Structural and Evolutionary Divergence of Eukaryotic Protein Kinases in Apicomplexa Eric Talevich1, Amar Mirza2 and Natarajan Kannan1,2*

Total Page:16

File Type:pdf, Size:1020Kb

Structural and Evolutionary Divergence of Eukaryotic Protein Kinases in Apicomplexa Eric Talevich1, Amar Mirza2 and Natarajan Kannan1,2* Talevich et al. BMC Evolutionary Biology 2011, 11:321 http://www.biomedcentral.com/1471-2148/11/321 RESEARCH ARTICLE Open Access Structural and evolutionary divergence of eukaryotic protein kinases in Apicomplexa Eric Talevich1, Amar Mirza2 and Natarajan Kannan1,2* Abstract Background: The Apicomplexa constitute an evolutionarily divergent phylum of protozoan pathogens responsible for widespread parasitic diseases such as malaria and toxoplasmosis. Many cellular functions in these medically important organisms are controlled by protein kinases, which have emerged as promising drug targets for parasitic diseases. However, an incomplete understanding of how apicomplexan kinases structurally and mechanistically differ from their host counterparts has hindered drug development efforts to target parasite kinases. Results: We used the wealth of sequence data recently made available for 15 apicomplexan species to identify the kinome of each species and quantify the evolutionary constraints imposed on each family of apicomplexan kinases. Our analysis revealed lineage-specific adaptations in selected families, namely cyclin-dependent kinase (CDK), calcium-dependent protein kinase (CDPK) and CLK/LAMMER, which have been identified as important in the pathogenesis of these organisms. Bayesian analysis of selective constraints imposed on these families identified the sequence and structural features that most distinguish apicomplexan protein kinases from their homologs in model organisms and other eukaryotes. In particular, in a subfamily of CDKs orthologous to Plasmodium falciparum crk-5, the activation loop contains a novel PTxC motif which is absent from all CDKs outside Apicomplexa. Our analysis also suggests a convergent mode of regulation in a subset of apicomplexan CDPKs and mammalian MAPKs involving a commonly conserved arginine in the aC helix. In all recognized apicomplexan CLKs, we find a set of co-conserved residues involved in substrate recognition and docking that are distinct from metazoan CLKs. Conclusions: We pinpoint key conserved residues that can be predicted to mediate functional differences from eukaryotic homologs in three identified kinase families. We discuss the structural, functional and evolutionary implications of these lineage-specific variations and propose specific hypotheses for experimental investigation. The apicomplexan-specific kinase features reported in this study can be used in the design of selective kinase inhibitors. Background and there remains an urgent need for deeper research The parasitic protists which comprise the phylum Api- into the basic biology of apicomplexans [2]. complexa are responsible for human diseases of global Several traits make these pathogens difficult to target importance, such as malaria (caused by Plasmodium fal- therapeutically. As eukaryotes, they share a number of ciparum and other members of the Plasmodium genus), pathways with their mammalian and avian hosts; as cryptosporidiosis (Cryptosporidium species) and toxo- intracellular parasites, they have been observed to plasmosis (Toxoplasma gondii), as well as the agricul- quickly develop resistance to pharmaceutical treatments tural diseases babesiosis (Babesia bovis in cattle) and [3]. The identification of distinctive protein features coccidiosis (Eimeria tenella in chickens) [1]. In recent which appear conserved across apicomplexan species, years, understanding of the molecular biology and evo- but not in their hosts, however, will aid the search for lution of this phylum has improved dramatically; yet potential new targets for selective inhibition that are effective treatments for these diseases are still elusive, more likely to be safe and effective [4]. As protein kinases have been successfully targeted for inhibition in cancer, this diverse protein superfamily warrants consid- * Correspondence: [email protected] eration as a target for parasitic diseases as well [2,5]. 1Institute of Bioinformatics, University of Georgia, Athens, GA 30602, USA Full list of author information is available at the end of the article © 2011 Talevich et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Talevich et al. BMC Evolutionary Biology 2011, 11:321 Page 2 of 20 http://www.biomedcentral.com/1471-2148/11/321 Recent whole-genome sequencing efforts have targeted kinase families FIKK and ROPK appear; (ii) a unique a number of apicomplexan species [6-17]. Several ana- apicomplexan-specific subfamily of cyclin-dependent lyses of protein kinases in these organisms, in particular, kinases (CDK), orthologous to P. falciparum crk-5, and have pointed out key signaling pathways [18-20], the motifs that distinguish it; (iii) a hypothesized instances of expansion and loss of kinase gene families mechanism of activation by phosphorylation, resembling [21,22], and emergence of novel protein kinase families that of MAP kinases, in a chromalveolate-specific sub- [21,23,24], thus providing important insights into biolo- family of calcium-dependent protein kinases (CDPK); gical functions. These comparative studies have further- and (iv) a description of the adaptation of the substrate- more proposed hypotheses which have subsequently recognition and docking sites in the CLK kinase family been validated by functional and structural studies in a clade including apicomplexans and other chromal- [19,20,25,26]. veolates, revealed by the co-evolution of a small set of The eukaryotic protein kinase (ePK) superfamily is key residues. classified into several major groups, corresponding to broad functional categories with distinguishing sequence Results and Discussion and structural features [27,28]. The presence of specific We identified and classified the eukaryotic protein ePK groups and families in a genome is a key indicator kinases in a total of 17 genomes from 15 species, as well of biological functions critical for an organism; likewise, as the solved apicomplexan ePK structures in the Pro- missing groups or families indicate functions less critical tein Data Bank [34]. We used our classification to for an organism’s survival and reproduction. These pro- broadly describe the conserved ePK families in the Api- teins, and the fundamental cell processes in which they complexa and then performed a residue-level analysis of participate, are well characterized in humans and several the lineage-specific differences within several conserved model organisms [28]. families: CDK, CDPK and CLK. We place our findings Previous efforts to perform detailed comparative ana- in the context of the known evolutionary history of api- lysis of apicomplexan kinases have largely focused on complexans and their relatives. the kinomes of individual species within the genera Plasmodium, Toxoplasma and Cryptosporidium Kinome classification and composition: Variations within [10,11,20,29-32]. Thus, there is no global overview of the Apicomplexa the sequence and structural features that distinguish api- Recent published evolutionary relationships of eukar- complexan kinases collectively from their metazoan yotes provide the basis for our genomic comparison counterparts. [35]. In this study we have chosen model organisms Sequence data from 15 apicomplexan species and sev- representing major evolutionary splits — the emergence eral crystallographic structures of a variety of apicom- of Chromalveolata (a proposed super-kingdom of plas- plexan protein kinases are now available. We can use tid-containing eukaryotes [36]), Alveolata (the kingdom these data to perform a systematic comparison of pro- comprising ciliates, dinoflagellates and apicomplexans tein kinases in apicomplexans and model eukaryotes to [37]), and Apicomplexa — to illuminate the origin and identify broadly conserved orthologous groups and dis- divergence of the major ePK groups. For genomic com- tinctive residue-level differences. parison we use the parasitic dinoflagellate Perkinsus Inthisstudyweuseabioinformaticsapproachto marinus as an outgroup to the Apicomplexa, the photo- comprehensively analyze genomic and structural data synthetic diatom Thalassiosira pseudonana as an out- sets. We perform an exhaustive comparison of apicom- group to the Alveolata, and the yeast Saccharomyces plexan kinomes, providing broad coverage of the phy- cerevisiae as an outgroup to the Chromalveolata. lum. We also perform a quantitative, residue-level Detailed kinase annotations are given for each genome analysis of the differences between kinases within the in Additional File 1. Apicomplexa and those in model eukaryotes, in parti- Apicomplexan kinome sizes are comparable to those of cular humans. We use a Bayesian method [33] to rig- other unicellular protists orously quantify sequence differences between The number of ePKs identified in each of the surveyed homologous protein kinases in apicomplexans and apicomplexan genomes varies, with the coccidians (Tox- other eukaryotes, and reveal contrastingly conserved oplasma gondii, Neospora caninum and Eimeria tenella) features that were not apparent previously. Where pos- containing more ePKs than the haemosporidians (Plas- sible, we then place these sequence features in struc- modium spp.), and the piroplasms (Babesia bovis and tural context to postulate specific hypotheses for Theileria spp.) containing fewer (Table 1). Cryptospori-
Recommended publications
  • Basal Body Structure and Composition in the Apicomplexans Toxoplasma and Plasmodium Maria E
    Francia et al. Cilia (2016) 5:3 DOI 10.1186/s13630-016-0025-5 Cilia REVIEW Open Access Basal body structure and composition in the apicomplexans Toxoplasma and Plasmodium Maria E. Francia1* , Jean‑Francois Dubremetz2 and Naomi S. Morrissette3 Abstract The phylum Apicomplexa encompasses numerous important human and animal disease-causing parasites, includ‑ ing the Plasmodium species, and Toxoplasma gondii, causative agents of malaria and toxoplasmosis, respectively. Apicomplexans proliferate by asexual replication and can also undergo sexual recombination. Most life cycle stages of the parasite lack flagella; these structures only appear on male gametes. Although male gametes (microgametes) assemble a typical 9 2 axoneme, the structure of the templating basal body is poorly defined. Moreover, the rela‑ tionship between asexual+ stage centrioles and microgamete basal bodies remains unclear. While asexual stages of Plasmodium lack defined centriole structures, the asexual stages of Toxoplasma and closely related coccidian api‑ complexans contain centrioles that consist of nine singlet microtubules and a central tubule. There are relatively few ultra-structural images of Toxoplasma microgametes, which only develop in cat intestinal epithelium. Only a subset of these include sections through the basal body: to date, none have unambiguously captured organization of the basal body structure. Moreover, it is unclear whether this basal body is derived from pre-existing asexual stage centrioles or is synthesized de novo. Basal bodies in Plasmodium microgametes are thought to be synthesized de novo, and their assembly remains ill-defined. Apicomplexan genomes harbor genes encoding δ- and ε-tubulin homologs, potentially enabling these parasites to assemble a typical triplet basal body structure.
    [Show full text]
  • Denis BAURAIN Département Des Sciences De La Vie Université De Liège Société Royale Des Sciences De Liège 20 Septembre 2012 Plan De L’Exposé
    L’évolution des Eucaryotes Denis BAURAIN Département des Sciences de la Vie Université de Liège Société Royale des Sciences de Liège 20 septembre 2012 Plan de l’exposé 1. Qu’est-ce qu’un Eucaryote ? 2. Quelle est la diversité des Eucaryotes ? 3. Quelles sont les relations de parenté entre les grands groupes d’Eucaryotes ? 4. D’où viennent les Eucaryotes ? Qu’est-ce1 qu’un Eucaryote ? Eukaryotic Cells définition ultrastructurale : organelles spécifiques • noyau (1) • nucléole (2) • RE (5, 8) • Golgi (6) • centriole(s) (13) • mitochondrie(s) (9) • chloroplaste(s) • ... http://en.wikipedia.org/ A eukaryotic gene is arranged in a patchwork of coding (exons) and non-coding sequences (introns). Introns are eliminated while exons are spliced together to yield the mature mRNA used for protein synthesis. http://reflexions.ulg.ac.be/ Gene DNA Transcription Exon1 Exon2 Exon3 Exon4 Exon5 Exon6 pre-mRNA Alternatif splicing mature mRNA Translation Protein In many Eukaryotes, almost all genes can lead to different proteins through a process termed alternative splicing. http://reflexions.ulg.ac.be/ REVIEWS Box 2 | Endosymbiotic evolution and the tree of genomes Intracellular endosymbionts that originally descended from free-living prokaryotes have been important in the evolution of eukaryotes by giving rise to two cytoplasmic organelles. Mitochondria arose from α-proteobacteria and chloroplasts arose from cyanobacteria. Both organelles have made substantial contributions to the complement of genes that are found in eukaryotic nuclei today. The figure shows a schematic diagram of the evolution of eukaryotes, highlighting the incorporation of mitochondria and chloroplasts into the eukaryotic lineage through endosymbiosis and the subsequent co-evolution of the nuclear and organelle genomes.
    [Show full text]
  • Identification of a Novel Fused Gene Family Implicates Convergent
    Chen et al. BMC Genomics (2018) 19:306 https://doi.org/10.1186/s12864-018-4685-y RESEARCH ARTICLE Open Access Identification of a novel fused gene family implicates convergent evolution in eukaryotic calcium signaling Fei Chen1,2,3, Liangsheng Zhang1, Zhenguo Lin4 and Zong-Ming Max Cheng2,3* Abstract Background: Both calcium signals and protein phosphorylation responses are universal signals in eukaryotic cell signaling. Currently three pathways have been characterized in different eukaryotes converting the Ca2+ signals to the protein phosphorylation responses. All these pathways have based mostly on studies in plants and animals. Results: Based on the exploration of genomes and transcriptomes from all the six eukaryotic supergroups, we report here in Metakinetoplastina protists a novel gene family. This family, with a proposed name SCAMK,comprisesSnRK3 fused calmodulin-like III kinase genes and was likely evolved through the insertion of a calmodulin-like3 gene into an SnRK3 gene by unequal crossover of homologous chromosomes in meiosis cell. Its origin dated back to the time intersection at least 450 million-year-ago when Excavata parasites, Vertebrata hosts, and Insecta vectors evolved. We also analyzed SCAMK’s unique expression pattern and structure, and proposed it as one of the leading calcium signal conversion pathways in Excavata parasite. These characters made SCAMK gene as a potential drug target for treating human African trypanosomiasis. Conclusions: This report identified a novel gene fusion and dated its precise fusion time
    [Show full text]
  • De Novo Transcriptome Assembly of Perkinsus Olseni Trophozoite Stimulated in Vitro with Manila Clam (Ruditapes Philippinarum) Plasma
    Journal of Invertebrate Pathology 135 (2016) 22–33 Contents lists available at ScienceDirect Journal of Invertebrate Pathology journal homepage: www.elsevier.com/locate/jip De novo transcriptome assembly of Perkinsus olseni trophozoite stimulated in vitro with Manila clam (Ruditapes philippinarum) plasma Abul Farah Md. Hasanuzzaman a,b, Diego Robledo c, Antonio Gómez-Tato d, Jose A. Alvarez-Dios e, ⇑ Peter W. Harrison f, Asunción Cao g, Sergio Fernández-Boo g, Antonio Villalba g, Belén G. Pardo a, , Paulino Martínez a a Departamento de Xenética, Facultade de Veterinaria, Universidade de Santiago de Compostela, Lugo 27002, Spain b Fisheries and Marine Resource Technology Discipline, Khulna University, Khulna 9208, Bangladesh c Departamento de Xenética, Facultade de Bioloxía, Universidade de Santiago de Compostela, Santiago de Compostela 15782, Spain d Departamento de Xeometría e Topoloxía, Facultade de Matemáticas, Universidade de Santiago de Compostela, Santiago de Compostela 15782, Spain e Departamento de Matemática Aplicada, Facultade de Matemáticas, Universidade de Santiago de Compostela, Santiago de Compostela 15782, Spain f Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, United Kingdom g Centro de Investigacións Mariñas (CIMA), Consellería do Medio Rural e do Mar, Xunta de Galicia, 36620 Vilanova de Arousa, Spain article info abstract Article history: The protistan parasite Perkinsus olseni is a deadly causative agent of perkinsosis, a molluscan disease Received 16 September 2015 affecting Manila clam (Ruditapes philippinarum), having a significant impact on world mollusc production. Revised 18 January 2016 Deciphering the underlying molecular mechanisms in R. philippinarum-P. olseni interaction is crucial for Accepted 24 January 2016 controlling this parasitosis. The present study investigated the transcriptional expression in the parasite Available online 25 January 2016 trophozoite using RNA-seq.
    [Show full text]
  • Photosynthetic Megagroups
    Photosynthetic Megagroups Burki et al. (2008) 6 Eukaryotic Megagroups Hackett et al. (2007) Evidence against the Hacrobia Burki et al. (2012) Evolutionary pararadoxes n Mitochondria - single endosymbiotic event, although there is evidence of more recent mitochondrial retention n Chloroplasts - various endosymbiotic events or by cleptoplastidia via myzocytosis Keeling (2010) Primary endosymbiosis gave rise to Archaeplastida / Plantae Loss of vestigial peptidoglycan and of phycobilins from the plastid Vestigial peptidoglycan between the two plastidial membranes Keeling (2010) Secondary endosymbiosis gave rise to the “Hacrobia” and euglenids Keeling (2010) Primary and secondary endosymbiosis gave rise to photosynthetic rhizarians Keeling ( Keeling (2010) 2010) Paulinella: A recent primary endosymbiosis in a euglyphid amoeba Bodyl et al. (2012) Curr. Biol. 22, R304-R306. Multiple secondary and tertiary endosymbioses in “Chromalveolata” Keeling ( Keeling (2010) 2010) Kleptoplastidy with an intermediate ciliate via mizocytosis Cryptophyte Ciliate Dinoflagellate Wisecaver & Hackett (2010) Cryptoplasts in ciliates derived from endosymbiosis or kleptoplastidy? Keeling ( 2010) Can kleptoplastidy via mizocytosis explain the 3-membrane plastid of euglenids? Mizocytosis? Keeling (2010) Conclusions n The acquisition of photoautotrophy is a much more frequent and complex event than previously thought n The photosynthetic capacity can be obtained by: § endosymbiosis (an intracellular association between a heterotrophic host and a previously autonomous prokaryote [cyanobacterium] or eukaryotic [green or red algae] photosynthetic organism) § retention of chloroplasts (sometimes together with nuclei and mitochondria) after phagocytosis or mizocytosis - retention may be permanent (e.g., Noctiluca scintillans) or transient (e.g., Pfiesteria piscicola) § theft of chloroplasts (kleptoplastidy) by mizocytosis (a form of cytosis that involves the suction of cell contents by a predator from its prey.
    [Show full text]
  • The Planktonic Protist Interactome: Where Do We Stand After a Century of Research?
    bioRxiv preprint doi: https://doi.org/10.1101/587352; this version posted May 2, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Bjorbækmo et al., 23.03.2019 – preprint copy - BioRxiv The planktonic protist interactome: where do we stand after a century of research? Marit F. Markussen Bjorbækmo1*, Andreas Evenstad1* and Line Lieblein Røsæg1*, Anders K. Krabberød1**, and Ramiro Logares2,1** 1 University of Oslo, Department of Biosciences, Section for Genetics and Evolutionary Biology (Evogene), Blindernv. 31, N- 0316 Oslo, Norway 2 Institut de Ciències del Mar (CSIC), Passeig Marítim de la Barceloneta, 37-49, ES-08003, Barcelona, Catalonia, Spain * The three authors contributed equally ** Corresponding authors: Ramiro Logares: Institute of Marine Sciences (ICM-CSIC), Passeig Marítim de la Barceloneta 37-49, 08003, Barcelona, Catalonia, Spain. Phone: 34-93-2309500; Fax: 34-93-2309555. [email protected] Anders K. Krabberød: University of Oslo, Department of Biosciences, Section for Genetics and Evolutionary Biology (Evogene), Blindernv. 31, N-0316 Oslo, Norway. Phone +47 22845986, Fax: +47 22854726. [email protected] Abstract Microbial interactions are crucial for Earth ecosystem function, yet our knowledge about them is limited and has so far mainly existed as scattered records. Here, we have surveyed the literature involving planktonic protist interactions and gathered the information in a manually curated Protist Interaction DAtabase (PIDA). In total, we have registered ~2,500 ecological interactions from ~500 publications, spanning the last 150 years.
    [Show full text]
  • Essential Function of the Alveolin Network in the Subpellicular
    RESEARCH ARTICLE Essential function of the alveolin network in the subpellicular microtubules and conoid assembly in Toxoplasma gondii Nicolo` Tosetti1, Nicolas Dos Santos Pacheco1, Eloı¨se Bertiaux2, Bohumil Maco1, Lore` ne Bournonville2, Virginie Hamel2, Paul Guichard2, Dominique Soldati-Favre1* 1Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland; 2Department of Cell Biology, Sciences III, University of Geneva, Geneva, Switzerland Abstract The coccidian subgroup of Apicomplexa possesses an apical complex harboring a conoid, made of unique tubulin polymer fibers. This enigmatic organelle extrudes in extracellular invasive parasites and is associated to the apical polar ring (APR). The APR serves as microtubule- organizing center for the 22 subpellicular microtubules (SPMTs) that are linked to a patchwork of flattened vesicles, via an intricate network composed of alveolins. Here, we capitalize on ultrastructure expansion microscopy (U-ExM) to localize the Toxoplasma gondii Apical Cap protein 9 (AC9) and its partner AC10, identified by BioID, to the alveolin network and intercalated between the SPMTs. Parasites conditionally depleted in AC9 or AC10 replicate normally but are defective in microneme secretion and fail to invade and egress from infected cells. Electron microscopy revealed that the mature parasite mutants are conoidless, while U-ExM highlighted the disorganization of the SPMTs which likely results in the catastrophic loss of APR and conoid. Introduction *For correspondence: Toxoplasma gondii belongs to the phylum of Apicomplexa that groups numerous parasitic protozo- Dominique.Soldati-Favre@unige. ans causing severe diseases in humans and animals. As part of the superphylum of Alveolata, the ch Apicomplexa are characterized by the presence of the alveoli, which consist in small flattened single- membrane sacs, underlying the plasma membrane (PM) to form the inner membrane complex (IMC) Competing interest: See of the parasite.
    [Show full text]
  • (Alveolata) As Inferred from Hsp90 and Actin Phylogenies1
    J. Phycol. 40, 341–350 (2004) r 2004 Phycological Society of America DOI: 10.1111/j.1529-8817.2004.03129.x EARLY EVOLUTIONARY HISTORY OF DINOFLAGELLATES AND APICOMPLEXANS (ALVEOLATA) AS INFERRED FROM HSP90 AND ACTIN PHYLOGENIES1 Brian S. Leander2 and Patrick J. Keeling Canadian Institute for Advanced Research, Program in Evolutionary Biology, Departments of Botany and Zoology, University of British Columbia, Vancouver, British Columbia, Canada Three extremely diverse groups of unicellular The Alveolata is one of the most biologically diverse eukaryotes comprise the Alveolata: ciliates, dino- supergroups of eukaryotic microorganisms, consisting flagellates, and apicomplexans. The vast phenotypic of ciliates, dinoflagellates, apicomplexans, and several distances between the three groups along with the minor lineages. Although molecular phylogenies un- enigmatic distribution of plastids and the economic equivocally support the monophyly of alveolates, and medical importance of several representative members of the group share only a few derived species (e.g. Plasmodium, Toxoplasma, Perkinsus, and morphological features, such as distinctive patterns of Pfiesteria) have stimulated a great deal of specula- cortical vesicles (syn. alveoli or amphiesmal vesicles) tion on the early evolutionary history of alveolates. subtending the plasma membrane and presumptive A robust phylogenetic framework for alveolate pinocytotic structures, called ‘‘micropores’’ (Cavalier- diversity will provide the context necessary for Smith 1993, Siddall et al. 1997, Patterson
    [Show full text]
  • Repurposing of Conserved Autophagy-Related Protein ATG8 in a Divergent Eukaryote Maude Lévêque, Hoa Mai Nguyen, Sébastien Besteiro
    Repurposing of conserved autophagy-related protein ATG8 in a divergent eukaryote Maude Lévêque, Hoa Mai Nguyen, Sébastien Besteiro To cite this version: Maude Lévêque, Hoa Mai Nguyen, Sébastien Besteiro. Repurposing of conserved autophagy-related protein ATG8 in a divergent eukaryote. Communicative and Integrative Biology, Taylor & Francis Open, 2016, 9 (4), pp.e1197447. 10.1080/19420889.2016.1197447. hal-01824938 HAL Id: hal-01824938 https://hal.archives-ouvertes.fr/hal-01824938 Submitted on 1 Jun 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution - NonCommercial| 4.0 International License COMMUNICATIVE & INTEGRATIVE BIOLOGY 2016, VOL. 9, NO. 4, e1197447 (4 pages) http://dx.doi.org/10.1080/19420889.2016.1197447 ARTICLE ADDENDUM Repurposing of conserved autophagy-related protein ATG8 in a divergent eukaryote Maude F. Lev eque,^ Hoa Mai Nguyen, and Sebastien Besteiro DIMNP- UMR5235, CNRS, Universite de Montpellier, Montpellier, France ABSTRACT ARTICLE HISTORY Toxoplasma gondii and other apicomplexan parasites contain a peculiar non-photosynthetic plastid Received 18 May 2016 called the apicoplast, which is essential for their survival. The localization of autophagy-related Accepted 30 May 2016 protein ATG8 to the apicoplast in several apicomplexan species and life stages has recently been KEYWORDS described, and we have shown this protein is essential for proper inheritance of this complex plastid apicomplexa; apicoplast; into daughter cells during cell division.
    [Show full text]
  • Species Concepts and Malaria Parasites
    doi 10.1098/rspb.2000.1290 Speciesconceptsandmalariaparasites: detecting acrypticspeciesof Plasmodium Susan L.Perki ns { Department of Biology,University of Vermont, Burlington,VT 05405,USA Species ofmalaria parasite (phylum Apicomplexa: genus Plasmodium)havetraditionally been described usingthe similarity species concept(based primarily on di¡ erences inmorphological or life-history characteristics).Thebiological species concept(reproductive isolation) and phylogenetic species concept (basedon monophyly) have not been used beforein de¢ ning species of Plasmodium. Plasmodium azurophilum ,described from Anolis lizardsin the eastern Caribbean,is actuallya two-species cryptic complex.The parasites werestudied from eightislands, from Puerto Rico in the northto Grenada in the south.Morphology of the twospecies isverysimilar (di¡erences areindistinguishable to the eye),but one infects onlyerythrocytes andthe otheronly white blood cells. Moleculardata for the cytochrome b gene revealthat the twoforms arereproductively isolated ;distinct haplotypesare present oneachisland and arenever shared between the erythrocyte-infectingand leucocyte-infecting species. Eachforms amono- phyleticlineage indicating that theydiverged before becoming established inthe anolesof the eastern Caribbean.This comparison of the similarity,biologicaland phylogenetic species concepts formalaria parasites revealsthe limited valueof usingonly similarity measures inde¢ ning protozoan species. Keywords: Plasmodium;species concepts; cryptic species; malaria fora givenspecies
    [Show full text]
  • Is Chloroplastic Class IIA Aldolase a Marine Enzyme&Quest;
    The ISME Journal (2016) 10, 2767–2772 © 2016 International Society for Microbial Ecology All rights reserved 1751-7362/16 www.nature.com/ismej SHORT COMMUNICATION Is chloroplastic class IIA aldolase a marine enzyme? Hitoshi Miyasaka1, Takeru Ogata1, Satoshi Tanaka2, Takeshi Ohama3, Sanae Kano4, Fujiwara Kazuhiro4,7, Shuhei Hayashi1, Shinjiro Yamamoto1, Hiro Takahashi5, Hideyuki Matsuura6 and Kazumasa Hirata6 1Department of Applied Life Science, Sojo University, Kumamoto, Japan; 2The Kansai Electric Power Co., Environmental Research Center, Keihanna-Plaza, Kyoto, Japan; 3School of Environmental Science and Engineering, Kochi University of Technology, Kochi, Japan; 4Chugai Technos Corporation, Hiroshima, Japan; 5Graduate School of Horticulture, Faculty of Horticulture, Chiba University, Chiba, Japan and 6Environmental Biotechnology Laboratory, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan Expressed sequence tag analyses revealed that two marine Chlorophyceae green algae, Chlamydo- monas sp. W80 and Chlamydomonas sp. HS5, contain genes coding for chloroplastic class IIA aldolase (fructose-1, 6-bisphosphate aldolase: FBA). These genes show robust monophyly with those of the marine Prasinophyceae algae genera Micromonas, Ostreococcus and Bathycoccus, indicating that the acquisition of this gene through horizontal gene transfer by an ancestor of the green algal lineage occurred prior to the divergence of the core chlorophytes (Chlorophyceae and Treboux- iophyceae) and the prasinophytes. The absence of this gene in some freshwater chlorophytes, such as Chlamydomonas reinhardtii, Volvox carteri, Chlorella vulgaris, Chlorella variabilis and Coccomyxa subellipsoidea, can therefore be explained by the loss of this gene somewhere in the evolutionary process. Our survey on the distribution of this gene in genomic and transcriptome databases suggests that this gene occurs almost exclusively in marine algae, with a few exceptions, and as such, we propose that chloroplastic class IIA FBA is a marine environment-adapted enzyme.
    [Show full text]
  • Cryptosporidium Hominis N. Sp. (Apicomplexa: Cryptosporidiidae) from Homo Sapiens
    The Journal of Eukaryotic Microbiology Volume 49 November-December 2002 Number 6 J. Eukiiyor rMioohio/.. 49(6). 2002 pp. 433440 0 2002 by the Society oi Protozoologisls Cryptosporidium hominis n. sp. (Apicomplexa: Cryptosporidiidae) from Homo sapiens UNA M. MORGAN-RYAN,” ABBIE FALL; LUCY A. WARD? NAWAL HIJJAWI: IRSHAD SULAIMAN: RONALD FAYER,” R. C. ANDREW THOMPSON,” M. OLSON,’ ALTAF LAL‘ and LIHUA XUOC “Division of Veterinory and Biomedical Sciences, Murdoch University, Murdoch, Western Australia 6150, and bFood Animal Health Research Program and Department of Veterinuq Preveittative Medicine, Ohio Agricultural Research and Development Centre, The Ohio State University, Wooster, Ohio 44691 USA, rind ‘Division of Parasitic Diseases, National Center for Infectious Diseases, Centers for Disease Control and Prevention, Public Health Services, U. S. Department of Health and Huniun Services, Atlantu, Georgia 30341. and W. S. Department of Agriculture, Anitnal Waste Pathogen Laboratory, Beltsville, Maryland 20705, und eUniver.~ir)of Calgary., FaculQ of Medicine, Animal Resources Center, Department OJ‘ Gastrointestinal Science, 3330 Hospital DI-NW, Calgary, Albertu 72N 4NI, Canada ABSTRACT. The structure and infectivity of the oocysts of a new species of Cryptosporidiurn from the feces of humans are described. Oocysts are structurally indistinguishable from those of Cr.y~~tos€,oridiunlpurvum. Oocysts of the new species are passed fully sporulated, lack sporocysts, and measure 4.4-5.4 prn (mean = 4.86) X 4.4-5.9 pm (mean = 5.2 prn) with a length to width ratio 1 .&I .09 (mean 1.07) (n = 100). Oocysts were not infectious for ARC Swiss mice. nude mice, Wistat’ rat pups, puppies, kittens or calves, but were infectious to neonatal gnotobiotic pigs.
    [Show full text]