AAR Chapter 2
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Economic-Geographic Essay with Special Reference to Eastern Seas Discovery, Perception, and Use
Dr. Alexei Nallmov Moscow Slate University Russia Russia and the Seas: Economic-Geographic Essay with Special Reference to Eastern Seas Discovery, Perception, and Use As far as I am informed, the ongm of geographical names of different seas washing Russian shores already has been surveyed during one of the previous seminars. To my opinion, the toponimic (or pelagonomic) survey of this kind can be completed and amplified with the review of political reasons and economic-geographic circumstances of Russian expansion to Ihe seas during different periods of its history. Also the contemporary evaluation of economic potential of Russian sea-shore regions likewise the country strategy respect nearby seas and the World Ocean in general must be taken in mind for purposes of the present seminar devoted to Ihe East Sea! Sea of Japan. As Russian history shows, geographical discoveries and, in certain degree, origins of geographical names are strongly tied with development of the "inner" geography of Ihe country itself. Re-orientation of Russia in the surrounding space and evolution of geopolitical ideas were often determined by changes in regional proportions inside its territory. Since its ancient history Russia grew as a continental country. Maritime fringes of Russian plain (East-European plain) seemed hostile to each of consequently replaced national cores: Kievan Rus, Vladimir Suzdal' Kniazestvo (kingdom) and the Muscovy.' The drift of the core of I The only exception was Novgorod feudal republik in the North-West, independent from other Russian territories until QVI century, which grew as a hinterland of a trading river port, adjacent to the Baltic sea. -
Winter Atmospheric Conditions
Th or collective redistirbution of any portion article of any by of this or collective redistirbution SPECIAL ISSUE ON THE JAPAN/EAST SEA articleis has been in published Oceanography Winter 19, Number journal of Th 3, a quarterly , Volume Atmospheric Conditions only permitted is means reposting, or other machine, photocopy over the Japan/East Sea Th e Structure and Impact of 2006 by Th e Oceanography Society. Copyright Severe Cold-Air Outbreaks with the approval of Th approval the with BY CLIVE E. DORMAN, CARL A. FRIEHE, DJAMAL KHELIF, ALBERTO SCOTTI, JAMES EDSON, ROBERT C. BEARDSLEY, gran e Oceanography is Society. All rights reserved. Permission or Th e Oceanography [email protected] Society. Send to: all correspondence RICHARD LIMEBURNER, AND SHUYI S. CHEN The Japan/East Sea is a marginal sea strategically placed phy of the Japan/East Sea and its surface forcing. During between the world’s largest land mass and the world’s this program, we made atmospheric observations with largest ocean. The Eurasian land mass extending to a research aircraft and ships to understand the lower high latitudes generates several unique winter synoptic atmosphere and surface air-sea fl uxes. We report here weather features, the most notable being the vast Siberian several highlights of these investigations with a focus on Anticyclone that covers much of the northeast Asian land the dramatic severe cold-air outbreaks that occur three ted to copy this article for use in teaching and research. Repu article for use and research. this copy in teaching to ted mass. The Japan/East Sea’s very distinctive winter condi- to fi ve times a winter month. -
Recent Declines in Warming and Vegetation Greening Trends Over Pan-Arctic Tundra
Remote Sens. 2013, 5, 4229-4254; doi:10.3390/rs5094229 OPEN ACCESS Remote Sensing ISSN 2072-4292 www.mdpi.com/journal/remotesensing Article Recent Declines in Warming and Vegetation Greening Trends over Pan-Arctic Tundra Uma S. Bhatt 1,*, Donald A. Walker 2, Martha K. Raynolds 2, Peter A. Bieniek 1,3, Howard E. Epstein 4, Josefino C. Comiso 5, Jorge E. Pinzon 6, Compton J. Tucker 6 and Igor V. Polyakov 3 1 Geophysical Institute, Department of Atmospheric Sciences, College of Natural Science and Mathematics, University of Alaska Fairbanks, 903 Koyukuk Dr., Fairbanks, AK 99775, USA; E-Mail: [email protected] 2 Institute of Arctic Biology, Department of Biology and Wildlife, College of Natural Science and Mathematics, University of Alaska, Fairbanks, P.O. Box 757000, Fairbanks, AK 99775, USA; E-Mails: [email protected] (D.A.W.); [email protected] (M.K.R.) 3 International Arctic Research Center, Department of Atmospheric Sciences, College of Natural Science and Mathematics, 930 Koyukuk Dr., Fairbanks, AK 99775, USA; E-Mail: [email protected] 4 Department of Environmental Sciences, University of Virginia, 291 McCormick Rd., Charlottesville, VA 22904, USA; E-Mail: [email protected] 5 Cryospheric Sciences Branch, NASA Goddard Space Flight Center, Code 614.1, Greenbelt, MD 20771, USA; E-Mail: [email protected] 6 Biospheric Science Branch, NASA Goddard Space Flight Center, Code 614.1, Greenbelt, MD 20771, USA; E-Mails: [email protected] (J.E.P.); [email protected] (C.J.T.) * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +1-907-474-2662; Fax: +1-907-474-2473. -
East and Central Farming and Forest Region and Atlantic Basin Diversified Farming Region: 12 Lrrs N and S
East and Central Farming and Forest Region and Atlantic Basin Diversified Farming Region: 12 LRRs N and S Brad D. Lee and John M. Kabrick 12.1 Introduction snowfall occurs annually in the Ozark Highlands, the Springfield Plateau, and the St. Francois Knobs and Basins The central, unglaciated US east of the Great Plains to the MLRAs. In the southern half of the region, snowfall is Atlantic coast corresponds to the area covered by LRR N uncommon. (East and Central Farming and Forest Region) and S (Atlantic Basin Diversified Farming Region). These regions roughly correspond to the Interior Highlands, Interior Plains, 12.2.2 Physiography Appalachian Highlands, and the Northern Coastal Plains. The topography of this region ranges from broad, gently rolling plains to steep mountains. In the northern portion of 12.2 The Interior Highlands this region, much of the Springfield Plateau and the Ozark Highlands is a dissected plateau that includes gently rolling The Interior Highlands occur within the western portion of plains to steeply sloping hills with narrow valleys. Karst LRR N and includes seven MLRAs including the Ozark topography is common and the region has numerous sink- Highlands (116A), the Springfield Plateau (116B), the St. holes, caves, dry stream valleys, and springs. The region also Francois Knobs and Basins (116C), the Boston Mountains includes many scenic spring-fed rivers and streams con- (117), Arkansas Valley and Ridges (118A and 118B), and taining clear, cold water (Fig. 12.2). The elevation ranges the Ouachita Mountains (119). This region comprises from 90 m in the southeastern side of the region and rises to 176,000 km2 in southern Missouri, northern and western over 520 m on the Springfield Plateau in the western portion Arkansas, and eastern Oklahoma (Fig. -
Physical Geography of the United States and Canada: a Land of Contrasts S
Chapter 5 Guided Notes _________________________________________________________________________________________ NAME Physical Geography of the United States and Canada: A Land of Contrasts s North America’s vast and varied landscape and abundant resources have attracted immigrants and shaped the development of the United States and Canada. Section 1: Landforms and Resources The United States and Canada have vast lands and abundant resources. These two countries share many of the same landforms. Landscape Influenced Development U.S., Canada: former British colonies, most people speak English Strong economic and political ties with one another Vast Lands Canada second largest country in the world by area; U.S. third Together they cover one-eighth of the earth’s land surface Abundant Resources Landmass and natural resources attract immigrants to both countries U.S. and Canada have developed into global economic powers Many and Varied Landforms All major landforms are found in U.S. and Canada; The two countries share mountain chains and interior plains The Appalachian Highlands Appalachian Mountains run 1,600 miles from Newfoundland to Alabama; More than 400 million years old o include Green and Catskill mountains in the north; Blue Ridge and Great Smoky mountains in the south Erosion has created gentle slopes, peaks from 1,200–2,400 feet The Appalachian Trail is a scenic hiking path along the chain The Interior Lowlands Great Plains extend from Missouri River to Rocky Mountains; Interior Plains extend from Appalachians -
Shadwick, E. H., Et Al. Seasonal Variability of the Inorganic Carbon
Limnol. Oceanogr., 56(1), 2011, 303–322 E 2011, by the American Society of Limnology and Oceanography, Inc. doi:10.4319/lo.2011.56.1.0303 Seasonal variability of the inorganic carbon system in the Amundsen Gulf region of the southeastern Beaufort Sea E. H. Shadwick,a,* H. Thomas,a M. Chierici,b B. Else,c A. Fransson,d C. Michel,e L. A. Miller,f A. Mucci,g A. Niemi,e T. N. Papakyriakou,c and J.-E´ . Tremblayh a Department of Oceanography, Dalhousie University, Halifax, Nova Scotia, Canada bDepartment of Chemistry, University of Gothenburg, Go¨teborg, Sweden c Center for Earth Observation Science, University of Manitoba, Winnipeg, Manitoba, Canada dDepartment of Earth Sciences, University of Gothenburg, Go¨teborg, Sweden e Freshwater Institute, Fisheries and Oceans Canada, Winnipeg, Manitoba, Canada f Institute of Ocean Sciences, Fisheries and Oceans Canada, Sidney, British Columbia, Canada g Department of Earth and Planetary Sciences, McGill University, Montreal, Que´bec, Canada hDepartment de Biologie, Universite´ Laval, Que´bec, Que´bec, Canada Abstract During a year-round occupation of Amundsen Gulf in the Canadian Arctic Archipelago dissolved inorganic and organic carbon (DIC, DOC), total alkalinity (TA), partial pressure of CO2 (pCO2) and related parameters were measured over a full annual cycle. A two-box model was used to identify and assess physical, biological, and chemical processes responsible for the seasonal variability of DIC, DOC, TA, and pCO2. Surface waters were undersaturated with respect to atmospheric CO2 throughout the year and constituted a net sink of 22 21 1.2 mol C m yr , with ice coverage and ice formation limiting the CO2 uptake during winter. -
Sediment Transport to the Laptev Sea-Hydrology and Geochemistry of the Lena River
Sediment transport to the Laptev Sea-hydrology and geochemistry of the Lena River V. RACHOLD, A. ALABYAN, H.-W. HUBBERTEN, V. N. KOROTAEV and A. A, ZAITSEV Rachold, V., Alabyan, A., Hubberten, H.-W., Korotaev, V. N. & Zaitsev, A. A. 1996: Sediment transport to the Laptev Sea-hydrology and geochemistry of the Lena River. Polar Research 15(2), 183-196. This study focuses on the fluvial sediment input to the Laptev Sea and concentrates on the hydrology of the Lena basin and the geochemistry of the suspended particulate material. The paper presents data on annual water discharge, sediment transport and seasonal variations of sediment transport. The data are based on daily measurements of hydrometeorological stations and additional analyses of the SPM concentrations carried out during expeditions from 1975 to 1981. Samples of the SPM collected during an expedition in 1994 were analysed for major, trace, and rare earth elements by ICP-OES and ICP-MS. Approximately 700 h3freshwater and 27 x lo6 tons of sediment per year are supplied to the Laptev Sea by Siberian rivers, mainly by the Lena River. Due to the climatic situation of the drainage area, almost the entire material is transported between June and September. However, only a minor part of the sediments transported by the Lena River enters the Laptev Sea shelf through the main channels of the delta, while the rest is dispersed within the network of the Lena Delta. Because the Lena River drains a large basin of 2.5 x lo6 km2,the chemical composition of the SPM shows a very uniform composition. -
Landforms and Resources
Name _____________________________ Class _________________ Date __________________ Physical Geography of the United States and Canada Section 1 Landforms and Resources Terms and Names Appalachian Mountains major mountain chain in the eastern United States and Canada Great Plains largely treeless area in the interior lowlands Canadian Shield rocky, flat area that surrounds Hudson Bay Rocky Mountains mountain chain in the western United States and Canada Continental Divide line of the highest points in the Rockies that marks the separation between rivers flowing to the east and to the west Great Lakes five large lakes found in the central United States and Canada Mackenzie River Canada’s longest river Before You Read In the last chapter, you read about human geography–the way humans in general relate to their environment. In this section, you will learn about the physical features and resources of the United States and Canada. As You Read Use a graphic organizer to take notes about the landforms and resources of the United States and Canada. LANDSCAPE INFLUENCED The United States and Canada are rich DEVELOPMENT (Page 117) in natural resources. They have much How vast are these countries? fertile soil and water and many forests and The United States and Canada occupy the minerals. This geographic richness has central and northern four-fifths of the attracted immigrants from around the continent of North America. Culturally, the world for centuries. region is known as Anglo America. This is 1. What binds Canada and the United because both countries were colonies of States together? Great Britain at one time and because most of _______________________________ the people speak English. -
Soils As Indicators of Climatic Changes
Yury G. Chendev1*, Аleksandr N. Petin1, Anthony R. Lupo2 1 Russia, National Research Belgorod State University; 308015, Belgorod, Pobeda St. 85; * Corresponding author e-mail: [email protected] 2 USA; University of Missouri; 302 Anheuser-Busch Natural Resources Building, Columbia, MO 65211-7250; e-mail: [email protected] SOILS AS INDICATORS OF CLIMATIC CHANGES GEOGRAPHY 4 ABSTRACT. A number of examples for the system, which sensitively reacts to changes reaction of chernozems in the center of in natural conditions and, in the first place, the East European Plain and their relation to climate change. Therefore, in scientific to different periodical climatic changes literature in connection with soils, arose are examined. According to unequal-age such concepts as “soil-moment” and “soil- chernozems properties, the transition from memory”, “urgent” and “relict” characteristics the Middle Holocene arid conditions to the of soils, and “sensitivity” and “reflectivity” Late Holocene wet conditions occurred of soil properties [Aleksandrovskii, 1983; at 4000 yr BP. Using data on changes of Gennadiev, 1990; Sokolov and Targul’yan, soil properties, the position of boundary 1976; Sokolov, et al., 1986; and others]. between steppe and forest-steppe and the annual amount of precipitation at In contemporary world geography, there approximately 4000 yr BP were reconstructed. still remains a paucity of information on The change from warm-dry to cool-moist the many-sided interrelations of soils climatic phases, which occurred at the end with the other components of the natural of the XX century as a reflection of intra- environment. This is extremely important age-long climatic cyclic recurrence, led to aspect in light of current global ecological the strengthening of dehumification over problems, studies, and policy decisions, the profile of automorphic chernozems and one of which is the problem of climate to the reduction of its content in the upper change. -
Teacher's Book 3
Reinforcement, Extension and Assessment 1 CONTENT AND RESOURCES PHYSICAL GEOGRAPHY CONTENTS FIND OUT ABOUT • The formation of relief • Continental and oceanic relief • The relief and water of the continents • The climates and landscapes of the Earth • Spain: relief, water, climates and landscapes KNOW HOW TO • Understand relief formation: internal and external processes • Distinguish continental and oceanic relief • Identify the main relief features, rivers and lakes of the Earth and Spain • Identify the five main climate zones in the Earth • Identify the main climates and landscapes of each climate zone and Spain • Compare climates and landscapes • Interpret maps of relief, rivers and lakes, and climates of the Earth and Spain • Distinguish continental and marine water • Interpret charts, pie charts, diagrams and climographs • Analyse photos of landscapes • Organise and classify information in tables • Use maps to link geographical features to each other • Analyse the effects of marine currents • Analyse the effects of cyclones BE ABLE TO • Use an atlas • Find the main physical features, rivers and lakes of each continent in a map • Find the main physical features, watersheds and rivers of Spain in a map • Locate the different climates of the continents in a map • Locate the different climates of Spain in a map • Understand the importance of water in human life • Recognise the importance of properly managing fresh water resources • Reflect on the influence of climate on the distribution of world population RESOURCES Reinforcement and extension Digital resources • Relief: formation and features • Libromedia. Physical geography • Water and climates of the Earth • Relief, water and climates of Spain Audio • The seven summits • Track 1: pp. -
Late Quaternary Environment of Central Yakutia (NE' Siberia
Late Quaternary environment of Central Yakutia (NE’ Siberia): Signals in frozen ground and terrestrial sediments Spätquartäre Umweltentwicklung in Zentral-Jakutien (NO-Sibirien): Hinweise aus Permafrost und terrestrischen Sedimentarchiven Steffen Popp Steffen Popp Alfred-Wegener-Institut für Polar- und Meeresforschung Forschungsstelle Potsdam Telegrafenberg A43 D-14473 Potsdam Diese Arbeit ist die leicht veränderte Fassung einer Dissertation, die im März 2006 dem Fachbereich Geowissenschaften der Universität Potsdam vorgelegt wurde. 1. Introduction Contents Contents..............................................................................................................................i Abstract............................................................................................................................ iii Zusammenfassung ............................................................................................................iv List of Figures...................................................................................................................vi List of Tables.................................................................................................................. vii Acknowledgements ........................................................................................................ vii 1. Introduction ...............................................................................................................1 2. Regional Setting and Climate...................................................................................4 -
Midnight Sun and Northern Lights Name
volume 3 Midnight Sun and issue 5 Northern Lights It’s black, which absorbs the sun’s warmth. In fact, polar midnight, bears feel hot if the temperature rises above freezing. but the sun The polar nights are long and dark, but sometimes is shining there’s a light show in the sky. The northern lights, which brightly. Where are called the aurora, are often green or pink. They seem are you? You’re to wave and dance in the sky. Auroras are caused by gas in the Arctic, particles that were thrown off by the sun. These particles near the North collide in Earth’s atmosphere and make a beautiful show. Pole. During Few people live in the Arctic because it’s so cold, but the arctic Canada, Greenland, Norway, Iceland, and Russia are summer, the good places to see the midnight sun and the aurora. In ©2010 by Asbjørn Floden in Flickr. Some rights reserved http://creativecommons.org/licenses/by-nc/2.0/deed.en sun doesn’t fact, Norway is often called the Land of the Midnight set for months. Instead, it goes around the horizon. You Sun. could read outside at midnight. As you travel south The temperature stays warm, too, although not as from the North Pole, warm as where you live. The average temperature in there is less midnight sun the summer near the North Pole is about 32 degrees, and fewer northern lights. or freezing. That may sound cold to you, but it’s warm It gets warmer, too. Soon, in the Arctic.