Effects of Species' Body Mass, Diversity and Phenology on Complex Food-Web Stability
Total Page:16
File Type:pdf, Size:1020Kb
Effects of species' body mass, diversity and phenology on complex food-web stability Vom Fachbereich Biologie der Technischen Universität Darmstadt zur Erlangung des akademischen Grades eines Doctor rerum naturalium genehmigte Dissertation von Dipl.-Biol. Sonja B. Otto aus Nürnberg. Referenten: Dr. Ulrich Brose Prof. Dr. Stefan Scheu Eingereicht am 25. Januar 2008 Mündliche Prüfung am 15. April 2008 Darmstadt 2008 – D 17 Die vorliegende Arbeit wurde in der Arbeitsgruppe von Dr. Ulrich Brose zwischen Oktober 2004 und Januar 2008 angefertigt. Meiner Familie List of peer-reviewed publications in this thesis Chapter 2 Otto, S.B., Berlow, E.L., Rank, N.E., Smiley, J. & Brose, U. (2008). The diversity and identity of predators drive interaction strengths and trophic cascades in a montane food web. Ecology(89) 1. Chapter 3 Otto, S.B., Rall, B.C. & Brose, U. (2007). Allometric degree distributions facilitate food web stability. Nature(450)1: 1226-1229. Prospective submission early in 2008 Chapter 4 Otto, S.B., Martinez, N.D. & Brose, U. (2008). Body mass and network structure drive food-web robustness against secondary extinctions. Chapter 5 Brose, U., Banašek-Richter, C., Otto, S.B., Rall, B.C., Martinez, N.D. & Dunne, J. (2008). The complexity, topology and diversity of food webs. Table of Contents Chapter 1 – General Introduction...................................................................... 1 1.1 Aim and Scope ......................................................................................3 1.2 What food webs are...............................................................................3 1.3 Food-web stability .................................................................................6 1.3.1 The Diversity – Stability Debate ......................................................... 7 1.3.2 Implications of body mass ................................................................. 9 1.4 Food-web structure..............................................................................11 1.4.1 Theoretical food-web models ............................................................13 1.5 References ..........................................................................................15 Chapter 2 – The diversity and identity of predators drive interaction strengths and trophic cascades in a montane food web ................................ 23 2.1 Abstract ..............................................................................................25 2.2 Introduction ........................................................................................25 2.3 Methods..............................................................................................27 2.4 Results................................................................................................31 2.5 Discussion ...........................................................................................39 2.6 Conclusions .........................................................................................42 2.7 References ..........................................................................................43 Chapter 3 – Allometric degree distributions facilitate food-web stability.... 47 3.1 Abstract ..............................................................................................49 3.2 Introduction ........................................................................................49 VI Table of contents 3.3 Methods ............................................................................................. 50 3.4 Results ............................................................................................... 53 3.5 Discussion........................................................................................... 59 3.6 Conclusions......................................................................................... 61 3.7 Supplementary Information ................................................................. 62 3.7.1 Model sensitivity to carrying capacity and maximum consumption ...... 62 3.7.2 Complex food-web analyses – Methods............................................. 65 3.7.3 Complex food-web analyses – Results............................................... 66 3.8 Analytical Solution – Isosurfaces .......................................................... 67 3.9 References.......................................................................................... 69 Chapter 4 – Body mass, diversity and network structure drive food-web robustness against species loss........................................................................73 4.1 Abstract.............................................................................................. 75 4.2 Introduction........................................................................................ 75 4.3 Methods ............................................................................................. 77 4.4 Results ............................................................................................... 80 4.5 Discussion........................................................................................... 83 4.6 Conclusions......................................................................................... 87 4.7 References.......................................................................................... 88 Chapter 5 – Complexity, topology and diversity of food webs.......................91 5.1 Abstract.............................................................................................. 93 5.2 Introduction........................................................................................ 93 5.3 Diversity-topology relationships............................................................ 94 5.4 Worked example: Diversity-complexity relationships.............................. 95 5.5 Explanations for the scale-dependence of complexity ............................ 99 5.6 Worked example: diversity-topology relationships ............................... 102 5.7 Models of food-web topology ............................................................. 104 5.8 Conclusions....................................................................................... 105 5.9 References........................................................................................ 106 Table of contents VII Chapter 6 – General Discussion ..................................................................... 111 Perspectives ................................................................................................. 117 References ................................................................................................... 119 Summary ......................................................................................................... 123 Zusammenfassung .......................................................................................... 126 Acknowledgements (Danksagungen)............................................................ 129 Curriculum vitae.............................................................................................. 131 List of publications and talks ......................................................................... 132 Eidesstattliche Erklärung................................................................................ 133 1. Chapter 1 General Introduction 2 Picture of a guava plant that M.S. Merian drew in Surinam, South America, in 1705. Merian gives a detailed description of the feeding interactions of two herbivores on a plant, the caterpillar of a deltoid moth (Fam. Noctuidae) and a species she described as "the green caterpillar" on top of the leaves. For the latter, Merian also described parasitoid infestation and was probably the first person having described and (almost) pictured a tri-trophic food chain. 1.2 What food webs are 3 1.1 Aim and Scope The aim of my studies was to gain knowledge of the complex interrelationships between the species in natural ecosystems. This knowledge is the first step on a long way to understand how the multifaceted dynamics between individual species may affect a whole community. This thesis addresses a broad scope of ecological relevant questions and domains, and focuses mainly on the foundations of the co-existence of species, the interactions between them, and the effects of species loss. It combines projects that acquired data by empirical field research, with those using modern technologies such as theoretical simulations. This includes the processing of empirical data with the help of theoretical modelling, which is an important instrument to predict and at the same time to explain what might happen to natural communities after perturbations. The four projects presented here all address the analyses of empirical food-web data regarding the stability of natural communities under different aspects. 1.2 What food webs are Natural ecosystems exhibit striking species richness. It puzzled natural scientists since the early beginnings of the discipline, how species interact, depend on each other, and how their overwhelming diversity is maintained (e.g., Darwin 1859, Elton 1927, MacArthur 1957, Hutchinson 1959; to list just a few of the most influential names). The interrelationships between species that co-exist in an ecosystem comprise a large range of interactions, such as the pollination of plants by insects, the provision of shelter or the fight for territory. However, these non-trophic interactions are difficult to