Download D5.1

Total Page:16

File Type:pdf, Size:1020Kb

Download D5.1 RAMSES PROJECT Grant Agreement n° 308497 WP 5: Development of a cost assessment framework for adaptation D5.1: Review of climate change losses and adaptation costs for case studies Reference code: RAMSES – D5.1 This project has received funding from the European Union’s Seventh Programme for Research, Technological Development and Demonstration under Grant Agreement No. 308497 (Project RAMSES). RAMSES Project (Grant Agreement n° 308497) D5.1 Project Acronym : RAMSES Project Title : Reconciling Adaptation, Mitigation and Sustainable Development for Cities Contract Number : 308497 Title of report : D5.1: Review of climate change losses and adaptation costs for case studies Reference code : RAMSES – D5.1 Short Description : This report provides a review of climate change and adaptation costs for European cities, including a range of case studies and stakeholder surveys. Authors and co-authors: Graham Floater, Annabella Bujak, Gabrielle Hamill, Madeleine Lee Partners owning : LSE and SENECA Contributions : Floriana Ferrara, T6, Giuseppe Forino, T6, Gaell Mainguy, IVE Made available to : Public Versioning Version Date Name, organization 0.1 31/3/14 Graham Floater, London School of Economics Quality check Internal Reviewers: Jürgen Kropp, PIK; James Kallaos, NTNU - 2 - RAMSES Project (Grant Agreement n° 308497) D5.1 Table of contents 1 EXECUTIVE SUMMARY ................................................................................................................. 8 2 INTRODUCTION ........................................................................................................................... 10 2.1 OBJECTIVES OF THIS REVIEW ....................................................................................................... 10 2.2 SCOPE AND METHODOLOGY OF THE REVIEW .................................................................................. 11 2.3 CATEGORISING CLIMATE COSTS ................................................................................................... 12 3 FLOODING .................................................................................................................................... 21 3.1 DEFINITION OF FLOODING ............................................................................................................ 21 3.2 ECONOMIC COSTS OF FLOODING .................................................................................................. 21 3.3 DAMAGES BY SECTOR ................................................................................................................. 23 3.4 ADAPTATION COSTS .................................................................................................................... 26 4 STORMS ........................................................................................................................................ 28 4.1 DEFINITION OF STORMS ............................................................................................................... 28 4.2 ECONOMIC COSTS OF STORMS ..................................................................................................... 28 4.3 DAMAGES BY SECTOR ................................................................................................................. 29 4.4 ADAPTATION COSTS .................................................................................................................... 31 5 HEATWAVES ................................................................................................................................. 32 5.1 DEFINITION OF HEATWAVES .......................................................................................................... 32 5.2 ECONOMIC COSTS OF HEATWAVES ............................................................................................... 32 5.3 DAMAGES BY SECTOR ................................................................................................................. 34 5.4 ADAPTATION COSTS .................................................................................................................... 35 6 DROUGHT ..................................................................................................................................... 38 6.1 DEFINITION OF DROUGHT ............................................................................................................. 38 6.2 ECONOMIC COSTS OF DROUGHT .................................................................................................. 38 6.3 DAMAGES BY SECTOR ................................................................................................................. 39 6.4 ADAPTATION COSTS .................................................................................................................... 41 7 CLIMATE-RELATED COSTS IN CASE STUDY CITIES .............................................................. 42 7.1 LOSSES FROM EXTREME EVENTS AND ADAPTATION COSTS .............................................................. 42 7.2 STAKEHOLDER ENGAGEMENT: PERCEIVED COSTS OF CLIMATE CHANGE IN CITIES ............................... 46 8 REVIEW OF CASE STUDY CITIES ............................................................................................... 49 8.1 LONDON .................................................................................................................................... 49 8.2 ANTWERP .................................................................................................................................. 57 8.3 BILBAO ...................................................................................................................................... 61 8.4 BOGOTA .................................................................................................................................... 67 8.5 HYDERABAD ............................................................................................................................... 75 8.6 NEW YORK CITY ......................................................................................................................... 78 8.7 RIO DE JANEIRO ......................................................................................................................... 87 9 CONCLUSIONS ............................................................................................................................ 93 9.1 CLIMATE THREATS IN CITIES ......................................................................................................... 93 9.2 CLIMATE LOSSES ........................................................................................................................ 93 9.3 ADAPTATION COSTS .................................................................................................................... 94 9.4 EVIDENCE FOR COSTS : GAP ANALYSIS ........................................................................................... 95 9.5 LESSONS FOR RAMSES ............................................................................................................. 97 10 REFERENCES ............................................................................................................................. 98 ANNEX I: CASE STUDY OF FLOODING IN GENOA, ITALY - 3 - RAMSES Project (Grant Agreement n° 308497) D5.1 List of Figures Figure 2.1: An adaptive regional input-output model and its application to the assessment of the economic cost of Katrina. The curve shows indirect losses as a function of sectoral losses, for a disaster with the same sectoral structure of Hurricane Katrina. The equation in black is the polynomial regression of indirect losses to sectoral losses for this case study modelled. Source: reproduced from Hallegatte et al., 2011 using data from Hallegatte, 2008. ............................................... 14 ! Figure 2.2: Methodological roadmap for assessing economic impacts of climate change in cities. Source: reproduced from Hallegatte et al., 2011 p. 53. ...................... 18 ! Figure 2.3: Building and contents damage ratios for households with and without flood adapted use and measures (bars=means, points=medians and 25–75% percentiles). Source: reproduced from Kreibich et al., 2005 p. 124. .............................. 20 ! Figure 3.1: Fatalities and economic losses caused by flood disasters in Europe from 1970-2008. Source: reproduced from EEA, 2011. ......................................................... 22 ! Figure 4.1: Repair Storm or Wind Damage Costs. Source: reproduced from HomeAdvisor, 2014. ....................................................................................................... 30 ! Figure 6.1: Correlation between UK household buildings subsidence damage and drought (1988-2006) Legend: Subsidence damage measured in ₤2003 million. Data supplied by the ABI. Drought intensity measured in accumulated precipitation over the 18 months prior to September of the corresponding year (in mm). Source: reproduced from Logar and van den Bergh, 2011 using data from Dlugolecki, 2007. ............................................................................................................ 39! Figure 7.1a: Total costs for major extreme weather events in Europe, 1998-2009. Source: EEA, 2011. ......................................................................................................... 43 ! Figure 7.1b: Total fatalities for major extreme weather events in Europe, 1998-2009. Source EEA, 2011. .........................................................................................................
Recommended publications
  • Weiwei Du Thesis
    Queensland University of Technology Queensland University of Technology Faculty of Health Institute of Health and Biomedical Innovation School of Public Health Human Health and Wellbeing Domain Policy Analysis of Disaster Health Management in China Weiwei Du BA, BEc (Peking University) A THESIS SUBMITTED IN FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY November, 2010 I II Supervisory Team Principal Supervisor: Prof. Gerard FitzGerald MB, BS (Qld), BHA (NSW), MD (QLD), FACEM, FRACMA, FCHSE School of Public Health, Queensland University of Technology, Brisbane, Australia Phone: 61 7 3138 3935 Email: [email protected] Associate Supervisor: Dr. Xiang-Yu Hou BM (Shandong Uni), MD (Peking Uni), PhD (QUT) School of Public Health, Queensland University of Technology, Brisbane, Australia Phone: 61 7 3138 5596 Email: [email protected] Associate Supervisor: Prof. Michele Clark BOccThy (Hons), BA, PhD School of Public Health, Queensland University of Technology, Brisbane, Australia Phone: 61 7 3138 3525 Email: [email protected] III IV Certificate of Originality The work contained in this thesis has not been previously submitted to meet requirements for an award at this or any other higher education institution. To the best of my knowledge and belief, the thesis contains no material previously published or written by another person except where due reference is made. Signed: Mr. Weiwei Du Date: November 8th, 2010 V VI Keywords Disaster Medicine Disaster Health Management in China Disaster Policy Policy Analysis Health Consequences of Flood Case Study of Floods VII Abstract Humankind has been dealing with all kinds of disasters since the dawn of time.
    [Show full text]
  • April 2018 Floods in Dar Es Salaam
    Policy Research Working Paper 8976 Public Disclosure Authorized Wading Out the Storm The Role of Poverty in Exposure, Vulnerability Public Disclosure Authorized and Resilience to Floods in Dar Es Salaam Alvina Erman Mercedeh Tariverdi Marguerite Obolensky Xiaomeng Chen Rose Camille Vincent Silvia Malgioglio Jun Rentschler Public Disclosure Authorized Stephane Hallegatte Nobuo Yoshida Public Disclosure Authorized Global Facility of Disaster Reduction and Recovery August 2019 Policy Research Working Paper 8976 Abstract Dar es Salaam is frequently affected by severe flooding caus- income on average. Surprisingly, poorer households are ing destruction and impeding daily life of its 4.5 million not over-represented among the households that lost the inhabitants. The focus of this paper is on the role of pov- most - even in relation to their income, possibly because 77 erty in the impact of floods on households, focusing on percent of total losses were due to asset losses, with richer both direct (damage to or loss of assets or property) and households having more valuable assets. Although indirect indirect (losses involving health, infrastructure, labor, and losses were relatively small, they had significant well-be- education) impacts using household survey data. Poorer ing effects for the affected households. It is estimated that households are more likely to be affected by floods; directly households’ losses due to the April 2018 flood reached more affected households are more likely female-headed and than US$100 million, representing between 2–4 percent of have more insecure tenure arrangements; and indirectly the gross domestic product of Dar es Salaam. Furthermore, affected households tend to have access to poorer qual- poorer households were less likely to recover from flood ity infrastructure.
    [Show full text]
  • Typhoon Neoguri Disaster Risk Reduction Situation Report1 DRR Sitrep 2014‐001 ‐ Updated July 8, 2014, 10:00 CET
    Typhoon Neoguri Disaster Risk Reduction Situation Report1 DRR sitrep 2014‐001 ‐ updated July 8, 2014, 10:00 CET Summary Report Ongoing typhoon situation The storm had lost strength early Tuesday July 8, going from the equivalent of a Category 5 hurricane to a Category 3 on the Saffir‐Simpson Hurricane Wind Scale, which means devastating damage is expected to occur, with major damage to well‐built framed homes, snapped or uprooted trees and power outages. It is approaching Okinawa, Japan, and is moving northwest towards South Korea and the Philippines, bringing strong winds, flooding rainfall and inundating storm surge. Typhoon Neoguri is a once‐in‐a‐decade storm and Japanese authorities have extended their highest storm alert to Okinawa's main island. The Global Assessment Report (GAR) 2013 ranked Japan as first among countries in the world for both annual and maximum potential losses due to cyclones. It is calculated that Japan loses on average up to $45.9 Billion due to cyclonic winds every year and that it can lose a probable maximum loss of $547 Billion.2 What are the most devastating cyclones to hit Okinawa in recent memory? There have been 12 damaging cyclones to hit Okinawa since 1945. Sustaining winds of 81.6 knots (151 kph), Typhoon “Winnie” caused damages of $5.8 million in August 1997. Typhoon "Bart", which hit Okinawa in October 1999 caused damages of $5.7 million. It sustained winds of 126 knots (233 kph). The most damaging cyclone to hit Japan was Super Typhoon Nida (reaching a peak intensity of 260 kph), which struck Japan in 2004 killing 287 affecting 329,556 people injuring 1,483, and causing damages amounting to $15 Billion.
    [Show full text]
  • Degroeve, T., Kugler, Z, and Brakenridge, G. R., 2007, Near Real
    Near Real Time Flood Alerting for the Global Disaster Alert and Coordination System Tom De Groeve Zsofia Kugler Joint Research Centre of the European Joint Research Centre of the European Commission Commission [email protected] [email protected] G. Robert Brakenridge Dartmouth Flood Observatory [email protected] ABSTRACT A new flood monitoring module is in development for the Global Disaster Alert and Coordination System (GDACS). GDACS is an information system designed to assist humanitarian responders with their decisions in the early onset after a disaster. It provides near-real time flood alerts with an initial estimate of the consequences based on computer models. Subsequently, the system gathers information in an automated way from relevant information sources such as international media, mapping and scientific organizations. The novel flood detection methodology is based on daily AMSR-E passive microwave measurement of 2500 flood prone sites on 1435 rivers in 132 countries. Alert thresholds are determined from the time series of the remote observations and these are validated using available flood archives (from 2002 to present). Preliminary results indicate a match of 47% between detected floods and flood archives. Individual tuning of thresholds per site should improve this result. Keywords Flood alerts, disaster alerts, humanitarian aid, microwave remote sensing. INTRODUCTION Of all natural disasters, floods are most frequent (46%) and cause most human suffering and loss (78% of population affected by natural disasters). They occur twice as much and affect about three times as many people as tropical cyclones. While earthquakes kill more people, floods affect more people (20000 affected per death compared to 150 affected per death for earthquakes) (OFDA/CRED, 2006).
    [Show full text]
  • Multi Hazard Mitigation Plan July 2018
    Squaxin Island Tribe Multi Hazard Mitigation Plan July 2018 Contact Information Squaxin Island Tribes – Office of Emergency Services Name: John Taylor Title: Emergency Manager Address: 11 SE Squaxin Lane Shelton, WA 98584 Email: [email protected] Phone: (360) 463-0903 or (360) 432-3947 Fax: Name: Title: Address: Email: Phone: Fax: Name: Title: Address: Email: Phone: Fax: Executive Summary Plan Adoption/Resolution (See Appendix A for Adoption Resolution) Acknowledgements Table of Contents Contact Information .......................................................................................................................... 2 Executive Summary ........................................................................................................................... 3 Plan Adoption/Resolution ................................................................................................................. 4 Acknowledgements ........................................................................................................................... 5 SECTION I: PLANNING PROCESS ......................................................................................................... 1 Purpose of the Plan ....................................................................................................................... 1 Federal Laws, Institutions and Policies ........................................................................................... 1 Flood Insurance Act of 1968 .....................................................................................................
    [Show full text]
  • Sigma 1/2008
    sigma No 1/2008 Natural catastrophes and man-made disasters in 2007: high losses in Europe 3 Summary 5 Overview of catastrophes in 2007 9 Increasing flood losses 16 Indices for the transfer of insurance risks 20 Tables for reporting year 2007 40 Tables on the major losses 1970–2007 42 Terms and selection criteria Published by: Swiss Reinsurance Company Economic Research & Consulting P.O. Box 8022 Zurich Switzerland Telephone +41 43 285 2551 Fax +41 43 285 4749 E-mail: [email protected] New York Office: 55 East 52nd Street 40th Floor New York, NY 10055 Telephone +1 212 317 5135 Fax +1 212 317 5455 The editorial deadline for this study was 22 January 2008. Hong Kong Office: 18 Harbour Road, Wanchai sigma is available in German (original lan- Central Plaza, 61st Floor guage), English, French, Italian, Spanish, Hong Kong, SAR Chinese and Japanese. Telephone +852 2582 5691 sigma is available on Swiss Re’s website: Fax +852 2511 6603 www.swissre.com/sigma Authors: The internet version may contain slightly Rudolf Enz updated information. Telephone +41 43 285 2239 Translations: Kurt Karl (Chapter on indices) CLS Communication Telephone +41 212 317 5564 Graphic design and production: Jens Mehlhorn (Chapter on floods) Swiss Re Logistics/Media Production Telephone +41 43 285 4304 © 2008 Susanna Schwarz Swiss Reinsurance Company Telephone +41 43 285 5406 All rights reserved. sigma co-editor: The entire content of this sigma edition is Brian Rogers subject to copyright with all rights reserved. Telephone +41 43 285 2733 The information may be used for private or internal purposes, provided that any Managing editor: copyright or other proprietary notices are Thomas Hess, Head of Economic Research not removed.
    [Show full text]
  • Reactions Rendez-Vous Reporter 2018 Day 2
    RENDEZ-VOUS REPORTER DAY 2: MONDAY SEPTEMBER 10 2018 Co-sponsor Benchimol backs Lloyd’s remediation moves AXIS Capital chief executive Albert Benchimol is it needs to address and the overall profitability of Contents “highly encouraged” by the moves being made by Lloyd’s is challenged right now,” he told Reactions. Change the Jon Hancock and his team to strengthen Lloyd’s and AXIS increased its investment in Lloyd’s last year Pool for good .......3 improve the market’s profitability. with the circa-$600m acquisition of Novae, and GC’s insurtech matchmaking Back in June, Lloyd’s performance management Benchimol said the Corporation’s commitment to service .................4 director Jon Hancock outlined a plan which will improve syndicates’ performance made the deal Organic growth for force syndicates to deliver a sustained profitable increasingly attractive. Greenlight Re ......7 performance or risk being closed. The market ended “I am highly encouraged with some of the moves Insurance brings 2017 with an underwriting loss of £3.4bn, with we are seeing,” said Benchimol, adding: “I think Jon stability ...............7 attritional losses and heavy natural catastrophe claims Hancock’s initiative to put pressure on individual Tailwinds ahead for QBE NA ...............8 taking their toll on the market. Lloyd’s distribution syndicates to look at their worst performing business Plugging China’s costs also continue to plague One Lime Street, further and take serious action to improve their profitability is protection gap...10 pushing down syndicates’ ability to turn a profit. absolutely the right move by the market.” Reinsurers to focus In response, Hancock revealed a plan earlier this As Benchimol explained, Hancock’s moves may on bottom line ...13 summer that will force syndicates which have ended lead to a lower level of premium being generated by PERILS profile set each of the last three years in the red to submit the Lloyd’s, but that will ultimately lead to the to grow ..............13 a credible business plan that will return them market becoming more profitable.
    [Show full text]
  • Gaining from Losses: Using Disaster Loss Data As a Tool for Appraising Natural Disaster Policy
    GAINING FROM LOSSES: USING DISASTER LOSS DATA AS A TOOL FOR APPRAISING NATURAL DISASTER POLICY by SHALINI MOHLEJI B.A., University of Virginia, 2000 M.S., Purdue University, 2002 A thesis submitted to the Faculty of the Graduate School of the University of Colorado in partial fulfillment of the requirement for the degree of Doctor of Philosophy Environmental Studies Program 2011 This thesis entitled: Gaining from Losses: Using Disaster Loss Data as a Tool for Appraising Natural Disaster Policy written by Shalini Mohleji has been approved for the Environmental Studies Program Roger Pielke Jr. Sam Fitch Date 5/26/11 The final copy of this thesis has been examined by the signatories, and we find that both the content and the form meet acceptable presentation standards of scholarly work in the above mentioned discipline. IRB protocol #: 11-0029 iii Mohleji, Shalini (Ph.D., Environmental Studies) Gaining from Losses: Using Disaster Loss Data as a Tool for Appraising Natural Disaster Policy Thesis directed by Dr. Roger Pielke Jr. ABSTRACT This dissertation capitalizes on an opportunity, untapped until now, to utilize data on disaster losses to appraise natural disaster policy. Through a set of three distinct studies, I use data on economic losses caused by natural disasters in order to analyze trends in disaster severity and answer important disaster policy questions. The first study reconciles the apparent disconnect between (a) claims that global disaster losses are increasing due to anthropogenic climate change and (b) studies that find regional losses are increasing due to socioeconomic factors. I assess climate change and global disaster severity through regional analyses derived by disaggregating global loss data into their regional components.
    [Show full text]
  • October 2013 Global Catastrophe Recap 2 2
    October 2013 Global Catastrophe Recap Table of Contents Executive0B Summary 3 United2B States 4 Remainder of North America (Canada, Mexico, Caribbean, Bermuda) 4 South4B America 4 Europe 4 6BAfrica 5 Asia 5 Oceania8B (Australia, New Zealand and the South Pacific Islands) 6 8BAAppendix 7 Contact Information 14 Impact Forecasting | October 2013 Global Catastrophe Recap 2 2 Executive0B Summary . Windstorm Christian affects western and northern Europe; insured losses expected to top USD1.35 billion . Cyclone Phailin and Typhoon Fitow highlight busy month of tropical cyclone activity in Asia . Deadly bushfires destroy hundreds of homes in Australia’s New South Wales Windstorm Christian moved across western and northern Europe, bringing hurricane-force wind gusts and torrential rains to several countries. At least 18 people were killed and dozens more were injured. The heaviest damage was sustained in the United Kingdom, France, Belgium, the Netherlands and Scandinavia, where a peak wind gust of 195 kph (120 mph) was recorded in Denmark. More than 1.2 million power outages were recorded and travel was severely disrupted throughout the continent. Reports from European insurers suggest that payouts are likely to breach EUR1.0 billion (USD1.35 billion). Total economic losses will be even higher. Christian becomes the costliest European windstorm since WS Xynthia in 2010. Cyclone Phailin became the strongest system to make landfall in India since 1999, coming ashore in the eastern state of Odisha. At least 46 people were killed. Tremendous rains, an estimated 3.5-meter (11.0-foot) storm surge, and powerful winds led to catastrophic damage to more than 430,000 homes and 668,000 hectares (1.65 million) acres of cropland.
    [Show full text]
  • Djibouti Rapid Response Flood 2019 19-Rr-Dji-40092
    CERF ALLOCATION REPORT ON THE USE OF FUNDS AND ACHIEVED RESULTS DJIBOUTI RAPID RESPONSE FLOOD 2019 19-RR-DJI-40092 Barbara Manzi Resident/Humanitarian Coordinator PART I – ALLOCATION OVERVIEW Reporting Process and Consultation Summary: Please indicate when the After-Action Review (AAR) was conducted and who participated. N/A An AAR was not conducted due to the limited availability of UN staff in relation to the additional workload caused by the response to the Covid-19 pandemic. The government of Djibouti put in place containment measures, including the closure of land and air borders from March until July to limit the spread of the Corona virus. As a result, planned activities of UN agencies were mostly postponed, as national partners, including the Government of Djibouti, slowed down activities and agencies had limited time to deliver planned activities for this year. The recipient agencies have continued to support the government in managing this crisis, which has increased the workload of United Nations staff. However, recipient agencies (FAO, WHO, IOM, WFP, UNDP, UNICEF) were actively involved in the drafting of the RC/HC report. Due to barrier measures and alternate working arrangements put in place as a prevention to Covid- 19, the exchanges were carried out virtually. In addition, the beneficiary agencies worked closely with their implementing partners to report on the progress of activities. As a result, implementing partners, such as the Red Crescent and the Ministry of Social Affairs and Solidarity, have been involved and are aware of the data and information reported here. Please confirm that the report on the use of CERF funds was discussed with the Humanitarian and/or UN Yes ☒ No ☐ Country Team (HCT/UNCT).
    [Show full text]
  • MASARYK UNIVERSITY BRNO Diploma Thesis
    MASARYK UNIVERSITY BRNO FACULTY OF EDUCATION Diploma thesis Brno 2018 Supervisor: Author: doc. Mgr. Martin Adam, Ph.D. Bc. Lukáš Opavský MASARYK UNIVERSITY BRNO FACULTY OF EDUCATION DEPARTMENT OF ENGLISH LANGUAGE AND LITERATURE Presentation Sentences in Wikipedia: FSP Analysis Diploma thesis Brno 2018 Supervisor: Author: doc. Mgr. Martin Adam, Ph.D. Bc. Lukáš Opavský Declaration I declare that I have worked on this thesis independently, using only the primary and secondary sources listed in the bibliography. I agree with the placing of this thesis in the library of the Faculty of Education at the Masaryk University and with the access for academic purposes. Brno, 30th March 2018 …………………………………………. Bc. Lukáš Opavský Acknowledgements I would like to thank my supervisor, doc. Mgr. Martin Adam, Ph.D. for his kind help and constant guidance throughout my work. Bc. Lukáš Opavský OPAVSKÝ, Lukáš. Presentation Sentences in Wikipedia: FSP Analysis; Diploma Thesis. Brno: Masaryk University, Faculty of Education, English Language and Literature Department, 2018. XX p. Supervisor: doc. Mgr. Martin Adam, Ph.D. Annotation The purpose of this thesis is an analysis of a corpus comprising of opening sentences of articles collected from the online encyclopaedia Wikipedia. Four different quality categories from Wikipedia were chosen, from the total amount of eight, to ensure gathering of a representative sample, for each category there are fifty sentences, the total amount of the sentences altogether is, therefore, two hundred. The sentences will be analysed according to the Firabsian theory of functional sentence perspective in order to discriminate differences both between the quality categories and also within the categories.
    [Show full text]
  • Diagnostics for an Extreme Rain Event Near Shanghai During the Landfall of Typhoon Fitow (2013)
    SEPTEMBER 2015 B A O E T A L . 3377 Diagnostics for an Extreme Rain Event near Shanghai during the Landfall of Typhoon Fitow (2013) 1 # 1 XUWEI BAO,* NOEL E. DAVIDSON, HUI YU,* MAI C. N. HANKINSON, ZHIAN SUN, 1 @ LAWRENCE J. RIKUS, JIANYONG LIU, ZIFENG YU,* AND DAN WU* * Shanghai Typhoon Institute, China Meteorological Administration, Shanghai, China 1 Centre for Australian Weather and Climate Research,& Melbourne, Australia # Department of Mathematical Sciences, Monash University, Melbourne, Australia @ Ningbo Meteorological Observatory, China Meteorological Administration, Ningbo, China (Manuscript received 8 July 2014, in final form 13 May 2015) ABSTRACT Typhoon Fitow made landfall south of Shanghai, China, on 6 October 2013. During the following two days, 2 precipitation in excess of 300 mm day 1 occurred 400 km to the north of the typhoon center. The rain- producing systems included (i) outward-spiraling rainbands, which developed in the storm’s north sector in favorable environmental wind shear, and (ii) frontal cloud as a result of coastal frontogenesis. Over the rain area, in addition to enhanced ascent, there were increases in low-level moisture, convective instability, and midlevel relative vorticity. There is evidence of a preconditioning period prior to the rain when midlevel subsidence and boundary layer moistening occurred. From analysis of low-level equivalent potential temperature the following observations were made: (i) after landfall, a cold, dry airstream wrapped into Fitow’s circulation from the north, limiting the inner-core rainfall and producing a cold-air boundary, and (ii) an extended warm, moist airstream from the east converged with the cold-air intrusion over the rain area.
    [Show full text]