Chapter 5, Tundra
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Papers Published And/Or Accepted for Publication in 2018-2019 (List Incomplete)
Papers published and/or accepted for publication in 2018-2019 (list incomplete) Allington, G. R. H., Fernandez-Gimenez M. E., Chen Belt (ADB). In: (G Gutman, J Chen, GM Henebry, J, and Brown and D G 2018: Combining M Kappas, eds.) Landscape Dynamics across participatory scenario planning and systems Drylands of Greater Central Asia: People, modeling to identify drivers of future sustainability Societies and Ecosystems. Springer. Chapter 10. on the Mongolian Plateau. Ecology and Chen Y, Tao Y, Cheng Y, Ju W, Ye J, Hickler T, Liao Society 23(2):9. C, Feng L and Ruan H 2018: Great uncertainties https://doi.org/10.5751/ES-10034-230209 in modeling grazing impact on carbon An S, Chen X, Zhang XY, Yan D and Henebry GM sequestration: a multi-model inter-comparison in 2018. An exploration of terrain effects on land temperate Eurasian Steppe Environ. Res. surface phenology across the Qinghai-Tibetan Lett. 13 075005 Plateau using Landsat ETM+ and OLI Chen Y, Fei X, Groisman P, Sun Z, Zhang J, and Qin data Remote Sensing 10(7):1069. Z, 2019: Contrasting policy shifts influence the https://doi.org/10.3390/rs10071069 pattern of vegetation production and C Bastos A , Peregon A, Gani ÉA, Khudyaev S, Yue C, sequestration over pasture systems: a regional- Li W, Gouveia CM and Ciais P 2018 Influence of scale comparison in Temperate Eurasian Steppe. high-latitude warming and land-use changes in the Agricultural Systems, Accepted. early 20th century northern Eurasian CO2 sink Deppermann A, Balkovič J, Bundle S-C, di Fulvio F, Environ. Res. -
Recent Declines in Warming and Vegetation Greening Trends Over Pan-Arctic Tundra
Remote Sens. 2013, 5, 4229-4254; doi:10.3390/rs5094229 OPEN ACCESS Remote Sensing ISSN 2072-4292 www.mdpi.com/journal/remotesensing Article Recent Declines in Warming and Vegetation Greening Trends over Pan-Arctic Tundra Uma S. Bhatt 1,*, Donald A. Walker 2, Martha K. Raynolds 2, Peter A. Bieniek 1,3, Howard E. Epstein 4, Josefino C. Comiso 5, Jorge E. Pinzon 6, Compton J. Tucker 6 and Igor V. Polyakov 3 1 Geophysical Institute, Department of Atmospheric Sciences, College of Natural Science and Mathematics, University of Alaska Fairbanks, 903 Koyukuk Dr., Fairbanks, AK 99775, USA; E-Mail: [email protected] 2 Institute of Arctic Biology, Department of Biology and Wildlife, College of Natural Science and Mathematics, University of Alaska, Fairbanks, P.O. Box 757000, Fairbanks, AK 99775, USA; E-Mails: [email protected] (D.A.W.); [email protected] (M.K.R.) 3 International Arctic Research Center, Department of Atmospheric Sciences, College of Natural Science and Mathematics, 930 Koyukuk Dr., Fairbanks, AK 99775, USA; E-Mail: [email protected] 4 Department of Environmental Sciences, University of Virginia, 291 McCormick Rd., Charlottesville, VA 22904, USA; E-Mail: [email protected] 5 Cryospheric Sciences Branch, NASA Goddard Space Flight Center, Code 614.1, Greenbelt, MD 20771, USA; E-Mail: [email protected] 6 Biospheric Science Branch, NASA Goddard Space Flight Center, Code 614.1, Greenbelt, MD 20771, USA; E-Mails: [email protected] (J.E.P.); [email protected] (C.J.T.) * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +1-907-474-2662; Fax: +1-907-474-2473. -
Origin, Burial and Preservation of Late Pleistocene-Age Glacier Ice in Arctic
Origin, burial and preservation of late Pleistocene-age glacier ice in Arctic permafrost (Bylot Island, NU, Canada) Stephanie Coulombe1 2 3, Daniel Fortier 2 3 5, Denis Lacelle4, Mikhail Kanevskiy5, Yuri Shur5 6 1Polar Knowledge Canada, Cambridge Bay, X0B 0C0, Canada 5 2Department of Geography, Université de Montréal, Montréal, H2V 2B8, Canada 3Centre for Northern Studies, Université Laval, Quebec City, G1V 0A6, Canada 4Department of Geography, Environment and Geomatics, University of Ottawa, Ottawa, K1N 6N5, Canada 5Institute of Northern Engineering, University of Alaska Fairbanks, Fairbanks, 99775-5910, USA 6Department of Civil and Environmental Engineering, University of Alaska Fairbanks, Fairbanks, 99775-5960, USA 10 Correspondence to: Stephanie Coulombe ([email protected]) Over the past decades, observations of buried glacier ice exposed in coastal bluffs and headwalls of retrogressive thaw slumps of the Arctic indicate that considerable amounts of late Pleistocene glacier ice survived the deglaciation and are still preserved in permafrost. In exposures, relict glacier ice and intrasedimental ice often coexist and look alike but their genesis is strikingly different. This paper aims to present a detailed description and infer the origin of a massive ice body preserved in the permafrost 15 of Bylot Island (Nunavut). The massive ice exposure and core samples were described according to the cryostratigraphic approach, combining the analysis of permafrost cryofacies and cryostructures, ice crystallography, stable O-H isotopes and cation contents. The ice was clear to whitish in appearance with large crystals (cm) and small gas inclusions (mm) at crystal intersections, similar to observations of englacial ice facies commonly found on contemporary glaciers and ice sheets. -
Across Borders, for the Future: Torngat Mountains Caribou Herd Inuit
ACROSS BORDERS, FOR THE FUTURE: Torngat Mountains Caribou Herd Inuit Knowledge, Culture, and Values Study Prepared for the Nunatsiavut Government and Makivik Corporation, Parks Canada, and the Torngat Wildlife and Plants Co-Management Board - June 2014 This report may be cited as: Wilson KS, MW Basterfeld, C Furgal, T Sheldon, E Allen, the Communities of Nain and Kangiqsualujjuaq, and the Co-operative Management Board for the Torngat Mountains National Park. (2014). Torngat Mountains Caribou Herd Inuit Knowledge, Culture, and Values Study. Final Report to the Nunatsiavut Government, Makivik Corporation, Parks Canada, and the Torngat Wildlife and Plants Co-Management Board. Nain, NL. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise (except brief passages for purposes of review) without the prior permission of the authors. Inuit Knowledge is intellectual property. All Inuit Knowledge is protected by international intellectual property rights of Indigenous peoples. As such, participants of the Torngat Mountains Caribou Herd Inuit Knowledge, Culture, and Values Study reserve the right to use and make public parts of their Inuit Knowledge as they deem appropriate. Use of Inuit Knowledge by any party other than hunters and Elders of Nunavik and Nunatsiavut does not infer comprehensive understanding of the knowledge, nor does it infer implicit support for activities or projects in which this knowledge is used in print, visual, electronic, or other media. Cover photo provided by and used with permission from Rodd Laing. All other photos provided by the lead author. -
Caribou (Barren-Ground Population) Rangifer Tarandus
COSEWIC Assessment and Status Report on the Caribou Rangifer tarandus Barren-ground population in Canada THREATENED 2016 COSEWIC status reports are working documents used in assigning the status of wildlife species suspected of being at risk. This report may be cited as follows: COSEWIC. 2016. COSEWIC assessment and status report on the Caribou Rangifer tarandus, Barren-ground population, in Canada. Committee on the Status of Endangered Wildlife in Canada. Ottawa. xiii + 123 pp. (http://www.registrelep-sararegistry.gc.ca/default.asp?lang=en&n=24F7211B-1). Production note: COSEWIC would like to acknowledge Anne Gunn, Kim Poole, and Don Russell for writing the status report on Caribou (Rangifer tarandus), Barren-ground population, in Canada, prepared under contract with Environment Canada. This report was overseen and edited by Justina Ray, Co-chair of the COSEWIC Terrestrial Mammals Specialist Subcommittee, with the support of the members of the Terrestrial Mammals Specialist Subcommittee. For additional copies contact: COSEWIC Secretariat c/o Canadian Wildlife Service Environment and Climate Change Canada Ottawa, ON K1A 0H3 Tel.: 819-938-4125 Fax: 819-938-3984 E-mail: [email protected] http://www.cosewic.gc.ca Également disponible en français sous le titre Ếvaluation et Rapport de situation du COSEPAC sur le Caribou (Rangifer tarandus), population de la toundra, au Canada. Cover illustration/photo: Caribou — Photo by A. Gunn. Her Majesty the Queen in Right of Canada, 2016. Catalogue No. CW69-14/746-2017E-PDF ISBN 978-0-660-07782-6 COSEWIC Assessment Summary Assessment Summary – November 2016 Common name Caribou - Barren-ground population Scientific name Rangifer tarandus Status Threatened Reason for designation Members of this population give birth on the open arctic tundra, and most subpopulations (herds) winter in vast subarctic forests. -
Cold Season Emissions Dominate the Arctic Tundra Methane Budget
Cold season emissions dominate the Arctic tundra methane budget Donatella Zonaa,b,1,2, Beniamino Giolic,2, Róisín Commaned, Jakob Lindaasd, Steven C. Wofsyd, Charles E. Millere, Steven J. Dinardoe, Sigrid Dengelf, Colm Sweeneyg,h, Anna Kariong, Rachel Y.-W. Changd,i, John M. Hendersonj, Patrick C. Murphya, Jordan P. Goodricha, Virginie Moreauxa, Anna Liljedahlk,l, Jennifer D. Wattsm, John S. Kimballm, David A. Lipsona, and Walter C. Oechela,n aDepartment of Biology, San Diego State University, San Diego, CA 92182; bDepartment of Animal and Plant Sciences, University of Sheffield, Sheffield S10 2TN, United Kingdom; cInstitute of Biometeorology, National Research Council, Firenze, 50145, Italy; dSchool of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138; eJet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109-8099; fDepartment of Physics, University of Helsinki, FI-00014 Helsinki, Finland; gCooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, CO 80304; hEarth System Research Laboratory, National Oceanic and Atmospheric Administration, Boulder, CO 80305; iDepartment of Physics and Atmospheric Science, Dalhousie University, Halifax, Nova Scotia, Canada B3H 4R2; jAtmospheric and Environmental Research, Inc., Lexington, MA 02421; kWater and Environmental Research Center, University of Alaska Fairbanks, Fairbanks, AK 99775-7340; lInternational Arctic Research Center, University of Alaska Fairbanks, Fairbanks, AK 99775-7340; mNumerical Terradynamic Simulation -
AAR Chapter 2
Go back to opening screen 9 Chapter 2 Physical/Geographical Characteristics of the Arctic –––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– Contents 2.2.1. Climate boundaries 2.1. Introduction . 9 On the basis of temperature, the Arctic is defined as the area 2.2. Definitions of the Arctic region . 9 2.2.1. Climate boundaries . 9 north of the 10°C July isotherm, i.e., north of the region 2.2.2. Vegetation boundaries . 9 which has a mean July temperature of 10°C (Figure 2·1) 2.2.3. Marine boundary . 10 (Linell and Tedrow 1981, Stonehouse 1989, Woo and Gre- 2.2.4. Geographical coverage of the AMAP assessment . 10 gor 1992). This isotherm encloses the Arctic Ocean, Green- 2.3. Climate and meteorology . 10 2.3.1. Climate . 10 land, Svalbard, most of Iceland and the northern coasts and 2.3.2. Atmospheric circulation . 11 islands of Russia, Canada and Alaska (Stonehouse 1989, 2.3.3. Meteorological conditions . 11 European Climate Support Network and National Meteoro- 2.3.3.1. Air temperature . 11 2.3.3.2. Ocean temperature . 12 logical Services 1995). In the Atlantic Ocean west of Nor- 2.3.3.3. Precipitation . 12 way, the heat transport of the North Atlantic Current (Gulf 2.3.3.4. Cloud cover . 13 Stream extension) deflects this isotherm northward so that 2.3.3.5. Fog . 13 2.3.3.6. Wind . 13 only the northernmost parts of Scandinavia are included. 2.4. Physical/geographical description of the terrestrial Arctic 13 Cold water and air from the Arctic Ocean Basin in turn 2.4.1. -
Arctic Report Card 2018 Effects of Persistent Arctic Warming Continue to Mount
Arctic Report Card 2018 Effects of persistent Arctic warming continue to mount 2018 Headlines 2018 Headlines Video Executive Summary Effects of persistent Arctic warming continue Contacts to mount Vital Signs Surface Air Temperature Continued warming of the Arctic atmosphere Terrestrial Snow Cover and ocean are driving broad change in the Greenland Ice Sheet environmental system in predicted and, also, Sea Ice unexpected ways. New emerging threats Sea Surface Temperature are taking form and highlighting the level of Arctic Ocean Primary uncertainty in the breadth of environmental Productivity change that is to come. Tundra Greenness Other Indicators River Discharge Highlights Lake Ice • Surface air temperatures in the Arctic continued to warm at twice the rate relative to the rest of the globe. Arc- Migratory Tundra Caribou tic air temperatures for the past five years (2014-18) have exceeded all previous records since 1900. and Wild Reindeer • In the terrestrial system, atmospheric warming continued to drive broad, long-term trends in declining Frostbites terrestrial snow cover, melting of theGreenland Ice Sheet and lake ice, increasing summertime Arcticriver discharge, and the expansion and greening of Arctic tundravegetation . Clarity and Clouds • Despite increase of vegetation available for grazing, herd populations of caribou and wild reindeer across the Harmful Algal Blooms in the Arctic tundra have declined by nearly 50% over the last two decades. Arctic • In 2018 Arcticsea ice remained younger, thinner, and covered less area than in the past. The 12 lowest extents in Microplastics in the Marine the satellite record have occurred in the last 12 years. Realms of the Arctic • Pan-Arctic observations suggest a long-term decline in coastal landfast sea ice since measurements began in the Landfast Sea Ice in a 1970s, affecting this important platform for hunting, traveling, and coastal protection for local communities. -
The Ice Age in the North American Arctic
THEICE AGE IN THENORTH AMERICAN ARCTIC Richard Foster Flint” Significance of glacialand interglacial ages RCTIC North America’, incommon with the rest of theworld, is now emerging from the latest of the series of glacial ages which, as a group, haveA characterized the last million years or more of geological time. During the glacial ages, each of which was a hundred thousand years or more in length, the mean temperatures at the earth’s surface were markedly lower than today. In consequence theproportion of snowfall to rainfall increased, melting diminished, and the accumulated snow formed glaciers. These great ice masses spread outward, slowly flowing under their own weight, until they covered one quarter to nearly one third of the land area of the world, principally of course in high and middle latitudes. In North America and Greenland alone, the area covered by ice amounted to seven million square miles. Between the cold glacial ages, warmer times intervened. The record of the soils formedin temperate latitudes during the warmer, interglacial ages shows that those ages were longer than the glacial ages-one of them probably lasted 300,000 years. The record of the fossil animals and plants entombed in the deposits of interglacial times establishes that one or more of those times was warmer than today; from this the inference follows that the interglacial ages probably witnessed a more extensive disappearance of ice fromthe arcticregions than is nowthe case. Infact for the world as a wholethe present is a time transitional from glacial to interglacial. The great ice sheets 1 that formerly blanketed much of North America and Eurasia have disappeared, but more than ten per cent of the world’s land area still remains covered by glacier ice. -
Literaturverzeichnis
Literaturverzeichnis Abaimov, A.P., 2010: Geographical Distribution and Ackerly, D.D., 2009: Evolution, origin and age of Genetics of Siberian Larch Species. In Osawa, A., line ages in the Californian and Mediterranean flo- Zyryanova, O.A., Matsuura, Y., Kajimoto, T. & ras. Journal of Biogeography 36, 1221–1233. Wein, R.W. (eds.), Permafrost Ecosystems. Sibe- Acocks, J.P.H., 1988: Veld Types of South Africa. 3rd rian Larch Forests. Ecological Studies 209, 41–58. Edition. Botanical Research Institute, Pretoria, Abbadie, L., Gignoux, J., Le Roux, X. & Lepage, M. 146 pp. (eds.), 2006: Lamto. Structure, Functioning, and Adam, P., 1990: Saltmarsh Ecology. Cambridge Uni- Dynamics of a Savanna Ecosystem. Ecological Stu- versity Press. Cambridge, 461 pp. dies 179, 415 pp. Adam, P., 1994: Australian Rainforests. Oxford Bio- Abbott, R.J. & Brochmann, C., 2003: History and geography Series No. 6 (Oxford University Press), evolution of the arctic flora: in the footsteps of Eric 308 pp. Hultén. Molecular Ecology 12, 299–313. Adam, P., 1994: Saltmarsh and mangrove. In Groves, Abbott, R.J. & Comes, H.P., 2004: Evolution in the R.H. (ed.), Australian Vegetation. 2nd Edition. Arctic: a phylogeographic analysis of the circu- Cambridge University Press, Melbourne, pp. marctic plant Saxifraga oppositifolia (Purple Saxi- 395–435. frage). New Phytologist 161, 211–224. Adame, M.F., Neil, D., Wright, S.F. & Lovelock, C.E., Abbott, R.J., Chapman, H.M., Crawford, R.M.M. & 2010: Sedimentation within and among mangrove Forbes, D.G., 1995: Molecular diversity and deri- forests along a gradient of geomorphological set- vations of populations of Silene acaulis and Saxi- tings. -
High Arctic Vegetation Change Mediated by Hydrological Conditions
Ecosystems https://doi.org/10.1007/s10021-020-00506-7 Ó 2020 Springer Science+Business Media, LLC, part of Springer Nature High Arctic Vegetation Change Mediated by Hydrological Conditions T. Kiyo F. Campbell,1* Trevor C. Lantz,1 Robert H. Fraser,2 and Danica Hogan3 1School of Environmental Studies, University of Victoria, PO Box 1700 STN CSC, Victoria, British Columbia V8W 2Y2, Canada; 2Centre for Mapping and Earth Observation Canada, Natural Resources Canada, 560 Rochester Street, Ottawa, Ontario K1S 5K2, Canada; 3Environment and Climate Change Canada, Canadian Wildlife Service, Nova Plaza. 5019 – 52nd Street, PO Box 2310, Yellowknife, Northern Territory X1A 2P7, Canada ABSTRACT Increasing air temperatures are driving widespread ing productivity levels can be attributed to changes to Arctic vegetation. In the high Arctic, increasing biomass of the plant communities in these changes are patchy and the causes of both upland and lowland habitats. Our analysis heterogeneity are not well understood. In this also shows that the magnitude of greening is study, we explore the determinants of high Arctic mediated by terrain characteristics related to soil vegetation change over the last three decades on moisture. Shifts in tundra vegetation will impact Banks Island, Northwest Territories. We used wildlife habitat quality, surface energy balance, Landsat imagery (1984–2014) to map long-term permafrost dynamics, and the carbon cycle; addi- trends in vegetation productivity and regional tional research is needed to explore the effects of spatial data to investigate the relationships between more productive vegetation communities on these trends in productivity and terrain position. Field processes in the high Arctic. sampling investigated vegetation community com- position in different habitat types. -
Spring 2016 ᐅᐱᕐᖔᖅ Nunavut Arctic College Media Spring 2016 ᓄᓇᕗᑦ ᓯᓚᑦᑐᖅᓴᕐᕕᖕᒥ ᑐᓴᖃᑦᑕᐅᑎᓕᕆᔩᑦ Spring 2016
Spring 2016 ᐅᐱᕐᖔᖅ Nunavut Arctic College Media Spring 2016 ᓄᓇᕗᑦ ᓯᓚᑦᑐᖅᓴᕐᕕᖕᒥ ᑐᓴᖃᑦᑕᐅᑎᓕᕆᔩᑦ Spring 2016 LOOK UP! • AARLURIT ! • ᐋᕐᓗᕆᑦ! FRONTLIST Nunavut Arctic College has been publishing for almost three decades. Our press predates the political creation of Nunavut, but not the historical reality of a distinct Inuit land. We have been around for some time, yet we are new on the landscape of Canadian publishing. Most people across Canada (and the world) are not familiar with our books. There is a good reason for this. Our books were purposefully published to serve students, Willem Rasing teachers, and community members in the Eastern Arctic. These works were not intended for wide distribution, enviable sales, or awards; they exist as urgent, at times rough-hewn manifestations of intimate and collaborative efforts to archive the ISBN: 978-1-897568-40-8 knowledge and history of unique generations. The narrators in our pages are often $27.95 Inuit who weathered the bewildering movement from the land to static settlements in May 2016 the mid-20th century, and those who entered residential schools. 6” x 9” | 312 pages Notwithstanding our territorial obligation to date, our work has benefitted from the Trade paperback engagement and initiative of outsiders. Alongside Inuit Elders, leaders, educators, English students, and translators, a perusal of our books reveals the thoughtful participation of southern and international writers, editors, and scholars. These encounters blur the binaries of Inuit and Qallunaaq (southerner) ways of knowing, doing, and telling. They Cultural studies; Native studies; History arouse the tension, possibility, and limitation in the fusion of Western written custom and Inuit oral tradition.