Difference Between Blanking and Piercing Dies
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Extrusion.Pdf
Extrusion: Second Edition Copyright © 2006 ASM International® M. Bauser, G. Sauer, K. Siegert, editors, p 195-321 All rights reserved. DOI:10.1361/exse2006p195 www.asminternational.org CHAPTER 5 The Production of Extruded Semifinished Products from Metallic Materials* THE HOT-WORKING PROCESS extrusion ered to be the most important of the hot-working is, in contrast to other compressive deformation processes. processes used to produce semifinished prod- ucts, a deformation process with pure compres- sive forces in all three force directions. These favorable deformation conditions do not exist in other production processes for semifinished products. Even in rolling, which is the most im- Extrusion of Materials with portant compressive working process for pro- ducing semifinished products, tensile forces oc- Working Temperatures cur in the acceleration zone of the roll gap as between 0 and 300 ЊC well as in the cross rolling process used to pierce blanks in the rolling of steel tubes. These Gu¨nther Sauer* tensile forces cause problems in the rolled prod- uct if the deformation conditions are not opti- mized. The benefits of this three-dimensional compression in terms of deformation technol- 5.1 Extrusion of Semifinished ogy, which have already been discussed in this Products in Tin Alloys book, can be clearly seen in Fig. 5.1 based on experimental results for face-centred cubic (fcc) Tin is a silver-white, very soft metal with a aluminum and zinc with its hexagonal lattice stable tetragonal lattice in the temperature range structure. 20 to 161 ЊC. The pure metal has a density of The extensive variations in the extrusion pro- 7.28 g/cm3 and a melting point of 232 ЊC. -
Improved Coining Force Calculations Through Incorporation of Key Process Parameters Dominique Cotton, André Maillard, Joël Kaufmann
Improved coining force calculations through incorporation of key process parameters Dominique Cotton, André Maillard, Joël Kaufmann To cite this version: Dominique Cotton, André Maillard, Joël Kaufmann. Improved coining force calculations through incorporation of key process parameters. IDDRG, Oct 2020, BUSAN, South Korea. pp.012003, 10.1088/1757-899X/967/1/012003/meta. hal-03117270 HAL Id: hal-03117270 https://hal.archives-ouvertes.fr/hal-03117270 Submitted on 21 Jan 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. IOP Conference Series: Materials Science and Engineering PAPER • OPEN ACCESS Improved coining force calculations through incorporation of key process parameters To cite this article: D Cotton et al 2020 IOP Conf. Ser.: Mater. Sci. Eng. 967 012003 View the article online for updates and enhancements. This content was downloaded from IP address 195.221.202.65 on 15/01/2021 at 13:35 International Deep-Drawing Research Group (IDDRG 2020) IOP Publishing IOP Conf. Series: Materials Science and Engineering 967 (2020) 012003 doi:10.1088/1757-899X/967/1/012003 Improved coining force calculations through incorporation of key process parameters D Cotton1,3, A Maillard2, and J Kaufmann2 1 Arts et Métiers Institute of Technology, LABOMAP, HESAM University, 71250 Cluny, France 2 CETIM – Technical Centre for Mechanical Industries – France 3 Author to whom any correspondence should be addressed E-mail address: [email protected] Abstract. -
Coining's Micro Stamping Capabilities
ELECTRONIC COMPONENTS AND PACKAGING Coining Inc. Micro-Stampings Overview www.ametek.com © 2015 by AMETEK, Inc. All rights reserved. ELECTRONIC COMPONENTS AND PACKAGING Micro-Stampings and Solder Preforms More Than 100 Presses 3 ton to 85 ton High speed (>2000 strokes/min) High precision, 4 post presses Hot presses for stamping Mo, W, etc. www.ametek.com © 2015 by AMETEK, Inc. All rights reserved. ELECTRONIC COMPONENTS AND PACKAGING Coining Differentiators Material Processing Capability In-house advanced casting, rolling and cladding Plating to customer specifications Custom alloys available Tool & Die Capability More than 15,000 dies on-hand Customized designs available Tooling designed to match material characteristics Progressive stamping up to 16 stations Deep draw designs available In-house EDM based tool manufacturing Parts Delivered Clean Room Ready Industry Leading Applications Support Team www.ametek.com © 2015 by AMETEK, Inc. All rights reserved. ELECTRONIC COMPONENTS AND PACKAGING Applications Support Experienced Engineering Team Our material scientists and manufacturing engineers have more than 100 years experience Analytical Capabilities ICP (Inductively Coupled Plasma) for elemental analysis of melts ICP DSC (Differential Scanning Calorimetry) to evaluate proper melting point and characteristics XRF (X-Ray Fluorescence) to verify thickness of plated coatings Wetting Tests to ensure optimal wetting and spread of solder alloys SEM with EDS capability for detailed metallurgical analysis and FA SEM LECO O2, N2, C and S analyzers www.ametek.com © 2015 by AMETEK, Inc. All rights reserved. ELECTRONIC COMPONENTS AND PACKAGING Stampings Capabilities Capabilities Include Stamping Coining Drawing Punching A Wide Varity Of High Precision Parts Available From simple to complex shapes Thicknesses less than 1 mil All Tooling Designed, Manufactured & Maintained In-House Enables rapid prototyping Ensures prime condition of tooling www.ametek.com © 2015 by AMETEK, Inc. -
HYDRON-UNIPRESS, Ltd
HYDRON-UNIPRESS, Ltd. Manufacturer of the equipment for the tin/lead industry ul. Wólczańska 257, 93-035 Łódź, Poland fax:+4842-684 75 06, tel.: +4842-640 25 46 [email protected] www.hydrononline.com REMARK : Hydron-Unipress, Ltd., of Lódz , Poland, is a corporation organized and existing under the laws of Poland. All information presented in this paper should be considered as an offer for further discussion and negotiation between all concerned parties on the principle of equality and mutual benefit. The technical data given in this offer may undergo modification as a result of technical improvements. Hydron-Unipress, Ltd. (fax +4842-847-506, tel. +4842-402-546(7))_________________________________Production Program OFFER'S SCOPE If your desire is to start your own manufacturing program in the field of solder making business the HYDRON-UNIPRESS Ltd. is happy to offer you : COMPLETE TECHNOLOGICAL LINE for manufacturing of FLUX CORED and SOLID SOLDER BARS, ANODES and WIRES starting from the process of solder alloy preparation and with an annual output of 200ton, 400ton or more HiTech, specialized, INDIVIDUAL EQUIPMENT for manufacturing of FLUX CORED and SOLID FINE and ULTRAFINE SOLDER WIRES from 0.118"/3.0mm down to 0.002"/0.05mm in diameter for electronic, microelectronic, electromechanic, automotive and lighting industries, non-toxic, LEAD-FREE SOLDERS for drink water piping soldering, LEAD PROFILES for stained-glass windows and Tiffany art, ANODES and BARS for galvanic bath and wave soldering, and many others applications Participation in JOINT VENTURES for solder making business Any other form of COOPERATION desired being of the mutual interest. -
Characterization of Blanking Induced Magneto-Mechanical Cut Edge Defects in Non-Oriented Electrical Steel
Faculty of Engineering / Department of Mechanical Engineering Characterization of blanking induced magneto-mechanical cut edge defects in non-oriented electrical steel By: Ammar Dawood Ghali Al-Rubaye A thesis submitted to the Department of Mechanical Engineering, University of Sheffield in partial fulfilment of the requirements for the degree of Doctor of Philosophy Academic supervisors: Dr. Hassan Ghadbeigi (MEC) Prof. Kais Atallah (EEE) July 2019 Abstract Electrical steels play a vital role in the generation and use of electricity as they are widely used in a range of electrical equipment for industrial and domestic appliances. The material is usually manufactured in the form of cold-rolled thin strips that are stacked together to form the laminated stacks used to form the stator and rotor parts of electric motors. As the individual layers are made mostly by blanking and piercing processes the quality of the final product directly affects the performance of the electrical machines. The blanking process results in local plastic deformation and texture modification in electrical steels which will affect the magnetic and mechanical performance of the electric motors and transformers. Therefore, the main aim of the project is to obtain a better understanding of the global and local magneto-mechanical properties of the sheet material at the cut edge and vicinity area to optimise design parameters used for the final products. An experimental investigation was designed and implemented to study the mechanism of blanking operation and local magneto-mechanical properties of thin strip electrical steels at the cut edge. The deformation at the cut edges was identified regarding main blanking parameters such as deformation rate, material thickness and sheet orientation at a specific clearance. -
Extrusion Blow Molding ___Fiberg
Woman Owned Small Busines • ITAR Certified 710 South Patrick Drive • Satellite Beach, Florida 32937 321.536.2611 • [email protected] • www.rapidps.com ABS • POLYCARBONATE • POLYPHENYLSULFONE • ULTEM ADVANCED APPLICATIONS _____________________________ RTV MOLDS __________________________ Parts produced can be used in lots of different manufacturing applications. Parts built using RPS provide the fast, accurate and af- Parts can be painted, electroplated and drilled. They can also be used in ad- fordable patterns that drive RTV molding. By replacing vanced applications such as investment castings, RTV molding and sand cast- machined patterns, the entire process can be com- ing. Each application includes the benefits to using an RPS part with detailed pleted in 2-3 days. And unlike machining, complex instructions. and intricate shapes have no effect on the time or cost for the RPS pattern. ELECTROPLATING ____________________ Electroplating deposits a thin layer of metal on the RTV MOLDING SOLUBLE CORE _________ surface of a part built. This improves the part’s me- Complex geometries normally requiring core removal chanical properties and gives the appearance of pro- such as curved hoses, water tanks, bottles, and arterial duction metal or plated parts and provides a hard, structures are good examples where it may be helpful wear-resistant surface with reflective properties. to use this alternative method. Instead of building the core in thermoplastic material (traditional RPS build EXTRUSION BLOW MOLDING __________ process) the mold is built in the Water Soluble sup- Polycarbonate RPS molds are used in the blow port material making it easy to dissolve away the mate- molding process, reducing lead time and expense. -
Effect of Homogenization on Recrystallization and Precipitation
Materials Transactions, Vol. 49, No. 2 (2008) pp. 250 to 259 #2008 The Japan Institute of Metals Effect of Homogenization on Recrystallization and Precipitation Behavior of 3003 Aluminum Alloy Hsin-Wen Huang, Bin-Lung Ou and Cheng-Ting Tsai Department of Mechanical Engineering, National Central University, Chung-Li, Taiwan 320, R.O. China This investigation studies 3003 aluminum alloys for automobile heat exchangers. The effects of precipitation in homogenization treatments, recrystallization in extrusion and brazing on extrusion forming ability and final material properties are examined. At first, fine second phase particles were precipitated during the 460C Â 9 h homogenization treatment and coarse particles were precipitated by homogenization treatments with 600C Â 9 h. Second, when the precipitation were not plentiful and fine enough during extrusion, the amount of solution dominated the extrusion breakout pressure, and recrystallization was easier; on the contrary, the domination state was replaced by plentiful and fine precipitated particles, and recrystallization became more difficult. Additionally, the hardness after extrusion was lower in the complete recrystallization position, and higher in the incomplete recrystallization position. Finally, in brazing, the sample under the 460C Â 9h condition (a) underwent full recrystallization from partial recrystallization with a reduction in strength; the local position of the edge of the sample under the 600C Â 9h ! 460C Â 3 h condition (c) exhibited a second recrystallization and a significant drop in hardness. [doi:10.2320/matertrans.MRA2007615] (Received June 19, 2007; Accepted November 26, 2007; Published January 25, 2008) Keywords: 3003 aluminum alloy, homogenization, precipitation, extrusion, brazing, recrystallization, second recrystallization 1. Introduction brazing were determined. -
Virtual Manufacturing on the Web: Extrusion Die Design
VIRTUAL MANUFACTURING ON THE WEB: EXTRUSION DIE DESIGN A Thesis Presented to The Faculty of the Fritz J. and Dolores H. Russ College of Engineering and Technology Ohio University In Partial Fulfillment Of the Requirement for the Degree Master of Science Sripada Shivananda August 1998 Acknowledgment I wish to express my sincere thanks to my advisor, Dr. Bhavin Mehta, for his valuable advice and providing me with the information and the facilities required for the thesis. I would also like to thank my wife for her constant encouragement and support during the completion of this thesis. Sripada Shivananda August 1998 Table of Contents Table of Contents ........................................................................................................ i List of Figures .............................................................................................................. iv List of Tables ......................................................................................................................v INTRODUCTION ..............................................................................................................1 1.1 Overview ................................................................................................................1 1.2 Internet ..................................................................................................................2 1.3 Virtual Manufacturing .........................................................................................2 1.4 Virtual Reality .......................................................................................................4 -
Forming Methods
theartofpressbrake.com http://www.theartofpressbrake.com/wordpress/?page_id=1023 Forming Methods Bend Allowance, Outside Setback, Bend Deduction If you calculate these with precision, you have a better chance of bending a good part on the first try. But, to make this happen, you need to make sure every factor in the equation is what it should be, and this includes the inside bend radius . How exactly is this inside bend radius achieved? To uncover this, we must first look at the different methods of bending on a press brake: air forming, bottom bending, and coining. The Methods of bending There are three different types of bending methods used in the forming of sheet metal: “ air forming“, “Bottom Bending and “Coining. Each of these methods has a specific purpose and application. In this chapter the benefits and the inefficiencies of each will be discussed. Coining Note that there are three bending methods, not two. Bottom bending and coining often are confused for the same process, but they are not. Unlike bottoming, coining actually penetrates and thins the material. Coining is the oldest method and for the most part, no longer practiced. Why? Because of the extreme tonnages this method requires. An amount of tonnage so great that the material “flows” on a molecular level while under this extreme pressure. Coining forces the punch nose into the material, penetrating the neutral axis, figure 1. Technically, any radius may be coined, but traditionally, coining has been used to establish a dead-sharp bend. This method not only requires excessive tonnages, it also destroys the material’s integrity. -
Aluminum Extrusion Quality for Anodizing Characteristic
Aluminum Extrusion Quality for Anodizing Characteristic IHAA 17th Technical Symposium Jerome Fourmann – September 19-21, 2018 – Seattle, WA Proprietary Statement The following information is the property of Alcan Primary Products Company LLC, a member of the Rio Tinto companies (collectively "Rio Tinto"). This information is being provided to the attendees of the 17th Technical Symposium by IHAA under a limited right and license to use said information in furtherance of a business relationship with Rio Tinto. Rio Tinto makes no representations or warranties to the attendees of the 17th Technical Symposium in relation to the information contained herein and shall have no liability for 1) any actions taken by reliance on such information; or 2) any actions taken by any individuals or entities who attendees of the 17th Technical Symposium chooses to share said information with. 2018 Rio Tinto – September 2018 17th Technical Symposium – 19-21 September, 2018 – Seattle, WA © Rio Tinto 2018 “As pioneers in mining and metals, we produce materials essential to human progress.” Commercial 3 © Rio Tinto 2017 Rio Tinto - An integrated aluminium supplier 44 Mt 8 Mt Secured 3.6 Mt In 60 power countries 05 Bauxite mines 04 Alumina refineries 08 Power stations 19 Aluminium casthouses 550 Customers 17th Technical Symposium – 19-21 September, 2018 – Seattle, WA 4 © Rio Tinto 2018 Outline Aluminum alloys Alloys selection 1. 2. Extrusion process Defects 3. 4. 17th Technical Symposium – 19-21 September, 2018 – Seattle, WA 5 © Rio Tinto 2018 Designation System -
Unit 1 Introduction to Tool Engineering and Management
Introduction to Tool UNIT 1 INTRODUCTION TO TOOL Engineering and ENGINEERING AND MANAGEMENT Management Structure 1.1 Introduction Objectives 1.2 Basics of Tool Engineering 1.3 Elements in Tool Engineering 1.3.1 Single Point Cutting Tool 1.3.2 Multi Point Cutting Tool 1.4 Types of Machine Tools 1.5 Operational Issues in Tool Engineering 1.6 Summary 1.7 Key Words 1.1 INTRODUCTION Tool engineering is a vital area of production engineering. It includes metal cutting, pressing, and various work holding devices. Metal cutting is the operation in which thin layer of metal is removed by wedge shaped tool. Metal cutting is commonly associated with industries like automotive, aerospace, home appliance, etc. The machining of metal and alloys play a crucial role in the range of manufacturing activities including ultra precision machining of extremely delicate components. Objectives After studying this unit, you should be able to • understand the basics of tool engineering, • classify the tooling and machine tools, and • recognise various types of operations performed on different machines. 1.2 BASICS OF TOOL ENGINEERING Machine tools are very important for any industrialised country because they hold a key position in the technology chain. Machine tools are needed to build the machines and parts with which capital goods and consumer goods of all kinds are manufactured, from cars to airplanes, from glasses to ball point pen. If the creative tool engineers and qualified skilled workers are constantly producing faster, better and more intelligent machine tools for the market, they are helping many industries. This means innovation in machine tool industry have a far-reaching and multiplicative impact. -
12006231.Pdf
VERIFICATION OF PROJECT SUPERVISOR II yy{ * hereby declare that the project paper or thesis has been read and II W{* have the opinion that the project paper is appropriate in terms of scope coverage and quality for awarding a Bachelor of Technology in Tool and Die. -r""-, • ","~ . 4"-:, .~. .' _ .J Signature Name of supervisor :.Raja Aziz Bin Raja Ma'arof . ,1 ~ \\.. /.\ it- >-c O"l. Date ....................................... ./................................................ * Please delete where not applicable. STUDY ON RELATIONSHIP BETWEEN BURR AND CUTTING CLEARANCE OF COMMONLY USED SHEET METALS IN AUTOMOTIVE INDUSTRY IN MALAYSIA IN RELATION TO PIERCING AND BLANKING PROCESSES T.JULOO.4 MOHAMAD FAEZAL BIN OMAR BAKI PROJECT SUPERVISOR MR RAJA AZIZ BIN RAJA MA'AROF TOOL & DIE PRODUCTION TECHNOLOGY DEPARTMENT KOLEJ UNIVERSITI TEKNOLOGI TUN HUSSEIN ONN KUiTTHO 12th OF MARCH 2003 ii I hereby declare that this thesis is originated from my own idea and is free of plagiarism. Signature ..H ......... ~H.· ..................... H .... Name of Author Ie Number : 740407-08-6189 (A2883693) Date : 1ih of March 2003 iii DEDICATION I would like to dedicate this project report to my beloved mother and father who have blessed me the confidence to overcome all the obstacles on my journey to success. I would also dedicate this project report to management and staff of Oriental Summit Industries Sdn Bhd Shah Alam Selangor (OSI) especially R&D Division who has given me opportunity to carryout this study, cooperation, supports and access of relevant informations which I think other company hardly to give. iv ACKNOWLEDGEMENTS In the name of Allah, the Most Gracious, the Most Merciful I have at last completed this dissertation.