Neiman Thesis Final Version
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Mercury--Quicksilver
scueu« No. 12 Mineral Technology Series No 6 University of Arizona Bulletin Mercury---Quicksilver By P. E. JOSEPH SECOND ISSUE NOVEMBER, 1916. Entered as second class matter November 2:1, 191~, at the postoftice at Tucson, Arizona. under the Act ot August 24, 1912. Issued weekb". September to Ya)·. PUBLISHED BY THE University of Arizona Bureau of Mines CHARLES F. WILLIS, Director TUCSON, ARIZONA 1916-17 BIBLIOGRAPHY Bancroft, Howland. Notes on the occurrence of cinnabar in central western Arizona. U. S. G. S. Bull. 430, pp. 151-153, 1910. Becker, G. F. Geology of- the quicksilver deposits of the Pacific slope, with atlas. Mon. 13, p. 486, 1888. Only the atlas in stock. Quicksilver Ore Deposits; Mineral Resources U. S. for 1892, pp. 139-168, 1893. Christy, S. B. Quicksilver reduction at New Almaden, Cal. Min- eral Resources U. S. for 1883-1884, pp. 603-636, 1885. Hillebrand, W. F., and Schaller, W. T. Mercury miner-als from Terlingua, Tex. U. S. G. S. Bull. 405, pp. 174, 1909. McCaskey, H. D. Quicksilver in 1912; Mineral Resources U. S. for 1912, Pt. 1, pp. 931-948, 1913. Quicksilver in 1913-Production and Resources; Mineral Resources U. S. for 1913, Pt. 1, pp. 197-212, 1914. Melville, W. H., and Lindgren, Waldemar. Contributions to the mineralogy of the Pacific coast. U. S. G. S. Bull. 61, 30 pp., 1890. Parker, E. W. Quicksilver; Twenty-first Ann. Rept. U. S. G. S., Pt. 6, pp. 273-283, 1901. University of Arizona Bulletin BULLETIN No. 12 SECOND ISSUE, NOVEMBER, 1916 MERCURY-QUICKSILVER By P. -
Mercury Sulfide Dimorphism in Thioarsenate Glasses Mohammad Kassem, Anton Sokolov, Arnaud Cuisset, Takeshi Usuki, Sohayb Khaoulani, Pascal Masselin, David Le Coq, M
Mercury Sulfide Dimorphism in Thioarsenate Glasses Mohammad Kassem, Anton Sokolov, Arnaud Cuisset, Takeshi Usuki, Sohayb Khaoulani, Pascal Masselin, David Le Coq, M. Feygenson, C. J. Benmore, Alex Hannon, et al. To cite this version: Mohammad Kassem, Anton Sokolov, Arnaud Cuisset, Takeshi Usuki, Sohayb Khaoulani, et al.. Mer- cury Sulfide Dimorphism in Thioarsenate Glasses. Journal of Physical Chemistry B, American Chem- ical Society, 2016, 120 (23), pp.5278 - 5290. 10.1021/acs.jpcb.6b03382. hal-01426924 HAL Id: hal-01426924 https://hal.archives-ouvertes.fr/hal-01426924 Submitted on 5 Jan 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Article Mercury Sulfide Dimorphism in Thioarsenate Glasses Mohammad Kassem, Anton Sokolov, Arnaud Cuisset, Takeshi Usuki, Sohayb Khaoulani, Pascal Masselin, David Le Coq, Joerg C. Neuefeind, Mikhail Feygenson, Alex C Hannon, Chris J. Benmore, and Eugene Bychkov J. Phys. Chem. B, Just Accepted Manuscript • Publication Date (Web): 23 May 2016 Downloaded from http://pubs.acs.org on May 23, 2016 Just Accepted “Just Accepted” manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. -
Metacinnabar Hgs C 2001-2005 Mineral Data Publishing, Version 1
Metacinnabar HgS c 2001-2005 Mineral Data Publishing, version 1 Crystal Data: Cubic. Point Group: 43m. Commonly massive; rarely as small (to 1 mm) tetrahedral crystals having rough faces. Twinning: Common on {111}, forming lamellae in polished section. Physical Properties: Fracture: Subconchoidal. Tenacity: Brittle. Hardness = 3 VHN = n.d. D(meas.) = 7.65 D(calc.) = 7.63 Optical Properties: Opaque. Color: Grayish black; in polished section, grayish white. Streak: Black. Luster: Metallic. Pleochroism: Weak, rarely. Anisotropism: Very weak, rarely. R: (400) 28.4, (420) 27.6, (440) 26.8, (460) 26.3, (480) 25.9, (500) 25.6, (520) 25.4, (540) 25.2, (560) 25.1, (580) 25.0, (600) 24.9, (620) 24.9, (640) 24.8, (660) 24.7, (680) 24.7, (700) 24.7 Cell Data: Space Group: F 43m. a = 5.8717(5) Z = 4 X-ray Powder Pattern: Synthetic. 3.378 (100), 2.068 (55), 1.7644 (45), 2.926 (35), 1.3424 (12), 1.6891 (10), 1.3085 (10) Chemistry: (1) (2) (3) (4) Hg 79.73 67.45 81.33 86.22 Zn 4.23 3.10 Cd 11.72 Fe trace 0.2 Se 1.08 6.49 S 14.58 15.63 10.30 13.78 Total 99.62 98.10 98.12 100.00 (1) Guadalc´azar,Mexico; corresponds to (Hg0.85Zn0.14)Σ=0.99(S0.97Se0.03)Σ=1.00. (2) Uland area, Russia; corresponds to (Hg0.69Cd0.21Zn0.10Fe0.01)Σ=1.01S1.00. (3) San Onofre, Mexico; corresponds to Hg1.00(S0.80Se0.20)Σ=1.00. -
New Mineral Names*
American Mineralogist, Volume 62, pages 173-176, 1977 NEW MINERAL NAMES* MrcHlrI- Fr-BlscHrnAND J. A. MeNnn'ntNo and Institute Agrellite* Museum of Canada, Geological Survey of Canada, for the Mineralogy, Geochemistryand Crystal Chemistry of the J. GrrrrNs, M. G. BowN .qNoB. D. Srunlt.ltt (1976)Agrellite, a Rare Elements(Moscow). J. A. M. new rock-forming mineral in regionally metamorphosed agpaitic alkafic rocks Can. Mineral. 14, 120-126. Fedorovskite+ The mineral occurs as lensesand pods in mafic gneissescom- posed of albite, microcline, alkalic amphibole, aegirine-augite, S. V. MeltNro, D P SsrsurlN and K V. YunrtN'l (1976) eudialyte,and nepheline.Other mineralspresent are: hiortdahlite, Fedorovskite,a new boron mineral,and the isomorphousseries other members of the w<ihleritegroup, mosandrite, miserite, brith- roweite-fedorovskite olite, vlasovite, calcite, fluorite, clinohumite, norbergite, zircon, Zap. Vses Mineral- O'uo 105,71-85 (in Russian)' biotite, phlogopite, galena, and a new unnamed mineral, CaZr- SirO, [seeabstract in Am. Mineral 61, 178-179 (1976)]. The local- ity is on the Kipawa River, Villedieu Township, T6miscamingue County, Quebei, Canada, at about Lat.46" 4'7' 49" N, and Long 78" 29'3l" W (Note by J.A.M.: The Lat. and Long. figuresare interchangedin the paper,and the figurefor the latitudeshould be 46" not 45" ) Agrellite occurs as crystals up to 100 mm in length. They are HCI elongatedparallel to [001] and are flattened on either {010} or X-ray powder data are given for the first 3 samplesanalyzed For { I l0} The color is white to greyishor greenishwhite The lusteron sample(Mg*Mn.u), the strongestlines (41 given) are 3'92 cleavagesis pearly. -
Mercury and Mercury Compounds
United States Office of Air Quality EPA-454/R-97-012 Environmental Protection Planning And Standards Agency Research Triangle Park, NC 27711 December 1997 AIR EPA LOCATING AND ESTIMATING AIR EMISSIONS FROM SOURCES OF MERCURY AND MERCURY COMPOUNDS L & E EPA-454/R-97-012 Locating And Estimating Air Emissions From Sources of Mercury and Mercury Compounds Office of Air Quality Planning and Standards Office of Air and Radiation U.S. Environmental Protection Agency Research Triangle Park, NC 27711 December 1997 This report has been reviewed by the Office of Air Quality Planning and Standards, U.S. Environmental Protection Agency, and has been approved for publication. Mention of trade names and commercial products does not constitute endorsement or recommendation for use. EPA-454/R-97-012 TABLE OF CONTENTS Section Page EXECUTIVE SUMMARY ................................................ xi 1.0 PURPOSE OF DOCUMENT .............................................. 1-1 2.0 OVERVIEW OF DOCUMENT CONTENTS ................................. 2-1 3.0 BACKGROUND ........................................................ 3-1 3.1 NATURE OF THE POLLUTANT ..................................... 3-1 3.2 OVERVIEW OF PRODUCTION, USE, AND EMISSIONS ................. 3-1 3.2.1 Production .................................................. 3-1 3.2.2 End-Use .................................................... 3-3 3.2.3 Emissions ................................................... 3-6 4.0 EMISSIONS FROM MERCURY PRODUCTION ............................. 4-1 4.1 PRIMARY MERCURY -
DOGAMI Short Paper 8, Strategic and Critical Minerals: a Guide for Oregon
STATE OF OREGON DEPARTMENT OF GEOLOGY AND MINERAL INDUSTRIES 702 Woodlark Building Portland, Oregon G M I SHORT PAPI:R No. 8 STRATEGIC AND CRITICAL MINERALS A GUIDE lOR OREGON PROSPECTORS. By Lloyd w. Staples; Ph.D, A••latant Proteaaor ot Geology University ot Oregon . • STATE GOVIEIIINING BOAIIID W. H. ITRAYIER, CHAIIIMAN . BAKU ALBIEIIIT BURC:H MIEDP'OIID IE MACNAUGHTON ••• PDIIT\.ANO EARL K. NIXON DIIIIIECTOIII PRICIE 15 CIENTI I Oat lORD In noraal tia•• ao1t pro•p•otor• look tor gold, 1inoe that aetal u1ually otter• the �uiok••t reward and i• generally tither •a•1ly reoogn1�•d or the or• 1• •usoept• 1ble or •••Y detera1nat1on. Pro1peotor11 ln general, thus gain llttlt or no experl tno• with other •inerai• who•• peaoetlae aarkttl otter little tnoentlve tor ltaroh tor new depo1it1. Under war oondltion• th••• aineral11 needed tor produotion ot war aat erial•, beooae ot priae iaportanoe and an in1i1tent deaand i1 created tor intoraation oonoernins ooourrenoe11 aineral oharaoteri1tio11 u1e1 and aarket1. fhe Dtpartaent i1 publllhins thil paper to help aeet thil deaand in1otar &I Oreson i1 �ono�rned. Dr. Staple• 11 tlptoially qualititd to write on the lubJeot or 1trateg1o aineral1. In rtoent rear• auoh ot hll work, both 1n private praotioe and 1n teaohing1 hat been oonoerntd with thll tubJeot. It 11 boptd that tht paptr will bt ot aattrial &1111t¬ to Oregon pro1ptotor1 &1 well al to 1aall operator• who have turned their attention troa gold aintns to thole alneral depo1it1 e11ential tor war netdl. It i1 believed that 1ohool1 will al1o t1nd the paper intoraatlve and tiaely. -
Cinnabar Hgs C 2001-2005 Mineral Data Publishing, Version 1
Cinnabar HgS c 2001-2005 Mineral Data Publishing, version 1 Crystal Data: Hexagonal. Point Group: 32. Rhombohedral crystals, to 10 cm; thick tabular {0001}; stout to slender prismatic k [1010]. Also as incrustations, granular, and massive. Twinning: Twin plane {0001}, twin axis [0001], to form simple contact twins. Physical Properties: Cleavage: {1010}, perfect. Fracture: Subconchoidal, uneven. Tenacity: Slightly sectile. Hardness = 2–2.5 VHN = 82–156 (10 g load). D(meas.) = 8.176 D(calc.) = 8.20 Optical Properties: Transparent in thin pieces. Color: Cochineal-red, towards brownish red and lead-gray. Streak: Scarlet. Luster: Adamantine, inclining to metallic when dark; dull in friable material. Optical Class: Uniaxial (+). ω = 2.905 (598.5). = 3.256 (598.5). Anisotropism: High. R1–R2: (400) 30.0–33.5, (420) 28.8–32.1, (440) 27.4–30.9, (460) 26.4–29.9, (480) 25.7–29.5, (500) 25.2–29.4, (520) 24.6–29.4, (540) 24.2–29.1, (560) 23.9–28.6, (580) 23.7–27.9, (600) 23.4–27.3, (620) 23.0–26.8, (640) 22.6–26.3, (660) 22.4–26.0, (680) 22.1–25.7, (700) 21.9–25.5 Cell Data: Space Group: P 3121 or P 3221. a = 4.145(2) c = 9.496(2) Z = 3 X-ray Powder Pattern: Almad´en,Spain. 2.85 (10), 3.34 (9), 1.672 (6), 2.06 (5), 1.969 (5), 1.725 (5), 1.339 (5) Chemistry: Essentially pure HgS. Polymorphism & Series: Trimorphous with metacinnabar and hypercinnabar. Occurrence: Formed from low-temperature hydrothermal solutions in veins, and in sedimentary, igneous, and metamorphic host rocks. -
Mineralogy and Genesis of Metacinnabar from Róka Hill, Budapest, Hungary
Acta Miner alogica-Petrographica, Szeged, XLi, Supplementum, 2000 MINERALOGY AND GENESIS OF METACINNABAR FROM RÓKA HILL, BUDAPEST, HUNGARY NÉMETH, T. (Laboratory for Geochemical Research, Hungarian Academy of Sciences, Budapest, Hungary), KOVÁCS KIS, V. & DÓDONY, I. (Department of Mineralogy, Eötvös Loránd University, Budapest) E-mail: [email protected] The metacinnabar and cinnabar occurrence on Róka Hill was described and studied by NAGY & PELIKÁN (1976). The main mass of the area is built up of Dachstein Limestone and brecciated dolomite. Eocen sedimentary sequence overlie unconformably the Triassic carbonates. The deformed rocks are rich in hydrothermal occurrences. The dispersed pyritization of the Triassic limestone with high As bearing pyrite, marcasite, sphalerite, goethite and gypsum preceded the deposition of mercury. The metacinnabar and cinnabar occur as veins and cavity fillings in the Eocene sandy limestone along a clayey-silicified zone. The minerals accompanying the metacinnabar are: calcite, cinnabar, barite, pyrite, galena (?), goethite, lepidocrocite, and quartz and well ordered kaolinite. The crystals are idiomorphic, the predominating crystal forms are tetrahedra, rarely hexahedra. Inhomogeneity of the grains and the zonation can be seen in microscope: black, inclusion free metacinnabar and red inclusion rich cinnabar zones alternate parallel to (111). Maybe this zonal pattern of texture represents the deposition of the two HgS phases following the oscillating physico-chemical parameters (e.g. pH, fs). Electron microprobe studies revealed that the cinnabar's composition is pure HgS, while the metacinnabar contains 1.5 at% of zinc. On the basis of XRD, the calculated a0 cell parameter proves also the presence of Zn in the structure. The real crystal structure was studied with TEM. -
A Specific Gravity Index for Minerats
A SPECIFICGRAVITY INDEX FOR MINERATS c. A. MURSKyI ern R. M. THOMPSON, Un'fuersityof Bri.ti,sh Col,umb,in,Voncouver, Canad,a This work was undertaken in order to provide a practical, and as far as possible,a complete list of specific gravities of minerals. An accurate speciflc cravity determination can usually be made quickly and this information when combined with other physical properties commonly leads to rapid mineral identification. Early complete but now outdated specific gravity lists are those of Miers given in his mineralogy textbook (1902),and Spencer(M,i,n. Mag.,2!, pp. 382-865,I}ZZ). A more recent list by Hurlbut (Dana's Manuatr of M,i,neral,ogy,LgE2) is incomplete and others are limited to rock forming minerals,Trdger (Tabel,l,enntr-optischen Best'i,mmungd,er geste,i,nsb.ildend,en M,ineral,e, 1952) and Morey (Encycto- ped,iaof Cherni,cal,Technol,ogy, Vol. 12, 19b4). In his mineral identification tables, smith (rd,entifi,cati,onand. qual,itatioe cherai,cal,anal,ys'i,s of mineral,s,second edition, New york, 19bB) groups minerals on the basis of specificgravity but in each of the twelve groups the minerals are listed in order of decreasinghardness. The present work should not be regarded as an index of all known minerals as the specificgravities of many minerals are unknown or known only approximately and are omitted from the current list. The list, in order of increasing specific gravity, includes all minerals without regard to other physical properties or to chemical composition. The designation I or II after the name indicates that the mineral falls in the classesof minerals describedin Dana Systemof M'ineralogyEdition 7, volume I (Native elements, sulphides, oxides, etc.) or II (Halides, carbonates, etc.) (L944 and 1951). -
The Elements.Pdf
A Periodic Table of the Elements at Los Alamos National Laboratory Los Alamos National Laboratory's Chemistry Division Presents Periodic Table of the Elements A Resource for Elementary, Middle School, and High School Students Click an element for more information: Group** Period 1 18 IA VIIIA 1A 8A 1 2 13 14 15 16 17 2 1 H IIA IIIA IVA VA VIAVIIA He 1.008 2A 3A 4A 5A 6A 7A 4.003 3 4 5 6 7 8 9 10 2 Li Be B C N O F Ne 6.941 9.012 10.81 12.01 14.01 16.00 19.00 20.18 11 12 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 3 Na Mg IIIB IVB VB VIB VIIB ------- VIII IB IIB Al Si P S Cl Ar 22.99 24.31 3B 4B 5B 6B 7B ------- 1B 2B 26.98 28.09 30.97 32.07 35.45 39.95 ------- 8 ------- 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 4 K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr 39.10 40.08 44.96 47.88 50.94 52.00 54.94 55.85 58.47 58.69 63.55 65.39 69.72 72.59 74.92 78.96 79.90 83.80 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 5 Rb Sr Y Zr NbMo Tc Ru Rh PdAgCd In Sn Sb Te I Xe 85.47 87.62 88.91 91.22 92.91 95.94 (98) 101.1 102.9 106.4 107.9 112.4 114.8 118.7 121.8 127.6 126.9 131.3 55 56 57 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 6 Cs Ba La* Hf Ta W Re Os Ir Pt AuHg Tl Pb Bi Po At Rn 132.9 137.3 138.9 178.5 180.9 183.9 186.2 190.2 190.2 195.1 197.0 200.5 204.4 207.2 209.0 (210) (210) (222) 87 88 89 104 105 106 107 108 109 110 111 112 114 116 118 7 Fr Ra Ac~RfDb Sg Bh Hs Mt --- --- --- --- --- --- (223) (226) (227) (257) (260) (263) (262) (265) (266) () () () () () () http://pearl1.lanl.gov/periodic/ (1 of 3) [5/17/2001 4:06:20 PM] A Periodic Table of the Elements at Los Alamos National Laboratory 58 59 60 61 62 63 64 65 66 67 68 69 70 71 Lanthanide Series* Ce Pr NdPmSm Eu Gd TbDyHo Er TmYbLu 140.1 140.9 144.2 (147) 150.4 152.0 157.3 158.9 162.5 164.9 167.3 168.9 173.0 175.0 90 91 92 93 94 95 96 97 98 99 100 101 102 103 Actinide Series~ Th Pa U Np Pu AmCmBk Cf Es FmMdNo Lr 232.0 (231) (238) (237) (242) (243) (247) (247) (249) (254) (253) (256) (254) (257) ** Groups are noted by 3 notation conventions. -
Eu(III) Interactions with Calcium Carbonate Bacterial and Fungal
Goldschmidt Conference Abstracts 2075 Eu(III) interactions with calcium Bacterial and fungal communities carbonate colonizing mercury sulfide surfaces AIKATERINI I. VAVOURAKI1*, A.I. VAZQUEZ-RODRIGUEZ1*, C.M. SANTELLI2, ÁGELES FERNÁNDEZ-GONZÁLEZ2, MANUEL PRIETO2 S.C. BROOKS3 AND C.M. HANSEL1 1 AND PETROS G. KOUTSOUKOS 1 School of Engineering and Applied Sciences, Harvard 1Department of Chemical Engineering, University of Patras, University, Cambridge, MA USA Greece (*correspondence: [email protected]) (*correspondence: [email protected]) 2Department of Mineral Sciences, Smithsonian Institution, 2Department of Geology, Universidad de Oviedo, Spain Washington, DC USA 3Environmental Sciences Division, Oak Ridge National Understanding the interactions of radionuclides with Laboratory, Oak Ridge, TN USA mineral phases is important for the long-term storage safety of nuclear waste deposits which depends strongly on their Soils and sediments, where mercury (Hg) can exist as Hg interactions with the minerals. Calcite is a candidate mineral sulfide minerals (HgS), represent major reservoirs of Hg in for use in nuclear waste repositories. Model studies involve aquatic environments. Due to their low solubility, primary and nonradioactive trivalent lanthanides. In the present work authigenic HgS (e.g. cinnabar and metacinnabar) have Eu(III) interactions with calcite were investigated using two historically been considered insignificant sources of soluble crystallization techniques which could yield complementary Hg(II) to the environment. Recently however, the solubility of 2+ 3+ + 2- information. Counter-diffusion of (Ca , Eu ) and (Na , CO3 HgS was shown to be greatly enhanced in the presence of a ) ions was achieved through a porous silica hydrogel [1] in a natural microbial consortium [1]. The mechanisms for this U-shaped tube and aqueous solutions supersaturated with enhanced solubility have yet to be assessed. -
Kleinite Hg2n(Cl, SO4)• Nh2o
Kleinite Hg2N(Cl, SO4) • nH2O c 2001-2005 Mineral Data Publishing, version 1 Crystal Data: Hexagonal or triclinic. Point Group: 6/m 2/m 2/m. Crystals short prismatic to equant, to 3 mm, showing prominent {1010}, {2021}, and {0001}. Physical Properties: Cleavage: {0001}, uneven; {1010}, imperfect. Tenacity: Brittle. Hardness = 3.5–4 D(meas.) = 7.9–8.0 D(calc.) = [7.87] Optical Properties: Transparent to translucent. Color: Pale yellow, canary-yellow to orange, may be zoned, yellow cores with reddish orange rims; tenebrescent, deepening in color in daylight, the original color restored in darkness; yellow to colorless in transmitted light. Streak: Sulfur-yellow. Luster: Adamantine to greasy. Optical Class: Biaxial (–); uniaxial (+) ≥ 130 ◦C; isotropic ≥∼190 ◦C. Dispersion: r< v,very strong. ω = 2.19 = 2.21 α = 2.16 β = 2.18 γ = 2.18 2V(meas.) = Small to 80◦. Cell Data: Space Group: C6/mmc. a = 13.56 c = 11.13 Z = [18] X-ray Powder Pattern: Terlingua, Texas, USA. 2.914 (10), 2.615 (10), 3.884 (6), 2.013 (6), 1.434 (4), 1.242 (4), 5.228 (2) Chemistry: (1) Hg 85.86 N 2.57 Cl 7.30 H2O 1.03 SO4 3.10 Total 99.86 (1) Terlingua, Texas, USA; averages of numerous partial analyses, corresponds to Hg2.00N0.86 • [Cl0.96(SO4)0.15]Σ=1.11 0.53H2O. Occurrence: In hydrothermal mercury deposits. Association: Terlinguaite, gypsum, barite, calcite, other mercury minerals (Terlingua, Texas, USA); mosesite, calomel, montroydite (McDermitt mine, Nevada, USA). Distribution: In the USA, from Terlingua, Brewster Co., Texas; the New Idria district, San Benito Co., California; and in the McDermitt and Cordero mercury mines, Opalite district, Humboldt Co., Nevada.