WEDA-2 Abschlussbericht
Total Page:16
File Type:pdf, Size:1020Kb
Gesellschaft für Anlagen- und Reaktorsicherheit (GRS) mbH Werkzeuge und Daten für die geochemische Modellierung Kurztitel: WEDA 2 Tina Scharge Andrés G. Muñoz Helge C. Moog November 2012 Auftrags-Nr.: 02 C 1628 Revision 0 Anmerkung: Dieser Bericht ist von der GRS im Auftrag der/des BMBF im Rahmen des Vorhabens 02 C 1628 erstellt worden. Der Auftraggeber behält sich alle Rechte vor. Insbesondere darf dieser Bericht nur mit seiner Zustimmung zitiert, ganz oder teil- weise vervielfältigt bzw. Dritten zu- gänglich gemacht werden. Der Bericht gibt die Auffassung und Meinung des Auftragnehmers wie- der und muss nicht mit der Meinung des Auftraggebers übereinstimmen. GRS – A – 3689 Keywords Thermodynamic Modeling, Thermodynamic Data, Solubility, Vapor Pressure, Phos- phate, Isopiestic measurement, Pitzer, Electrolyte-Thermodynamics, Solubility Con- stant, Oceanic System, Brine Solution Table of contents 1 Introduction .............................................................................................. 1 2 Databank .................................................................................................. 3 2.1 Corrections and adaptions ......................................................................... 3 2.2 Upgrade of THEREDA for the storage of data related to surface complexation modelling ............................................................................. 3 2.2.1 New types of phase constituents ............................................................... 4 2.2.2 Elemental Composition of SurfaceSites ..................................................... 5 2.2.3 Surface Complexation Reactions ............................................................... 6 2.2.4 New attributes in existing relations ............................................................. 6 2.2.5 New relations ............................................................................................. 7 3 Internal Calculations ............................................................................. 19 4 Interfaces................................................................................................ 25 4.1 Editing of data with Excel ® ...................................................................... 25 4.1.1 Lists ......................................................................................................... 26 4.1.2 Element ................................................................................................... 27 4.1.3 Phase ...................................................................................................... 27 4.1.4 PCon ....................................................................................................... 27 4.1.5 PConComposition .................................................................................... 27 4.1.6 Reaction .................................................................................................. 28 4.1.7 Data_Standard_Pitzer, Data_Standard_SIT, Data_Standard_EDH ......... 28 4.1.8 Data_Variable_Pitzer ............................................................................... 28 4.1.9 Interaction ................................................................................................ 29 4.1.10 Interaction_Standard ............................................................................... 29 4.1.11 Interaction_Variable ................................................................................. 30 4.1.12 Reference ................................................................................................ 30 4.1.13 Reference_Author .................................................................................... 30 4.1.14 Other registers ......................................................................................... 30 4.1.15 Significance of editing the data with Excel ............................................... 30 I 4.2 DB-Control: a web-based user-friendly front end for THEREDA .............. 31 4.3 Web interface .......................................................................................... 34 4.4 Creation of parameter files ....................................................................... 35 5 Data Capture .......................................................................................... 37 6 Quality Management .............................................................................. 39 7 Documentation....................................................................................... 41 8 Thermodynamic Datenbase for Phosphate ......................................... 43 8.1 Methods ................................................................................................... 43 8.1.1 Experimental ............................................................................................ 43 8.1.2 Numerical Methods .................................................................................. 49 8.2 Results and Discussion............................................................................ 55 8.2.1 Thermodynamic data base for phosphates – binary systems ................... 55 8.2.2 Thermodynamic data base for phosphate solutions – ternary and quaternary systems ................................................................................. 89 9 Conclusions ......................................................................................... 153 10 Zusammenfassung .............................................................................. 155 References ........................................................................................... 159 List ofTables ........................................................................................ 175 List of Figures ...................................................................................... 181 II 1 Introduction On the first of July 2006 an ambitious project, jointly funded by the federal ministry of environment and reactor safety (BMU), the federal ministry of economy (BMWi), and the federal ministry of research and technology (BMBF) was launched: the creation from scratch of a thermodynamic reference database for the sake of the final disposal of highly radioactive and chemical-toxic waste in Germany (THEREDA). In this joint project expertises from five different institutions were combined: GRS, Gesellschaft für Anlagen- und Reaktorsicherheit mbH, Abteilung Pro- zessanalyse, Theodor-Heuss-Straße 4, D-38122 Braunschweig, Germany KIT-INE, Karlsruhe Institute of Technology, Institute for Nuclear Waste Disposal, P.O. Box 3640, D-76021 Karlsruhe, Germany HZDR-IRC, Helmholtz-Zentrum Dresden-Rossendorf, Institute of Resource Ecolo- gy, Bautzner Landstraße 400, D-01328 Dresden, Germany TU-BAF, Technische Universität Bergakademie Freiberg, Fakultät für Chemie und Physik, Institut für Anorganische Chemie, Leipziger Straße 29, 09596 Freiberg, Germany AF-Consult, AF-Consult Switzerland AG, Täfernstraße 26, CH-5405 Baden, Switzerland From the early beginnings on, which go back to first talks in the year 2000, it was un- derstood that THEREDA was going to be a long-term project, corresponding to the long-term nature of the task of disposing of nuclear waste. Therefore, the joint project entered a second phase in 2009. Differently from the first phase, funding of the THEREDA members was neatly portioned among the funders. Funding for the specific tasks of GRS within the THEREDA project, phase II was kindly provided by BMBF. As the database was created "from scratch" many initial difficulties had to be dealt with and base work had to done, largely unnoticed by the public: the different members had to agree on a common approach of selecting, developing and categorizing thermody- namic data; a data model and subsequently a databank had to be created as well as an interface for the entry of data and a web infrastructure for internal project manage- ment and for the sake of disseminating thermodynamic data to the interested public. Last not least a huge amount of data was entered. Along the entering of data and the 1 implementation of internal calculations, the THEREDA members went through a phase of learning, painful at times, leading to a gradual adaptation of all involved technical components. Beginning with the second project phase it was felt that the internal structure had at- tained a certain degree of maturity and that time had come to begin to release data to the public. It was agreed that the release of data had to done in small steps, each step covering a specific range of elements, being accompanied by benchmark calculations to enable the user to verify them. To render the work inside the project more efficient it was decided to source out activities related to the coding of peripheral programs to THEREDA. Along with these activities it was planned that more data covering more systems be added to the database. This report gives an account of GRS contributions to the project in the second phase. In some parts the following account remains fragmentary as the work is done in close cooperation with other partners, whose funding is still running, and because these ac- tivites are still underway. However, contributions of GRS to THEREDA can be catego- rized in the following manner: Databank adaptations and corrections as necessity evolve. This type of activity is continuously ongoing. Databank extension: this activity is related to the envisaged capability of THEREDA to hold surface complexation data. It is done in close (and ongoing) cooperation