Conference Program
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The 2014 Golden Gate National Parks Bioblitz - Data Management and the Event Species List Achieving a Quality Dataset from a Large Scale Event
National Park Service U.S. Department of the Interior Natural Resource Stewardship and Science The 2014 Golden Gate National Parks BioBlitz - Data Management and the Event Species List Achieving a Quality Dataset from a Large Scale Event Natural Resource Report NPS/GOGA/NRR—2016/1147 ON THIS PAGE Photograph of BioBlitz participants conducting data entry into iNaturalist. Photograph courtesy of the National Park Service. ON THE COVER Photograph of BioBlitz participants collecting aquatic species data in the Presidio of San Francisco. Photograph courtesy of National Park Service. The 2014 Golden Gate National Parks BioBlitz - Data Management and the Event Species List Achieving a Quality Dataset from a Large Scale Event Natural Resource Report NPS/GOGA/NRR—2016/1147 Elizabeth Edson1, Michelle O’Herron1, Alison Forrestel2, Daniel George3 1Golden Gate Parks Conservancy Building 201 Fort Mason San Francisco, CA 94129 2National Park Service. Golden Gate National Recreation Area Fort Cronkhite, Bldg. 1061 Sausalito, CA 94965 3National Park Service. San Francisco Bay Area Network Inventory & Monitoring Program Manager Fort Cronkhite, Bldg. 1063 Sausalito, CA 94965 March 2016 U.S. Department of the Interior National Park Service Natural Resource Stewardship and Science Fort Collins, Colorado The National Park Service, Natural Resource Stewardship and Science office in Fort Collins, Colorado, publishes a range of reports that address natural resource topics. These reports are of interest and applicability to a broad audience in the National Park Service and others in natural resource management, including scientists, conservation and environmental constituencies, and the public. The Natural Resource Report Series is used to disseminate comprehensive information and analysis about natural resources and related topics concerning lands managed by the National Park Service. -
The Freshwater Fish Diversity Around Mesangat Watershed, District Muara Ancalong, Regency Kutai Kartanegara, Province Kalimantan Timur
Report of: The Freshwater Fish Diversity around Mesangat watershed, District Muara Ancalong, Regency Kutai Kartanegara, Province Kalimantan Timur by: Renny Kurnia Hadiaty Mesangat ilir river Notopterus notopterus Barbichthys laevis Hemirhamphodon sp. Pangio sp. Ichthyology Laboratory, Division of Zoology, Research Center for Biology, Indonesian Institute of Sciences (LIPI) Jl. Raya Bogor-Jakarta Km 46 Cibinong 16911 2009 The Freshwater Fish Diversity around Mesangat watershed, District Muara Ancalong, Regency Kutai Kartanegara, Province Kalimantan Timur by: Renny Kurnia Hadiaty Head of Ichthyology Laboratory, Division of Zoology, Research Center for Biology, Indonesian Institute of Sciences (LIPI) Jl. Raya Bogor-Jakarta Km 46 Cibinong 16911 Email: [email protected] Introduction REA KON, The conservation section of PT REA Kaltim Plantations need to gather the aquatic fauna baseline data from the concessions area of PT REA KALTIM PLANTATION. Two survey conducted in Ulu Belayan river streams, Mahakam river drainage, District Kembang Janggut, Regency Kutai Timur, Province East Kalimantan. This third survey studied the freshwater fish diversity around Mesangat watershed, District Muara Ancalong, Regency Kutai Kartanegara, Province Kalimantan Timur. There is a quite big swampy area in the District Muara Ancalong, Mesangat swamp or in Bahasa Indonesia we call it Rawa Mesangat. This swamp area is the habitat of the protected species of long snout crocodile, Tomistoma schlegeli. The aim of this survey is to get the information of the fish diversity around Mesangat watershed, the distribution of each site and the status of the species. The results of this survey could be use as the basic data for REA KON to manage the area for the continuation and conservation of the species. -
Studies on Cyprinid Fishes of the Oriental Genus Chela Hamilton by E
Studies on Cyprinid Fishes of the Oriental Genus Chela Hamilton BY E. G. SILAS (With tlVO plates and six text-figures) CoNTENTS Page INrRODUCTION 54 HISTORICAL REsUME 54 MATERIAL AND METIiODS 55 SYNONYMS OF TIlE GENUS Chela HAMILTON 58 DEFINITION OF THE GEI\'US Chela HAMILTON 58 AFFINITIES OF THE GENUS Chela HAMll.TON 60 SUBDIVISIONS OF THE GENUS Chela HAMILTON 62 SYNOPSIS TO THE SUBGENERA AND SPECIES 64 SVSTEIo.{ATIC ACCOUNT 65 ECONOMIC IMPORTANCE 97 DISCUSSION 97 ACKNOWLEDGEMENT 98 REFERENCES 98 INTRODUCTION Recently having had occasion to consider the nomenclatorial status of certain genera and species of freshwater fishes from India, it was found that the generic status and composition of Chela, the first division named by Hamilton (1822)1 under the composite genus Cyprinus, was in con fusion. Smith (1945) made a partial attempt to straighten .the tangle, but writers seem still to adhere to earlier systems of classification, partly on account of Smith's work not being accessible as ready reference. Since 1945 some more literature has come out on the taxonomy of these fishes, and the present revision is therefore undertaken in order to help to avoid continuance of improper usage and to give an up-to-date classification of the fishes belonging to Hamilton's division Chela, which is now recognised as a distinct genus of the subfamily Abramidinae of the family Cyprinidae. HISTORICAL REsUME Under the division Chela of the genns Cyprinus, Hamilton described a heterogenons assemblage of seven species. The first named species, '1 Also cited in earlier literature as Hamilton-Buchanan. STUDIES ON CYPRINID FISHES 55 Cyprinus (Chela) each ius Hamilton was made the type of the genus Chela by Bleeker (1863, p. -
Continued Exploration of Tanzanian Rainforests Reveals a New Echiniscid Species (Heterotardigrada)
Zoological Studies 59:18 (2020) doi:10.6620/ZS.2020.59-18 Open Access Continued Exploration of Tanzanian Rainforests Reveals a New Echiniscid Species (Heterotardigrada) Marcin Bochnak1, Katarzyna Vončina1, Reinhardt M. Kristensen2,§, and Piotr Gąsiorek1,§* 1Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387 Kraków, Poland. *Correspondence: E-mail: [email protected] (Gąsiorek) E-mail: [email protected] (Bochnak); [email protected] (Vončina) 2Section for Biosystematics, Natural History Museum of Denmark, University of Copenhagen, Universitetsparken 15, Copenhagen Ø DK-2100, Denmark. E-mail: [email protected] (Kristensen) §RMK and PG share joint senior authorship. Received 13 January 2020 / Accepted 28 April 2020 / Published 15 June 2020 Communicated by Benny K.K. Chan The Afrotropical tardigrade fauna is insufficiently studied, and consequently its diversity in this region is severely underestimated. Ongoing sampling in the Udzungwa Mountains, Morogoro Region of Tanzania has revealed a new representative of the genus Echiniscus C.A.S. Schultze, 1840 (Echiniscidae). Echiniscus tantulus sp. nov. belongs to the spinulosus group, but it stands out from other members of this speciose Echiniscus clade by having a heteromorphic sculpture of the dorsal plates and an uncommonly stable body appendage configuration A-C-Cd-Dd-E. The new species is characteristic by being equipped with long dorsal spines and very short lateral spicules, which so far have been found only in one other species of the group, Echiniscus spinulosus (Doyère, 1840). An updated checklist of Tanzanian Echiniscidae is provided, incorporating recent advances in their classification. Key words: Biodiversity, Chaetotaxy, Cuticular sculpturing, The spinulosus group, Udzungwa Mountains. -
Meiofauna of the Koster-Area, Results from a Workshop at the Sven Lovén Centre for Marine Sciences (Tjärnö, Sweden)
1 Meiofauna Marina, Vol. 17, pp. 1-34, 16 tabs., March 2009 © 2009 by Verlag Dr. Friedrich Pfeil, München, Germany – ISSN 1611-7557 Meiofauna of the Koster-area, results from a workshop at the Sven Lovén Centre for Marine Sciences (Tjärnö, Sweden) W. R. Willems 1, 2, *, M. Curini-Galletti3, T. J. Ferrero 4, D. Fontaneto 5, I. Heiner 6, R. Huys 4, V. N. Ivanenko7, R. M. Kristensen6, T. Kånneby 1, M. O. MacNaughton6, P. Martínez Arbizu 8, M. A. Todaro 9, W. Sterrer 10 and U. Jondelius 1 Abstract During a two-week workshop held at the Sven Lovén Centre for Marine Sciences on Tjärnö, an island on the Swedish west-coast, meiofauna was studied in a large variety of habitats using a wide range of sampling tech- niques. Almost 100 samples coming from littoral beaches, rock pools and different types of sublittoral sand- and mudflats yielded a total of 430 species, a conservative estimate. The main focus was on acoels, proseriate and rhabdocoel flatworms, rotifers, nematodes, gastrotrichs, copepods and some smaller taxa, like nemertodermatids, gnathostomulids, cycliophorans, dorvilleid polychaetes, priapulids, kinorhynchs, tardigrades and some other flatworms. As this is a preliminary report, some species still have to be positively identified and/or described, as 157 species were new for the Swedish fauna and 27 are possibly new to science. Each taxon is discussed separately and accompanied by a detailed species list. Keywords: biodiversity, species list, biogeography, faunistics 1 Department of Invertebrate Zoology, Swedish Museum of Natural History, Box 50007, SE-104 05, Sweden; e-mail: [email protected], [email protected] 2 Research Group Biodiversity, Phylogeny and Population Studies, Centre for Environmental Sciences, Hasselt University, Campus Diepenbeek, Agoralaan, Building D, B-3590 Diepenbeek, Belgium; e-mail: [email protected] 3 Department of Zoology and Evolutionary Genetics, University of Sassari, Via F. -
Echiniscoides Sigismundi
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Copenhagen University Research Information System Tolerance to gamma radiation in the marine heterotardigrade, Echiniscoides sigismundi Jönsson, K. Ingemar; Hygum, Thomas Lunde; Andersen, Kasper Nørgaard; Clausen, Lykke K. B.; Møbjerg, Nadja Published in: P L o S One DOI: 10.1371/journal.pone.0168884 Publication date: 2016 Document version Publisher's PDF, also known as Version of record Document license: CC BY Citation for published version (APA): Jönsson, K. I., Hygum, T. L., Andersen, K. N., Clausen, L. K. B., & Møbjerg, N. (2016). Tolerance to gamma radiation in the marine heterotardigrade, Echiniscoides sigismundi. P L o S One, 11(12), [e0168884]. https://doi.org/10.1371/journal.pone.0168884 Download date: 08. apr.. 2020 RESEARCH ARTICLE Tolerance to Gamma Radiation in the Marine Heterotardigrade, Echiniscoides sigismundi K. Ingemar JoÈ nsson1*, Thomas L. Hygum2, Kasper N. Andersen2, Lykke K. B. Clausen2, Nadja Møbjerg2* 1 School of Education and Environment, Kristianstad University, Kristianstad, Sweden, 2 Department of Biology, University of Copenhagen, Copenhagen, Denmark * [email protected] (KIJ); [email protected] (NM) a1111111111 a1111111111 Abstract a1111111111 a1111111111 Tardigrades belong to the most radiation tolerant animals on Earth, as documented by a a1111111111 number of studies using both low-LET and high-LET ionizing radiation. Previous studies have focused on semi-terrestrial species, which are also very tolerant to desiccation. The predominant view on the reason for the high radiation tolerance among these semi-terres- trial species is that it relies on molecular mechanisms that evolved as adaptations for surviv- OPEN ACCESS ing dehydration. -
Tardigrade Reproduction and Food
Glime, J. M. 2017. Tardigrade Reproduction and Food. Chapt. 5-2. In: Glime, J. M. Bryophyte Ecology. Volume 2. Bryological 5-2-1 Interaction. Ebook sponsored by Michigan Technological University and the International Association of Bryologists. Last updated 18 July 2020 and available at <http://digitalcommons.mtu.edu/bryophyte-ecology2/>. CHAPTER 5-2 TARDIGRADE REPRODUCTION AND FOOD TABLE OF CONTENTS Life Cycle and Reproductive Strategies .............................................................................................................. 5-2-2 Reproductive Strategies and Habitat ............................................................................................................ 5-2-3 Eggs ............................................................................................................................................................. 5-2-3 Molting ......................................................................................................................................................... 5-2-7 Cyclomorphosis ........................................................................................................................................... 5-2-7 Bryophytes as Food Reservoirs ........................................................................................................................... 5-2-8 Role in Food Web ...................................................................................................................................... 5-2-12 Summary .......................................................................................................................................................... -
SPECIAL PUBLICATION 6 the Effects of Marine Debris Caused by the Great Japan Tsunami of 2011
PICES SPECIAL PUBLICATION 6 The Effects of Marine Debris Caused by the Great Japan Tsunami of 2011 Editors: Cathryn Clarke Murray, Thomas W. Therriault, Hideaki Maki, and Nancy Wallace Authors: Stephen Ambagis, Rebecca Barnard, Alexander Bychkov, Deborah A. Carlton, James T. Carlton, Miguel Castrence, Andrew Chang, John W. Chapman, Anne Chung, Kristine Davidson, Ruth DiMaria, Jonathan B. Geller, Reva Gillman, Jan Hafner, Gayle I. Hansen, Takeaki Hanyuda, Stacey Havard, Hirofumi Hinata, Vanessa Hodes, Atsuhiko Isobe, Shin’ichiro Kako, Masafumi Kamachi, Tomoya Kataoka, Hisatsugu Kato, Hiroshi Kawai, Erica Keppel, Kristen Larson, Lauran Liggan, Sandra Lindstrom, Sherry Lippiatt, Katrina Lohan, Amy MacFadyen, Hideaki Maki, Michelle Marraffini, Nikolai Maximenko, Megan I. McCuller, Amber Meadows, Jessica A. Miller, Kirsten Moy, Cathryn Clarke Murray, Brian Neilson, Jocelyn C. Nelson, Katherine Newcomer, Michio Otani, Gregory M. Ruiz, Danielle Scriven, Brian P. Steves, Thomas W. Therriault, Brianna Tracy, Nancy C. Treneman, Nancy Wallace, and Taichi Yonezawa. Technical Editor: Rosalie Rutka Please cite this publication as: The views expressed in this volume are those of the participating scientists. Contributions were edited for Clarke Murray, C., Therriault, T.W., Maki, H., and Wallace, N. brevity, relevance, language, and style and any errors that [Eds.] 2019. The Effects of Marine Debris Caused by the were introduced were done so inadvertently. Great Japan Tsunami of 2011, PICES Special Publication 6, 278 pp. Published by: Project Designer: North Pacific Marine Science Organization (PICES) Lori Waters, Waters Biomedical Communications c/o Institute of Ocean Sciences Victoria, BC, Canada P.O. Box 6000, Sidney, BC, Canada V8L 4B2 Feedback: www.pices.int Comments on this volume are welcome and can be sent This publication is based on a report submitted to the via email to: [email protected] Ministry of the Environment, Government of Japan, in June 2017. -
A Checklist of Norwegian Tardigrada
Fauna norvegica 2017 Vol. 37: 25-42. A checklist of Norwegian Tardigrada Terje Meier1 Meier T. 2017. A checklist of Norwegian Tardigrada. Fauna norvegica 37: 25-42. Animals of the phylum Tardigrada are microscopical metazoans that seldom exceed 1 mm in length. They are recorded from terrestrial, limnic and marine habitats and they have a distribution from Arctic to Antarctica. Tardigrades are also named ‘water bears’ referring to their ‘walk’ that resembles a bear’s gait. Knowledge of Norwegian tardigrades is fragmented and distributed across numerous sources. Here this information is gathered and validity of some records is discussed. In total 146 different species are recorded from the Norwegian mainland and Svalbard. Among these, 121 species and subspecies are recorded in previous publications and another 25 species are recorded from Norway for the first time. doi: 10.5324/fn.v37i0.2269. Received: 2017-05-22. Accepted: 2017-12-06. Published online: 2017-12.20. ISSN: 1891-5396 (electronic). Keywords: Tardigrada, Norway, Svalbard, checklist, taxonomy, literature, biodiversity, new records 1. Prinsdalsfaret 20, NO-1262 Oslo, Norway. Corresponding author: Terje Meier E-mail: [email protected] INTRODUCTION terminating in claws or sucking disks. The first three pairs of legs are directed ventrolaterally and are used to moving over the The phylum Tardigrada (water bears) currently holds about substrate. The hind legs are directed posteriorly and are used for 1250 valid species and subspecies (Degma et al. 2007, Degma grasping. Adult Tardigrades usually range from 250 µm to 700 et al. 2017) and are found in a great variety of habitats. They µm in length. -
The Wonders of Mauritius
Evolutionary Systematics. 5 2021, 93–120 | DOI 10.3897/evolsyst.5.59997 Echiniscidae in the Mascarenes: the wonders of Mauritius Yevgen Kiosya1, Katarzyna Vončina2, Piotr Gąsiorek2 1 School of Biology, V. N. Karazin Kharkiv National University, Svobody Sq. 4, 61022 Kharkiv, Ukraine 2 Department of Invertebrate Evolution, Faculty of Biology, Jagiellonian University, Gronostajowa 9, 30-387 Kraków, Poland http://zoobank.org/22050C34-40A5-4B7A-9969-222AE927D6AA Corresponding author: Piotr Gąsiorek ([email protected]) Academic editor: A. Schmidt-Rhaesa ♦ Received 24 October 2020 ♦ Accepted 7 December 2020 ♦ Published 9 April 2021 Abstract Many regions of the world remain unexplored in terms of the tardigrade diversity, and the islands of the Indian Ocean are no excep- tion. In this work, we report four species of the family Echiniscidae representing three genera from Mauritius, the second largest is- land in the Mascarene Archipelago. Two species belong in the genus Echiniscus: Echiniscus perarmatus Murray, 1907, a pantropical species, and one new species: Echiniscus insularis sp. nov., one of the smallest members of the spinulosus group and the entire genus, being particularly interesting due to the presence of males and supernumerary teeth-like spicules along the margins of the dorsal plates. The new species most closely resembles Echiniscus tropicalis Binda & Pilato, 1995, for which we present extensive mul- tipopulation data and greatly extend its distribution eastwards towards islands of Southeast Asia. Pseudechiniscus (Meridioniscus) mascarenensis sp. nov. is a typical member of the subgenus with elongated (dactyloid) cephalic papillae and the pseudosegmental plate IV’ with reduced posterior projections in males. Finally, a Bryodelphax specimen is also recorded. -
Distribution and Diversity of Tardigrada Along Altitudinal Gradients in the Hornsund, Spitsbergen
RESEARCH/REVIEW ARTICLE Distribution and diversity of Tardigrada along altitudinal gradients in the Hornsund, Spitsbergen (Arctic) Krzysztof Zawierucha,1 Jerzy Smykla,2,3 Łukasz Michalczyk,4 Bartłomiej Gołdyn5,6 & Łukasz Kaczmarek1,6 1 Department of Animal Taxonomy and Ecology, Faculty of Biology, Adam Mickiewicz University in Poznan´ , Umultowska 89, PL-61-614 Poznan´ , Poland 2 Department of Biodiversity, Institute of Nature Conservation, Polish Academy of Sciences, Mickiewicza 33, PL-31-120 Krako´ w, Poland 3 Present address: Department of Biology and Marine Biology, University of North Carolina, Wilmington, 601 S. College Rd., Wilmington, NC 28403, USA 4 Department of Entomology, Institute of Zoology, Jagiellonian University, Gronostajowa 9, PL-30-387 Krako´ w, Poland 5 Department of General Zoology, Faculty of Biology, A. Mickiewicz University in Poznan´ , Umultowska 89, PL-61-614 Poznan´ , Poland 6 Laboratorio de Ecologı´a Natural y Aplicada de Invertebrados, Universidad Estatal Amazo´ nica, Puyo, Ecuador Keywords Abstract Arctic; biodiversity; climate change; invertebrate ecology; Milnesium; Two transects were established and sampled along altitudinal gradients on the Tardigrada. slopes of Ariekammen (77801?N; 15831?E) and Rotjesfjellet (77800?N; 15822?E) in Hornsund, Spitsbergen. In total 59 moss, lichen, liverwort and mixed mossÁ Correspondence lichen samples were collected and 33 tardigrade species of Hetero- and Krzysztof Zawierucha, Department of Eutardigrada were found. The a diversity ranged from 1 to 8 per sample; the Animal Taxonomy and Ecology, Faculty of estimated number of species based on all analysed samples was 52917 for the Biology, Adam Mickiewicz University in Chao 2 estimator and 41 for the incidence-based coverage estimator. -
Tardigrada, Heterotardigrada)
bs_bs_banner Zoological Journal of the Linnean Society, 2013. With 6 figures Congruence between molecular phylogeny and cuticular design in Echiniscoidea (Tardigrada, Heterotardigrada) NOEMÍ GUIL1*, ASLAK JØRGENSEN2, GONZALO GIRIBET FLS3 and REINHARDT MØBJERG KRISTENSEN2 1Department of Biodiversity and Evolutionary Biology, Museo Nacional de Ciencias Naturales de Madrid (CSIC), José Gutiérrez Abascal 2, 28006, Madrid, Spain 2Natural History Museum of Denmark, University of Copenhagen, Universitetsparken 15, Copenhagen, Denmark 3Museum of Comparative Zoology, Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA Received 21 November 2012; revised 2 September 2013; accepted for publication 9 September 2013 Although morphological characters distinguishing echiniscid genera and species are well understood, the phylogenetic relationships of these taxa are not well established. We thus investigated the phylogeny of Echiniscidae, assessed the monophyly of Echiniscus, and explored the value of cuticular ornamentation as a phylogenetic character within Echiniscus. To do this, DNA was extracted from single individuals for multiple Echiniscus species, and 18S and 28S rRNA gene fragments were sequenced. Each specimen was photographed, and published in an open database prior to DNA extraction, to make morphological evidence available for future inquiries. An updated phylogeny of the class Heterotardigrada is provided, and conflict between the obtained molecular trees and the distribution of dorsal plates among echiniscid genera is highlighted. The monophyly of Echiniscus was corroborated by the data, with the recent genus Diploechiniscus inferred as its sister group, and Testechiniscus as the sister group of this assemblage. Three groups that closely correspond to specific types of cuticular design in Echiniscus have been found with a parsimony network constructed with 18S rRNA data.