets and coils Superconducting magnets or short samples Resistive or capacitive loads Klystrons, lOTs, RF transmitters 60V/350OM!OkW Thyristor controlled (S£M®) I0"4, Profibus 80V/600A,50kW 5Y/30Ô* for supraconducting magnets linear technology < Sppm stability with 10 extra shims mm BROKER BIOSPIN SA • France •m %M W\. WSÊ ¥%, 34 rue de l'industrie * F-67166 Wissembourg Cedex Tél. +33 (0)3 88 73 68 00 • Fax. +33 (0)3 88 73 68 79 lOSPIN power@brukerir CONTENTS Covering current developments in high- energy physics and related fields worldwide CERN Courier is distributed to member-state governments, institutes and laboratories affiliated with CERN, and to their personnel. It is published monthly, except for January and August, in English and French editions. The views expressed are not CERN necessarily those of the CERN management.
    [Show full text]
  • THE PROTON-ANTIPROTON COLLIDER Lecture Delivered at CERN on 25 November 1987 Lyndon Evans
    CERN 88-01 11 March 1988 ORGANISATION EUROPÉENNE POUR LA RECHERCHE NUCLÉAIRE CERN EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH CERN ACCELERATOR SCHOOL Third John Adams Memorial Lecture THE PROTON-ANTIPROTON COLLIDER Lecture delivered at CERN on 25 November 1987 Lyndon Evans GENEVA 1988 ABSTRACT The subject of this lecture is the CERN Proton-Antiproton (pp) Collider, in which John Adams was intimately involved at the design, development, and construction stages. Its history is traced from the original proposal in 1966, to the first pp collisions in the Super Proton Synchrotron (SPS) in 1981, and to the present time with drastically improved performance. This project led to the discovery of the intermediate vector boson in 1983 and produced one of the most exciting and productive physics periods in CERN's history. RN —Service d'Information Scientifique-RD/757-3000-Mars 1988 iii CONTENTS Page 1. INTRODUCTION 1 2. BEAM COOLING l 3. HISTORICAL DEVELOPMENT OF THE pp COLLIDER CONCEPT 2 4. THE SPS AS A COLLIDER 4 4.1 Operation 4 4.2 Performance 5 5. IMPACT OF EARLIER CERN DEVELOPMENTS 5 6. PROPHETS OF DOOM 7 7. IMPACT ON THE WORLD SCENE 9 8. CONCLUDING REMARKS: THE FUTURE OF THE pp COLLIDER 9 REFERENCES 10 Plates 11 v 1. INTRODUCTION The subject of this lecture is the CERN Proton-Antiproton (pp) Collider and let me say straightaway that some of you might find that this talk is rather polarized towards the Super Proton Synchrotron (SPS). In fact, the pp project was a CERN-wide collaboration 'par excellence'. However, in addition to John Adams' close involvement with the SPS there is a natural tendency for me to remain within my own domain of competence.
    [Show full text]
  • Discovery Machines
    DISCOVERY MACHINES 2019 was noteworthy for being the start of Long Shutdown 2 (LS2) of the CERN accelerator complex. Across all the machines, teams began the tasks of maintaining or renovating numerous items of equipment or replacing them with new, innovative systems. These major upgrades are being carried out in preparation for the third run of the LHC and for the High-Luminosity LHC (HL-LHC). What’s more, they will benefit the users of all the accelerators as many aspects of the work are being carried out as part of the LHC Injectors Upgrade (LIU) project. ISOLDE The front-ends for the LINEAR ACCELERATOR 4 (LINAC4) isotope separator targets have been built, tested Linac4 is now connected to the LHC and partially installed. accelerator chain. A nominal beam The new Offline2 test of 160 MeV reached the Linac4 beam facility, equipped with dump in October. a laser ion source, was (CERN-PHOTO-201704-093-27) commissioned. (CERN-PHOTO-201911-394-28) PS BOOSTER (PSB) Seventy of the 215 metres of the PSB’s beam lines have been removed to allow the installation of new equipment. More than 60 magnets have been renovated or replaced in the accelerator. A new RF acceleration system has been installed. After LS2, the energy of the PS Booster will increase from 1.4 to 2 GeV. (CERN-PHOTO-201906-149-11) 22 | CERN SUPER PROTON SYNCHROTRON (SPS) LARGE HADRON COLLIDER (LHC) A new RF acceleration system is under The electrical insulation of the diodes has construction. The SPS beam dump is being been completed on 94% of the accelerator’s replaced.
    [Show full text]
  • Charged Pion Spectra in Proton–Carbon Interactions at 31 Gev/C
    XIII International Workshop on Neutrino Factories, Super beams and Beta beams (NUFACT11) IOP Publishing Journal of Physics: Conference Series 408 (2013) 012048 doi:10.1088/1742-6596/408/1/012048 Charged pion spectra in proton–carbon interactions at 31 GeV/c Magdalena Zofia Posiada la on behalf of the NA61/SHINE Collaboration Faculty of Physics, University of Warsaw, Ho˙za69, 00-681 Warsaw, Poland E-mail: [email protected] Abstract. The NA61/SHINE experiment at CERN SPS measured charged pion spectra in p+C interactions at 31 GeV/c. These measurements are necessary to improve predictions of the neutrino flux for the T2K long baseline neutrino oscillation experiment in Japan. Presented analysis was based on the data collected during the first NA61/SHINE run in 2007 with an isotropic graphite target with a thickness of 4% of nuclear interaction length. Three different methods which were used in order to obtain π+ and π− spectra are introduced. Differential cross sections for negatively and positively charged pions are presented as a function of laboratory momentum in ten intervals of the laboratory polar angle up to 420 mrad. 1. Introduction The NA61/SHINE (SHINE = SPS Heavy Ion and Neutrino Experiment) is a large acceptance hadron spectrometer located in the North Area H2 beam line of the European Centre for Nuclear Research (CERN) in Geneva. The experiment uses beams from the Super Proton Synchrotron (SPS). The NA61/SHINE experiment combines a rich physics program in three different fields: auxiliary measurements for neutrino experiments, cosmic-ray simulations, and the behavior of strongly interacting matter at high density (see: [1, 2, 3] for details).
    [Show full text]