Marine Interstitial Tardigrades and Other Meiofauna of Huntington Beach, South Carolina. Michael Scott Ag Ugler East Tennessee State University

Total Page:16

File Type:pdf, Size:1020Kb

Marine Interstitial Tardigrades and Other Meiofauna of Huntington Beach, South Carolina. Michael Scott Ag Ugler East Tennessee State University East Tennessee State University Digital Commons @ East Tennessee State University Electronic Theses and Dissertations Student Works 5-2002 Marine Interstitial Tardigrades and Other Meiofauna of Huntington Beach, South Carolina. Michael Scott aG ugler East Tennessee State University Follow this and additional works at: https://dc.etsu.edu/etd Part of the Marine Biology Commons Recommended Citation Gaugler, Michael Scott, "Marine Interstitial Tardigrades and Other Meiofauna of Huntington Beach, South Carolina." (2002). Electronic Theses and Dissertations. Paper 734. https://dc.etsu.edu/etd/734 This Thesis - Open Access is brought to you for free and open access by the Student Works at Digital Commons @ East Tennessee State University. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of Digital Commons @ East Tennessee State University. For more information, please contact [email protected]. Marine Interstitial Tardigrades and Other Meiofauna of Huntington Beach, South Carolina _____________________ A thesis presented to the faculty of the Department of Biological Sciences East Tennessee State University _____________________ In partial fulfillment of the requirements for the degree Master of Science in Biology _____________________ by Michael S. Gaugler May 2002 __________________________ Dr. Diane R. Nelson, Chair Dr. Dan M. Johnson Dr. Darrell J. Moore Keywords: Marine, Tardigrades, Meiofauna, Distribution ABSTRACT Marine Interstitial Tardigrades and Other Meiofauna of Huntington Beach, South Carolina by Michael S. Gaugler At Huntington Beach, SC meiofauna distribution was investigated. The purpose of the study was to determine tardigrade species present and any significant differences in the distribution pattern. Meiofauna were analyzed to determine if there were significant differences in their distribution patterns in relation to abiotic variables. Cores were taken in the intertidal zone along three elevations. Each core was divided into depth samples and was processed to remove meiofauna. Each taxon (>1500 specimens) and tardigrades was statistically analyzed using three-way ANOVA to compare distribution patterns. There were eighteen taxa identified and an estimated 330,338 specimens. The seven dominant taxa were Nematoda, Copepoda, Oligochaeta, Mystacocarida, Sarcomastigophora, Halacaroidea, and Turbellaria. The community and each taxon demonstrated one or more significant differences in their distribution pattern. Tardigrada had 326 specimens collected and 300 identified to species in five genera. Elevation was a source of significant variation for tardigrades. 2 Copyright 2001 by Michael S. Gaugler 3 DEDICATION To my grandfather, who taught me that you do not always have to make sense to be understood. 4 ACKNOWLEDGMENTS I would like to thank my committee members, Dr. Diane R. Nelson, Dr. Dan Johnson, and Dr. Darrell Moore, for all they have done for me. I wish to specially thank my committee chair, Dr. Diane R. Nelson, for giving me the opportunity to succeed and to fail during these past years. I also wish to thank my family for all of their support and understanding. I especially wish to thank Misty for all of her help throughout this project. As a girlfriend she helped me collect my samples and as a wife she helped with the final revision of this thesis. Thank you for everything. 5 CONTENTS Page ABSTRACT............................................................................................................................ 2 COPYRIGHT ......................................................................................................................... 3 DEDICATION........................................................................................................................ 4 ACKNOWLEDGMENTS ...................................................................................................... 5 LIST OF TABLES .................................................................................................................. 10 LIST OF FIGURES ................................................................................................................ 13 Chapter 1. INTRODUCTION.......................................................................................................... 15 2. MATERIALS AND METHODS..................................................................................... 24 Description of Study Site.............................................................................................. 24 Sample Collection........................................................................................................ 24 Sample Processing....................................................................................................... 28 Species Identification.................................................................................................... 29 Data Analysis............................................................................................................... 29 3. RESULTS ....................................................................................................................... 31 Species Descriptions .................................................................................................... 31 Batillipes bullacaudatus ....................................................................................... 31 Description...................................................................................................... 31 Discussion........................................................................................................ 35 6 Chapter Page Batillipes carnonensis........................................................................................... 35 Description...................................................................................................... 35 Discussion........................................................................................................ 37 Batillipes cf. dicrocercus ...................................................................................... 37 Description...................................................................................................... 37 Discussion........................................................................................................ 37 Batillipes littoralis ................................................................................................ 39 Description...................................................................................................... 39 Discussion........................................................................................................ 39 Batillipes mirus..................................................................................................... 39 Description...................................................................................................... 39 Discussion........................................................................................................ 42 Batillipes cf. noerrevangi ..................................................................................... 42 Description...................................................................................................... 42 Discussion........................................................................................................ 44 Batillipes pennaki................................................................................................. 44 Description...................................................................................................... 44 Discussion........................................................................................................ 44 Batillipes roscoffensis........................................................................................... 44 Description...................................................................................................... 44 7 Chapter Page Discussion........................................................................................................ 47 Halechiniscus greveni........................................................................................... 47 Description...................................................................................................... 47 Discussion........................................................................................................ 47 Orzeliscus belopus................................................................................................ 49 Description...................................................................................................... 49 Discussion........................................................................................................ 49 Batillipes Sp. A................................................................................................... 51 Description...................................................................................................... 51 Discussion........................................................................................................ 51 Batillipes Sp. B..................................................................................................... 53 Description...................................................................................................... 53 Discussion.......................................................................................................
Recommended publications
  • The 2014 Golden Gate National Parks Bioblitz - Data Management and the Event Species List Achieving a Quality Dataset from a Large Scale Event
    National Park Service U.S. Department of the Interior Natural Resource Stewardship and Science The 2014 Golden Gate National Parks BioBlitz - Data Management and the Event Species List Achieving a Quality Dataset from a Large Scale Event Natural Resource Report NPS/GOGA/NRR—2016/1147 ON THIS PAGE Photograph of BioBlitz participants conducting data entry into iNaturalist. Photograph courtesy of the National Park Service. ON THE COVER Photograph of BioBlitz participants collecting aquatic species data in the Presidio of San Francisco. Photograph courtesy of National Park Service. The 2014 Golden Gate National Parks BioBlitz - Data Management and the Event Species List Achieving a Quality Dataset from a Large Scale Event Natural Resource Report NPS/GOGA/NRR—2016/1147 Elizabeth Edson1, Michelle O’Herron1, Alison Forrestel2, Daniel George3 1Golden Gate Parks Conservancy Building 201 Fort Mason San Francisco, CA 94129 2National Park Service. Golden Gate National Recreation Area Fort Cronkhite, Bldg. 1061 Sausalito, CA 94965 3National Park Service. San Francisco Bay Area Network Inventory & Monitoring Program Manager Fort Cronkhite, Bldg. 1063 Sausalito, CA 94965 March 2016 U.S. Department of the Interior National Park Service Natural Resource Stewardship and Science Fort Collins, Colorado The National Park Service, Natural Resource Stewardship and Science office in Fort Collins, Colorado, publishes a range of reports that address natural resource topics. These reports are of interest and applicability to a broad audience in the National Park Service and others in natural resource management, including scientists, conservation and environmental constituencies, and the public. The Natural Resource Report Series is used to disseminate comprehensive information and analysis about natural resources and related topics concerning lands managed by the National Park Service.
    [Show full text]
  • Amphibious Fishes: Terrestrial Locomotion, Performance, Orientation, and Behaviors from an Applied Perspective by Noah R
    AMPHIBIOUS FISHES: TERRESTRIAL LOCOMOTION, PERFORMANCE, ORIENTATION, AND BEHAVIORS FROM AN APPLIED PERSPECTIVE BY NOAH R. BRESSMAN A Dissertation Submitted to the Graduate Faculty of WAKE FOREST UNIVESITY GRADUATE SCHOOL OF ARTS AND SCIENCES in Partial Fulfillment of the Requirements for the Degree of DOCTOR OF PHILOSOPHY Biology May 2020 Winston-Salem, North Carolina Approved By: Miriam A. Ashley-Ross, Ph.D., Advisor Alice C. Gibb, Ph.D., Chair T. Michael Anderson, Ph.D. Bill Conner, Ph.D. Glen Mars, Ph.D. ACKNOWLEDGEMENTS I would like to thank my adviser Dr. Miriam Ashley-Ross for mentoring me and providing all of her support throughout my doctoral program. I would also like to thank the rest of my committee – Drs. T. Michael Anderson, Glen Marrs, Alice Gibb, and Bill Conner – for teaching me new skills and supporting me along the way. My dissertation research would not have been possible without the help of my collaborators, Drs. Jeff Hill, Joe Love, and Ben Perlman. Additionally, I am very appreciative of the many undergraduate and high school students who helped me collect and analyze data – Mark Simms, Tyler King, Caroline Horne, John Crumpler, John S. Gallen, Emily Lovern, Samir Lalani, Rob Sheppard, Cal Morrison, Imoh Udoh, Harrison McCamy, Laura Miron, and Amaya Pitts. I would like to thank my fellow graduate student labmates – Francesca Giammona, Dan O’Donnell, MC Regan, and Christine Vega – for their support and helping me flesh out ideas. I am appreciative of Dr. Ryan Earley, Dr. Bruce Turner, Allison Durland Donahou, Mary Groves, Tim Groves, Maryland Department of Natural Resources, UF Tropical Aquaculture Lab for providing fish, animal care, and lab space throughout my doctoral research.
    [Show full text]
  • Meiofauna of the Koster-Area, Results from a Workshop at the Sven Lovén Centre for Marine Sciences (Tjärnö, Sweden)
    1 Meiofauna Marina, Vol. 17, pp. 1-34, 16 tabs., March 2009 © 2009 by Verlag Dr. Friedrich Pfeil, München, Germany – ISSN 1611-7557 Meiofauna of the Koster-area, results from a workshop at the Sven Lovén Centre for Marine Sciences (Tjärnö, Sweden) W. R. Willems 1, 2, *, M. Curini-Galletti3, T. J. Ferrero 4, D. Fontaneto 5, I. Heiner 6, R. Huys 4, V. N. Ivanenko7, R. M. Kristensen6, T. Kånneby 1, M. O. MacNaughton6, P. Martínez Arbizu 8, M. A. Todaro 9, W. Sterrer 10 and U. Jondelius 1 Abstract During a two-week workshop held at the Sven Lovén Centre for Marine Sciences on Tjärnö, an island on the Swedish west-coast, meiofauna was studied in a large variety of habitats using a wide range of sampling tech- niques. Almost 100 samples coming from littoral beaches, rock pools and different types of sublittoral sand- and mudflats yielded a total of 430 species, a conservative estimate. The main focus was on acoels, proseriate and rhabdocoel flatworms, rotifers, nematodes, gastrotrichs, copepods and some smaller taxa, like nemertodermatids, gnathostomulids, cycliophorans, dorvilleid polychaetes, priapulids, kinorhynchs, tardigrades and some other flatworms. As this is a preliminary report, some species still have to be positively identified and/or described, as 157 species were new for the Swedish fauna and 27 are possibly new to science. Each taxon is discussed separately and accompanied by a detailed species list. Keywords: biodiversity, species list, biogeography, faunistics 1 Department of Invertebrate Zoology, Swedish Museum of Natural History, Box 50007, SE-104 05, Sweden; e-mail: [email protected], [email protected] 2 Research Group Biodiversity, Phylogeny and Population Studies, Centre for Environmental Sciences, Hasselt University, Campus Diepenbeek, Agoralaan, Building D, B-3590 Diepenbeek, Belgium; e-mail: [email protected] 3 Department of Zoology and Evolutionary Genetics, University of Sassari, Via F.
    [Show full text]
  • I the Tardigrades of Oklahoma, with Addi Tional Records from Other States and Mexico
    This dissertation has been microtihned exactly as received 69 1976 BEASLEY, Clark Wayne, 1942- I THE TARDIGRADES OF OKLAHOMA, WITH ADDI­ TIONAL RECORDS FROM OTHER STATES AND MEXICO. The University of Oklahoma, Ph.D., 1968 Zoology University Microfilms, Inc., Ann Arbor, Michigan THE UNIVERSITY OF OKLAHOMA GRADUATE COLLEGE THE TARDIGRADES OF OKLAHOMA, WITH ADDITIONAL RECORDS FROM OTHER STATES AND MEXICO A DISSERTATION SUBMITTED TO THE GRADUATE FACULTY in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY BY CLARK W. BEASLEY Norman, Oklahoma 1968 THE TARDIGRADES OF OKLAHOMA, WITH ADDITIONAL RECORDS FROM OTHER STATES AND MEXICO APPROVED BY ^ (Î- - DISSERTATION COMMITTEE ACKNOWLEDGEMENTS I wish to thank Dr. Harley P. Brown, icy major professor, for his help and encouragement during my graduate studies. His collections from .areas outside the United States have been a valuable addition to my reference collection of tardigrades. I wish to express appreciation to the other members of my dissertation committee, Dr. Cluff E. Hopla, Dr. Arthur N. Bragg, and Dr. George J. Goodman, for their time and effort. Two members of the Cryptogam Division of the United States National Museum have added much to this study. Dr. Mason Hale identified the lichens and Dr. Harold Robinson, the cryptophytes The many samples brought to me by people too numerous to name are genuinely appreciated. Mrs. Eilene Belden of the Zoology Stockroom has been very helpful and deserves recognition. Finally, thanks go to my wife, Barbara, who has put up with me (!) and who therefore believes in waterbears. Ill TABLE OF CONTENTS Page LIST OF ILLUSTRATIONS..................................
    [Show full text]
  • An Introduction to Phylum Tardigrada - Review
    Volume V, Issue V, May 2016 IJLTEMAS ISSN 2278 – 2540 An Introduction to phylum Tardigrada - Review Yashas R Devasurmutt1, Arpitha B M1* 1: R & D Centre, Department of Biotechnology, Dayananda Sagar College of Engineering, Bangalore, India 1*: Corresponding Author: Arpitha B M Abstract: Tardigrades popularly known as water bears are In cryptobiosis (extreme form of anabiosis), the metabolism is micrometazoans with four pairs of lobopod legs. They are the undetectable and the animal is known as tun in this phase. organisms which can live in extreme conditions and are known to Tuns have been known to survive very harsh environmental survive in vacuum and space without protection. Tardigardes conditions such as immersion in helium at -272° C (-458° F) survive in lichens and mosses, usually associated with water film or heating temperatures at 149° C (300° F), exposure to very on mosses, liverworts, and lichens. More species are found in high ionizing radiation and toxic chemical substances and milder environments such as meadows, ponds and lakes. They long durations without oxygen. [4] Figure 2 illustrates the are the first known species to survive in outer space. Tardigrades process of transition of the tardigrades[41]. are closely related to Arthropoda and nematodes based on their morphological and molecular analysis. The cryptobiosis of Figure 2: Transition process of Tardigrades Tardigrades have helped scientists to develop dry vaccines. They have been applied as research subjects in transplantology. Future research would help in more applications of tardigrades in the field of science. Keywords: Tardigrades, cryptobiosis, dry vaccines, Transplantology, space research I. INTRODUCTION ardigrade, a group of tiny arthropod-like animals having T four pairs of stubby legs with big claws, an oval stout body with a round back and lumbering gait.
    [Show full text]
  • Conference Program
    WELCOME TO TARDIGRADA 2018 14TH INTERNATIONAL SYMPOSIUM ON TARDIGRADA CONFERENCE PROGRAM Symposi nal um tio o a n n Ta r r te d n i I g r h a t d 4 a 1 COPENHAGEN BIOCENTER, DENMARK www.tardigrada2018.org U N I V E R S I T Y O F C O P E N H A G E N FACULTY OF SCIENCE WELCOME 14th International Symposium on Tardigrada Welcome to Tardigrada 2018 International tardigrade symposia take place every three years and represent the greatest scientific forum on tardigrades. We are pleased to welcome you to Copenhagen and the 14th International Symposium on Tardigrada and it is with pleasure that we announce a new record in the number of participants with 28 countries represented at Tardigrada 2018. During the meeting 131 abstracts will be presented. The electronic abstract book is available for download from the Symposium website - www.tardigrada2018.org - and will be given to conference attendees on a USB stick during registration. Organising Committee 14th International Tardigrade Symposium, Copenhagen 2018 Chair Nadja Møbjerg (University of Copenhagen, Denmark) Local Committee Hans Ramløv (Roskilde University, Denmark), Jesper Guldberg Hansen (University of Copenhagen, Denmark), Jette Eibye-Jacobsen (University of Copenhagen, Denmark/ Birkerød Gymnasium), Lykke Keldsted Bøgsted Hvidepil (University of Copenhagen, Denmark), Maria Kamilari (University of Copenhagen, Denmark), Reinhardt Møbjerg Kristensen (University of Copenhagen, Denmark), Thomas L. Sørensen-Hygum (University of Copenhagen, Denmark) International Committee Ingemar Jönsson (Kristianstad University, Sweden), Łukasz Kaczmarek (A. Mickiewicz University, Poland) Łukasz Michalczyk (Jagiellonian University, Poland), Lorena Rebecchi (University of Modena and Reggio Emilia, Italy), Ralph O.
    [Show full text]
  • Echiniscoides Sigismundi
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Copenhagen University Research Information System Tolerance to gamma radiation in the marine heterotardigrade, Echiniscoides sigismundi Jönsson, K. Ingemar; Hygum, Thomas Lunde; Andersen, Kasper Nørgaard; Clausen, Lykke K. B.; Møbjerg, Nadja Published in: P L o S One DOI: 10.1371/journal.pone.0168884 Publication date: 2016 Document version Publisher's PDF, also known as Version of record Document license: CC BY Citation for published version (APA): Jönsson, K. I., Hygum, T. L., Andersen, K. N., Clausen, L. K. B., & Møbjerg, N. (2016). Tolerance to gamma radiation in the marine heterotardigrade, Echiniscoides sigismundi. P L o S One, 11(12), [e0168884]. https://doi.org/10.1371/journal.pone.0168884 Download date: 08. apr.. 2020 RESEARCH ARTICLE Tolerance to Gamma Radiation in the Marine Heterotardigrade, Echiniscoides sigismundi K. Ingemar JoÈ nsson1*, Thomas L. Hygum2, Kasper N. Andersen2, Lykke K. B. Clausen2, Nadja Møbjerg2* 1 School of Education and Environment, Kristianstad University, Kristianstad, Sweden, 2 Department of Biology, University of Copenhagen, Copenhagen, Denmark * [email protected] (KIJ); [email protected] (NM) a1111111111 a1111111111 Abstract a1111111111 a1111111111 Tardigrades belong to the most radiation tolerant animals on Earth, as documented by a a1111111111 number of studies using both low-LET and high-LET ionizing radiation. Previous studies have focused on semi-terrestrial species, which are also very tolerant to desiccation. The predominant view on the reason for the high radiation tolerance among these semi-terres- trial species is that it relies on molecular mechanisms that evolved as adaptations for surviv- OPEN ACCESS ing dehydration.
    [Show full text]
  • Heterotardigrada, Echiniscidae, Arctomys Group) from the Parco Naturale Delle Alpi Marittime (NW Italy)
    Echiniscus pardalis n. sp., a new species of Tardigrada (Heterotardigrada, Echiniscidae, arctomys group) from the Parco Naturale delle Alpi Marittime (NW Italy) Peter DegMA Department of Zoology, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská dolina B-1, 84215 Bratislava (Slovakia) [email protected] Ralph Oliver SchIll Department of Zoology, Institute of Biomaterials and biomolecular Systems, University of Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart (Germany) [email protected] Published on 27 March 2015 urn:lsid:zoobank.org:pub:DC9DA37B-C71A-42E5-AEE3-4A0BECB27F24 Degma P. & Schill R. O. 2015. — Echiniscus pardalis n. sp., a new species of Tardigrada (Heterotardigrada, Echinisci- dae, arctomys group) from the Parco Naturale delle Alpi Marittime (NW Italy), in Daugeron C., Deharveng L., Isaia M., Villemant C. & Judson M. (eds), Mercantour/Alpi Marittime All Taxa Biodiversity Inventory. Zoosystema 37 (1): 239-249. http://dx.doi.org/10.5252/z2015n1a12 ABSTRACT A new species of Tardigrada Doyère, 1840, Echiniscus pardalis n. sp., is described from two moss samples collected in the Parco Naturale delle Alpi Marittime (NW Italy). It belongs to the Echiniscus arctomys species-group, but differs from other 49 known members of the group mainly by the irregularly and distantly scattered deep pores on the plates and by a unique subsurface cuticular pattern on the plates, resembling that of a leopard’s fur. The new species is most similar to eight species from the arctomys group: E. barbarae Kaczmarek & Michalczyk, 2002, E. crebraclava Sun, Li & Feng, 2014, E. dearmatus Bartoš, 1935, E. mosaicus Grigarick, Schuster & Nelson, 1983, E. nigripustulus Horning, Schuster & Grigarick, 1978, E.
    [Show full text]
  • Further Studies on the Marine Tardigrade Fauna from Sardinia (Italy)
    G. Pilato and L. Rebecchi (Guest Editors) Proceedings of the Tenth International Symposium on Tardigrada J. Limnol., 66(Suppl. 1): 56-59, 2007 Further studies on the marine tardigrade fauna from Sardinia (Italy) Rossana D'ADDABBO, Maria GALLO*, Cristiana DE LEONARDIS, Roberto SANDULLI and Susanna DE ZIO GRIMALDI Zoology Department, University of Bari, Via Orabona 4, 70125 Bari, Italy *e-mail corresponding author: [email protected] ABSTRACT An investigation on the taxonomy and ecology of marine tardigrades was carried out in different intertidal and subtidal sites along the coasts of Sardinia (Italy). Particle size analysis of sediments revealed medium or medium-fine intertidal sands and coarse subtidal sands, the latter mainly formed by coralligenous debris. The systematic study was particularly relevant, leading to the identification of 25 species, of which 9 are new records for Sardinia, and 2 are new to science. With these new findings, the total number of species for Sardinia adds up to 47. The species found belong to the families Halechiniscidae (16 species; abundance 2 to 263 ind. 10 cm-2), Batillipedidae (6 species; abundance 2 to 574 ind. 10 cm-2) and Stygarctidae (3 species; abundance 0 to 13 ind. 10 cm-2). The present data confirm the existence of a remarkable diversity, both of intertidal and subtidal tardigrade fauna. Generally, the prevalently siliceous intertidal sands host a few number of species (sometimes with many individuals), while the subtidal sediments, which were mainly calcareous, show a higher number of species often with low density. In fact, in the intertidal sediments only 11 species were found, 5 belonging to Halechiniscidae and 6 to Batillipedidae.
    [Show full text]
  • Extreme Secondary Sexual Dimorphism in the Genus Florarctus
    Extreme secondary sexual dimorphism in the genus Florarctus (Heterotardigrada Halechiniscidae) Gasiorek, Piotr; Kristensen, David Mobjerg; Kristensen, Reinhardt Mobjerg Published in: Marine Biodiversity DOI: 10.1007/s12526-021-01183-y Publication date: 2021 Document version Publisher's PDF, also known as Version of record Document license: CC BY Citation for published version (APA): Gasiorek, P., Kristensen, D. M., & Kristensen, R. M. (2021). Extreme secondary sexual dimorphism in the genus Florarctus (Heterotardigrada: Halechiniscidae). Marine Biodiversity, 51(3), [52]. https://doi.org/10.1007/s12526- 021-01183-y Download date: 29. sep.. 2021 Marine Biodiversity (2021) 51:52 https://doi.org/10.1007/s12526-021-01183-y ORIGINAL PAPER Extreme secondary sexual dimorphism in the genus Florarctus (Heterotardigrada: Halechiniscidae) Piotr Gąsiorek1 & David Møbjerg Kristensen2,3 & Reinhardt Møbjerg Kristensen4 Received: 14 October 2020 /Revised: 3 March 2021 /Accepted: 15 March 2021 # The Author(s) 2021 Abstract Secondary sexual dimorphism in florarctin tardigrades is a well-known phenomenon. Males are usually smaller than females, and primary clavae are relatively longer in the former. A new species Florarctus bellahelenae, collected from subtidal coralline sand just behind the reef fringe of Long Island, Chesterfield Reefs (Pacific Ocean), exhibits extreme secondary dimorphism. Males have developed primary clavae that are much thicker and three times longer than those present in females. Furthermore, the male primary clavae have an accordion-like outer structure, whereas primary clavae are smooth in females. Other species of Florarctus Delamare-Deboutteville & Renaud-Mornant, 1965 inhabiting the Pacific Ocean were investigated. Males are typically smaller than females, but males of Florarctus heimi Delamare-Deboutteville & Renaud-Mornant, 1965 and females of Florarctus cervinus Renaud-Mornant, 1987 have never been recorded.
    [Show full text]
  • The Deep Sea Elements of the Faroe Bank Tardigrade Fauna with a Description of Two New Species
    G. Pilato and L. Rebecchi (Guest Editors) Proceedings of the Tenth International Symposium on Tardigrada J. Limnol., 66(Suppl. 1): 12-20, 2007 The deep sea elements of the Faroe Bank tardigrade fauna with a description of two new species Jesper GULDBERG HANSEN Department of Invertebrate Zoology, Zoological Museum, University of Copenhagen, Universitetsparken 15, DK-2100 Copenhagen, Denmark e-mail: [email protected] ABSTRACT Two new marine Tardigrada species are described from the calcareous sediments at the steep slope of the Faroe Bank in the North Atlantic Ocean. Parmursa torquata sp. nov. can be distinguished mainly by small cylindrical secondary clavae, and the presence of caudal and cephalic vesicles, and a large ventral plate. Coronarctus verrucatus sp. nov. is characterised by its unique cuticular sculpture, with numerous small wart-like excrescences, regularly distributed all over the body. These new records from the relatively shallow water of the Faroe Bank (200-260 m) further widen the range of Parmursa and Coronarctus distribution and diversity, especially regarding the genus Parmursa, which to date has remained monospecific. Key words: Tardigrada, Arthrotardigrada, Faroe Bank, Parmursa torquata sp. nov, Coronarctus verrucatus sp. nov. ethanol and acetone prior to critical point drying. The 1. INTRODUCTION dehydrated specimens were then mounted on aluminium stubs, coated with gold and observed in a JEOL JSM- Although deep-sea tardigrades have been known 840 scanning electron microscope. The type-material is since the mid-1960's, the published information is deposited in the collections of the Zoological Museum, scattered and data about their worldwide distribution are Copenhagen (ZMUC), Denmark.
    [Show full text]
  • Segmentation and Tagmosis in Chelicerata
    Arthropod Structure & Development 46 (2017) 395e418 Contents lists available at ScienceDirect Arthropod Structure & Development journal homepage: www.elsevier.com/locate/asd Segmentation and tagmosis in Chelicerata * Jason A. Dunlop a, , James C. Lamsdell b a Museum für Naturkunde, Leibniz Institute for Evolution and Biodiversity Science, Invalidenstrasse 43, D-10115 Berlin, Germany b American Museum of Natural History, Division of Paleontology, Central Park West at 79th St, New York, NY 10024, USA article info abstract Article history: Patterns of segmentation and tagmosis are reviewed for Chelicerata. Depending on the outgroup, che- Received 4 April 2016 licerate origins are either among taxa with an anterior tagma of six somites, or taxa in which the ap- Accepted 18 May 2016 pendages of somite I became increasingly raptorial. All Chelicerata have appendage I as a chelate or Available online 21 June 2016 clasp-knife chelicera. The basic trend has obviously been to consolidate food-gathering and walking limbs as a prosoma and respiratory appendages on the opisthosoma. However, the boundary of the Keywords: prosoma is debatable in that some taxa have functionally incorporated somite VII and/or its appendages Arthropoda into the prosoma. Euchelicerata can be defined on having plate-like opisthosomal appendages, further Chelicerata fi Tagmosis modi ed within Arachnida. Total somite counts for Chelicerata range from a maximum of nineteen in Prosoma groups like Scorpiones and the extinct Eurypterida down to seven in modern Pycnogonida. Mites may Opisthosoma also show reduced somite counts, but reconstructing segmentation in these animals remains chal- lenging. Several innovations relating to tagmosis or the appendages borne on particular somites are summarised here as putative apomorphies of individual higher taxa.
    [Show full text]