Modulation of Benzylisoquinoline Alkaloid Biosynthesis by Heterologous Expression of Cjwrky1 in Eschscholzia Californica Cells

Total Page:16

File Type:pdf, Size:1020Kb

Modulation of Benzylisoquinoline Alkaloid Biosynthesis by Heterologous Expression of Cjwrky1 in Eschscholzia Californica Cells RESEARCH ARTICLE Modulation of benzylisoquinoline alkaloid biosynthesis by heterologous expression of CjWRKY1 in Eschscholzia californica cells Yasuyuki Yamada¤*, Tomoe Shimada, Yukiya Motomura, Fumihiko Sato* Department of Plant Gene and Totipotency, Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kyoto, Japan ¤ Current address: Laboratory of Medicinal Cell Biology, Kobe Pharmaceutical University, Kobe, Japan * [email protected] (YY); [email protected] (FS) a1111111111 a1111111111 a1111111111 a1111111111 Abstract a1111111111 Transcription factors control many processes in plants and have high potentials to manipu- late specialized metabolic pathways. Transcriptional regulation of the biosynthesis of mono- terpenoid indole alkaloids (MIAs), nicotine alkaloids, and benzylisoquinoline alkaloids (BIAs) has been characterized using Catharanthus roseus, Nicotiana and Coptis plants. However, OPEN ACCESS metabolic engineering in which specific transcription factors are used in alkaloid biosynthe- Citation: Yamada Y, Shimada T, Motomura Y, Sato sis is limited. In this study, we characterized the effects of ectopic expression of CjWRKY1, F (2017) Modulation of benzylisoquinoline alkaloid which is a transcriptional activator with many targets in BIA biosynthesis in Coptis japonica biosynthesis by heterologous expression of CjWRKY1 in Eschscholzia californica cells. PLoS (Ranunculaceae) and Eschscholzia californica (California poppy, Papaveraceae). Heterolo- ONE 12(10): e0186953. https://doi.org/10.1371/ gous expression of CjWRKY1 in cultured California poppy cells induced increases in tran- journal.pone.0186953 scripts of several genes encoding BIA biosynthetic enzymes. Metabolite analyses indicated Editor: Turgay Unver, Dokuz Eylul Universitesi, that the overexpression of the CjWRKY1 gene also induced increases in the accumulation TURKEY of BIAs such as sanguinarine, chelerythrine, chelirubine, protopine, allocryptopine, and 10- Received: June 30, 2017 hydroxychelerythrine in the culture medium. Previous characterization of EcbHLH1 and cur- Accepted: October 10, 2017 rent results indicated that both transcription factors, WRKY1 and bHLH1, are substantially involved in the regulation of BIA biosynthesis. We discuss the function of CjWRKY1 in E. Published: October 27, 2017 californica cells and its potential for metabolic engineering in BIA biosynthesis. Copyright: © 2017 Yamada et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original Introduction author and source are credited. Plants produce structurally divergent, low molecular weight specialized secondary metabolites. Data Availability Statement: All relevant data are Alkaloids, which are nitrogen-containing compounds, are found in approximately 20% of within the paper and its Supporting Information plant species and often used as important pharmaceuticals, stimulants, and narcotics because files. of their strong biological activities [1]. Despite their usefulness, information on the biosyn- Funding: This research was supported by the thetic pathways of alkaloids is very limited to specific plant species. The biosynthesis of mono- Ministry of Education, Culture, Sports, Science and terpenoid indole alkaloids in Catharanthus roseus, nicotine alkaloids in Nicotiana plants, and Technology of Japan (MEXT) [Grant-in-Aid for benzylisoquinoline alkaloids (BIAs) in Papaver somniferum, Coptis japonica, and Eschscholzia Scientific Research (S); 26221201 to F.S.]. The funder had no role in study design, data collection californica, are well understood at the molecular level [2±5]. and analysis, decision to publish, or preparation of Here, we focus on BIAs, because they are among the most diverse alkaloids, with approxi- the manuscript. mately 2500 natural product structures [6]. BIAs include many pharmaceutically valuable PLOS ONE | https://doi.org/10.1371/journal.pone.0186953 October 27, 2017 1 / 15 CjWRKY1 modulates benzylisoquinoline alkaloid biosynthesis Competing interests: The authors have declared chemicals such as the analgesics morphine and codeine (in opium poppy, P. somniferum), anti- that no competing interests exist. adipogenics, the antimicrobial agent berberine in goldthread (C. japonica), and the antimicro- bial agent sanguinarine in California poppy (E. californica) [1, 3, 7]. Furthermore, the biosyn- thetic pathways of these BIAs have been intensively investigated at the molecular level [3, 8]. Several transcription factors have also been identified and characterized, including CjbHLH1 and EcbHLH1-1/EcbHLH1-2 (the homologs of CjbHLH1) from C. japonica and E. californica, respectively [9, 10], CjWRKY1 from C. japonica [11], and PsWRKY from opium poppy [12]. However, metabolic engineering approaches that use transcription factors in BIA biosynthesis are very limited, except for early attempts to use Arabidopsis thaliana WRKY1 (AtWRKY1) in California poppy and opium poppy to increase biosynthesis and production of BIAs [13]. In this report, we examined the effects of native WRKY in BIA biosynthesis. WRKYs are some of the most important plant-specific regulators in biotic and abiotic stress res- ponses, development, and senescence [14±16]. The WRKYs contain one or two copies of the WRKY DNA-binding domain, which is composed of approximately 60 amino acids and includes the highly conserved N-terminal motif WRKYGQK and a C-terminal zinc finger motif. CjWRKY1 isolated from C. japonica cells [11] belongs to Group IIc, a differ- ent clade from that of AtWRKY1, which belongs to Group I. However, whereas CjWRKY1 directly binds to the W-box element (TTGACC/T) [17] and functions as a comprehensive activator in BIA biosynthesis in C. japonica cells, the general function in the biosynthesis of BIAs in other species has yet to be determined. In fact, PsWRKY is proposed to be a transcriptional activator of BIA biosynthesis in opium poppy, because of the binding of PsWRKY to the W-box and the transactivation activity of PsWRKY against the tyrosine decarboxylase gene [12]. However, the actual role of PsWRKY in the biosynthesis of mor- phinan alkaloids in opium poppy plants remains to be determined. In this study, we used the California poppy as a model of BIA biosynthesis in Papaveraceae. This species has common biosynthetic pathways that produce BIAs (either reticuline or some protoberberines) from norcoclaurine, although sanguinarine is the primary alkaloid in Cali- fornia poppy (Fig 1). Importantly, genes encoding biosynthetic enzymes that convert (S)-reti- culine to sanguinarine have been isolated and characterized [18±24]. Furthermore, generation of stable transformants is easy in this plant species [10]. Thus, we evaluated the in vivo function of CjWRKY1 in transgenic California poppy cells by overexpression. Overexpression of the CjWRKY1 gene induced a clear increase in the expression of several genes encoding BIA biosynthetic enzymes and caused a large accumula- tion of several BIAs in the medium. Our results suggested that CjWRKY1 functioned in the regulation of BIA biosynthesis in California poppy plants. Correlations between the expression of genes encoding biosynthetic enzymes and alkaloid accumulations in transgenic cultured cells and the diversification of the functional regulation of transcription factors in BIA biosyn- thesis in BIA-producing plant species are discussed. Materials and methods Plant materials Suspension-cultured California poppy cells were grown on a gyratory shaker (90 rpm) at 23ÊC in the dark in Linsmaier-Skoog (LS) [25] medium (pH 5.7) containing 3% sucrose, 10 μM 1-naphthylacetic acid (NAA), and 1 μM benzyladenine (BA). Vector construction The full-length cDNA of CjWRKY1 (accession number: AB267401) with BamHI/SacI restric- tion sites was prepared by PCR and cloned into a pGEM-T Easy vector (Promega, Madison, PLOS ONE | https://doi.org/10.1371/journal.pone.0186953 October 27, 2017 2 / 15 CjWRKY1 modulates benzylisoquinoline alkaloid biosynthesis HO H3C O NCS N 6OMT CNMT CYP80B2 4’OMT N HO H HO CH L-tyrosine H H 3 HO NCS 6OMT CNMT CYP80B1 4’OMT HO H C O 3 BBE BBE (S)-norcoclaurine (S)-reticuline H3C O N HO H CYP719A5 OH CYP719A2/3 OCH3 TNMT G3OMT (S)-scoulerine O MSH CH SMT N 3 O O P6H O CYP719A1 O O O protopine CH THBO N 3 O O O O N O CH3 CH + O 3 N O CYP1/2 O O CH3 OCH dihydrosanguinarine G11OMT allocryptopine 3 OCH3 berberine SR DBOX O O O O HO H3C O O CYP2 O O O + + + + N N N N CH CH CH H3C O 3 H3C O 3 O 3 O CH3 H C O H C O O O 3 3 sanguinarine chelirubine chelerythrine 10-hydroxychelerythrine Fig 1. BIA biosynthetic pathways in BIA-producing plants. Black and gray letters show biosynthetic enzymes in C. japonica and E. californica, respectively. Broken lines indicate uncharacterized enzyme reactions. NCS, (S)-norcoclaurine synthase; 6OMT, (S)-norcoclaurine 6-O-methyltransferase; CNMT, (S)-coclaurine-N-methyltransferase; CYP80B1, (S)-N- methylcoclaurine 3'-hydroxylase; 4'OMT, (S)-3'-hydroxy-N-methylcoclaurine 4'-O-methyltransferase; BBE, berberine bridge enzyme; SMT, (S)-scoulerine 9-O-methyltransferase of C. japonica; CYP719A1, (S)-canadine synthase; THBO, (S)-tetrahydroprotoberberine oxidase; CYP719A5, (S)-cheilanthifoline synthase; CYP719A2/3, (S)-stylopine synthase; TNMT, (S)-tetrahydroprotoberberine cis-N-methyltransferase, MSH, (S)-N-methylstylopine 14-hydroxylase; P6H, protopine 6-hydroxylase; DBOX, dihydrobenzophenanthridine oxidase;
Recommended publications
  • “Biosynthesis of Morphine in Mammals”
    “Biosynthesis of Morphine in Mammals” D i s s e r t a t i o n zur Erlangung des akademischen Grades Doctor rerum naturalium (Dr. rer. nat.) vorgelegt der Naturwissenschaftlichen Fakultät I Biowissenschaften der Martin-Luther-Universität Halle-Wittenberg von Frau Nadja Grobe geb. am 21.08.1981 in Querfurt Gutachter /in 1. 2. 3. Halle (Saale), Table of Contents I INTRODUCTION ........................................................................................................1 II MATERIAL & METHODS ........................................................................................ 10 1 Animal Tissue ....................................................................................................... 10 2 Chemicals and Enzymes ....................................................................................... 10 3 Bacteria and Vectors ............................................................................................ 10 4 Instruments ........................................................................................................... 11 5 Synthesis ................................................................................................................ 12 5.1 Preparation of DOPAL from Epinephrine (according to DUNCAN 1975) ................. 12 5.2 Synthesis of (R)-Norlaudanosoline*HBr ................................................................. 12 5.3 Synthesis of [7D]-Salutaridinol and [7D]-epi-Salutaridinol ..................................... 13 6 Application Experiments .....................................................................................
    [Show full text]
  • 1. Introduction
    Introduction 1. Introduction 1.1. Alkaloids The term alkaloid is derived from Arabic word al-qali, the plant from which “soda” was first obtained (Kutchan, 1995). Alkaloids are a group of naturally occurring low-molecular weight nitrogenous compounds found in about 20% of plant species. The majority of alkaloids in plants are derived from the amino acids tyrosine, tryptophan and phenylalanine. They are often basic and contain nitrogen in a heterocyclic ring. The classification of alkaloids is based on their carbon-nitrogen skeletons; common alkaloid ring structures include the pyridines, pyrroles, indoles, pyrrolidines, isoquinolines and piperidines (Petterson et al., 1991; Bennett et al., 1994). In nature, plant alkaloids are mainly involved in plant defense against herbivores and pathogens. Many of these compounds have biological activity which makes them suitable for use as stimulants (nicotine, caffeine), pharmaceuticals (vinblastine), narcotics (cocaine, morphine) and poisons (tubocurarine). The discovery of morphine by the German pharmacist Friedrich W. Sertürner in 1806 began the field of plant alkaloid biochemistry. However, the structure of morphine was not determined until 1952 due to its stereochemical complexity. Major technical advances occurred in this field allowing for the elucidation of selected alkaloid biosynthetic pathways. Among these were the introduction of radiolabeled precursors in the 1950s and the establishment in the 1970s of plant cell suspension cultures as an abundant source of enzymes that could be isolated, purified and characterized. Finally, the introduction of molecular techniques has made possible the isolation of genes involved in alkaloid secondary pathways (Croteau et al., 2000; Facchini, 2001). 1.1.1. Benzylisoquinoline alkaloids Isoquinoline alkaloids represent a large and varied group of physiologically active natural products.
    [Show full text]
  • Structure of a Berberine Bridge Enzyme-Like Enzyme with an Active Site Specific to the Plant Family Brassicaceae
    Structure of a Berberine Bridge Enzyme-Like Enzyme with an Active Site Specific to the Plant Family Brassicaceae Daniel, Bastian; Wallner, Silvia; Steiner, Barbara; Oberdorfer, Gustav; Kumar, Prashant; van der Graaff, Eric; Roitsch, Thomas; Sensen, Christoph W; Gruber, Karl; Macheroux, Peter Published in: PLOS ONE DOI: 10.1371/journal.pone.0156892 Publication date: 2016 Document version Publisher's PDF, also known as Version of record Citation for published version (APA): Daniel, B., Wallner, S., Steiner, B., Oberdorfer, G., Kumar, P., van der Graaff, E., ... Macheroux, P. (2016). Structure of a Berberine Bridge Enzyme-Like Enzyme with an Active Site Specific to the Plant Family Brassicaceae. PLOS ONE, 11(6), e0156892. https://doi.org/10.1371/journal.pone.0156892 Download date: 08. Apr. 2020 RESEARCH ARTICLE Structure of a Berberine Bridge Enzyme-Like Enzyme with an Active Site Specific to the Plant Family Brassicaceae Bastian Daniel1, Silvia Wallner1, Barbara Steiner1, Gustav Oberdorfer2, Prashant Kumar2, Eric van der Graaff3, Thomas Roitsch3,4, Christoph W. Sensen5, Karl Gruber2, Peter Macheroux1* 1 Institute of Biochemistry, Graz University of Technology, Graz, Austria, 2 Institute of Molecular Biosciences, University of Graz, Graz, Austria, 3 Department of Plant and Environmental Sciences, a11111 University of Copenhagen, Copenhagen, Denmark, 4 Global Change Research Centre, Czech Globe AS CR, v.v.i., Drásov 470, Cz-664 24 Drásov, Czech Republic, 5 Institute of Molecular Biotechnology, Graz University of Technology, Graz, Austria * [email protected] OPEN ACCESS Abstract Citation: Daniel B, Wallner S, Steiner B, Oberdorfer Berberine bridge enzyme-like (BBE-like) proteins form a multigene family (pfam 08031), G, Kumar P, van der Graaff E, et al.
    [Show full text]
  • Dr. Duke's Phytochemical and Ethnobotanical Databases Chemicals Found in Papaver Somniferum
    Dr. Duke's Phytochemical and Ethnobotanical Databases Chemicals found in Papaver somniferum Activities Count Chemical Plant Part Low PPM High PPM StdDev Refernce Citation 0 (+)-LAUDANIDINE Fruit -- 0 (+)-RETICULINE Fruit -- 0 (+)-RETICULINE Latex Exudate -- 0 (-)-ALPHA-NARCOTINE Inflorescence -- 0 (-)-NARCOTOLINE Inflorescence -- 0 (-)-SCOULERINE Latex Exudate -- 0 (-)-SCOULERINE Plant -- 0 10-HYDROXYCODEINE Latex Exudate -- 0 10-NONACOSANOL Latex Exudate Chemical Constituents of Oriental Herbs (3 diff. books) 0 13-OXOCRYPTOPINE Plant -- 0 16-HYDROXYTHEBAINE Plant -- 0 20-HYDROXY- Fruit 36.0 -- TRICOSANYLCYCLOHEXA NE 0 4-HYDROXY-BENZOIC- Pericarp -- ACID 0 4-METHYL-NONACOSANE Fruit 3.2 -- 0 5'-O- Plant -- DEMETHYLNARCOTINE 0 5-HYDROXY-3,7- Latex Exudate -- DIMETHOXYPHENANTHRE NE 0 6- Plant -- ACTEONLYDIHYDROSANG UINARINE 0 6-METHYL-CODEINE Plant Father Nature's Farmacy: The aggregate of all these three-letter citations. 0 6-METHYL-CODEINE Fruit -- 0 ACONITASE Latex Exudate -- 32 AESCULETIN Pericarp -- 3 ALANINE Seed 11780.0 12637.0 0.5273634907250652 -- Activities Count Chemical Plant Part Low PPM High PPM StdDev Refernce Citation 0 ALKALOIDS Latex Exudate 50000.0 250000.0 ANON. 1948-1976. The Wealth of India raw materials. Publications and Information Directorate, CSIR, New Delhi. 11 volumes. 5 ALLOCRYPTOPINE Plant Father Nature's Farmacy: The aggregate of all these three-letter citations. 15 ALPHA-LINOLENIC-ACID Seed 1400.0 5564.0 -0.22115561650586155 -- 2 ALPHA-NARCOTINE Plant Jeffery B. Harborne and H. Baxter, eds. 1983. Phytochemical Dictionary. A Handbook of Bioactive Compounds from Plants. Taylor & Frost, London. 791 pp. 17 APOMORPHINE Plant Father Nature's Farmacy: The aggregate of all these three-letter citations. 0 APOREINE Fruit -- 0 ARABINOSE Fruit ANON.
    [Show full text]
  • Redalyc.Identification of Isoquinoline Alkaloids from Berberis Microphylla
    Boletín Latinoamericano y del Caribe de Plantas Medicinales y Aromáticas ISSN: 0717-7917 [email protected] Universidad de Santiago de Chile Chile MANOSALVA, Loreto; MUTIS, Ana; DÍAZ, Juan; URZÚA, Alejandro; FAJARDO, Víctor; QUIROZ, Andrés Identification of isoquinoline alkaloids from Berberis microphylla by HPLC ESI-MS/MS Boletín Latinoamericano y del Caribe de Plantas Medicinales y Aromáticas, vol. 13, núm. 4, 2014, pp. 324-335 Universidad de Santiago de Chile Santiago, Chile Available in: http://www.redalyc.org/articulo.oa?id=85631435002 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative © 2014 Boletín Latinoamericano y del Caribe de Plantas Medicinales y Aromáticas 13 (4): 324 - 335 ISSN 0717 7917 www.blacpma.usach.cl Artículo Original | Original Article In memorian Professor Luis Astudillo, Universidad de Talca, Chile Identification of isoquinoline alkaloids from Berberis microphylla by HPLC ESI-MS/MS [Identificación de alcaloides isoquinolínicos en Berberis microphylla G. Forst mediante CLAE IES-MS/MS] Loreto MANOSALVA1, Ana MUTIS2, Juan DÍAZ3, Alejandro URZÚA4, Víctor FAJARDO5 & Andrés QUIROZ2 1Doctorado en Ciencias de Recursos Naturales; 2Laboratorio de Ecología Química, Departamento de Ciencias Químicas y Recursos Naturales; 3Laboratory of Mass Spectrometry, Scientific and Technological Bioresource Nucleus (Bioren), Universidad de La Frontera, Temuco, Chile 4Laboratory of Chemical Ecology, Department of Environmental Sciences, Faculty of Chemistry and Biology, Universidad de Santiago de Chile 5Chile Laboratorio de Productos Naturales, Universidad de Magallanes, Punta Arenas, Chile Contactos | Contacts: Andrés QUIROZ - E-mail address: [email protected] Abstract: Berberis microphylla (G.
    [Show full text]
  • Diversity of the Mountain Flora of Central Asia with Emphasis on Alkaloid-Producing Plants
    diversity Review Diversity of the Mountain Flora of Central Asia with Emphasis on Alkaloid-Producing Plants Karimjan Tayjanov 1, Nilufar Z. Mamadalieva 1,* and Michael Wink 2 1 Institute of the Chemistry of Plant Substances, Academy of Sciences, Mirzo Ulugbek str. 77, 100170 Tashkent, Uzbekistan; [email protected] 2 Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Im Neuenheimer Feld 364, 69120 Heidelberg, Germany; [email protected] * Correspondence: [email protected]; Tel.: +9-987-126-25913 Academic Editor: Ipek Kurtboke Received: 22 November 2016; Accepted: 13 February 2017; Published: 17 February 2017 Abstract: The mountains of Central Asia with 70 large and small mountain ranges represent species-rich plant biodiversity hotspots. Major mountains include Saur, Tarbagatai, Dzungarian Alatau, Tien Shan, Pamir-Alai and Kopet Dag. Because a range of altitudinal belts exists, the region is characterized by high biological diversity at ecosystem, species and population levels. In addition, the contact between Asian and Mediterranean flora in Central Asia has created unique plant communities. More than 8100 plant species have been recorded for the territory of Central Asia; about 5000–6000 of them grow in the mountains. The aim of this review is to summarize all the available data from 1930 to date on alkaloid-containing plants of the Central Asian mountains. In Saur 301 of a total of 661 species, in Tarbagatai 487 out of 1195, in Dzungarian Alatau 699 out of 1080, in Tien Shan 1177 out of 3251, in Pamir-Alai 1165 out of 3422 and in Kopet Dag 438 out of 1942 species produce alkaloids. The review also tabulates the individual alkaloids which were detected in the plants from the Central Asian mountains.
    [Show full text]
  • Synthesis of Novel Compounds Based on Reticuline Scaffold for New Drugs Discovery Tam-Dan Batenburg-Nguyen University of Wollongong
    University of Wollongong Research Online University of Wollongong Thesis Collection University of Wollongong Thesis Collections 2005 Synthesis of novel compounds based on reticuline scaffold for new drugs discovery Tam-Dan Batenburg-Nguyen University of Wollongong Recommended Citation Batenburg-Nguyen, Tam-Dan, Synthesis of novel compounds based on reticuline scaffold for new drugs discovery, Doctor of Philosophy thesis, Department of Chemistry, Faculty of Science, University of Wollongong, 2005. http://ro.uow.edu.au/theses/1190 Research Online is the open access institutional repository for the University of Wollongong. For further information contact Manager Repository Services: [email protected]. Synthesis of Novel Compounds Based on the Reticuline Scaffold for New Drugs Discovery. A thesis submitted in fulfilment of the requirements for the award of the degree of Doctor of Philosophy From University of Wollongong Tam-Dan (Uta) Batenburg-Nguyen B. Adv. Med Chem (Hons) Department of Chemistry University of Wollongong Wollongong, Australia December, 2005 i Declaration I, Tam-Dan (Uta) Batenburg-Nguyen hereby declare that all materials presented in this thesis, submitted in the fulfillment of the requirements for the award of Doctor of Philosophy, in the Department of Chemistry, University of Wollongong, are exclusively of my own work. These materials have not been submitted for qualifications at any other academic institution, unless otherwise referenced or acknowledged. Tam-Dan (Uta) Batenburg-Nguyen December, 2005 ii Table of Contents DECLARATION…………………………………………………………………………… i LIST OF FIGURES………………………………………………………………………….xi LIST OF SCHEMES…………………………………………………………………xiv LIST OF TABLES………………………………………………………………………… .xx LIST OF ABBREVIATIONS…………………………………………………………… xxii ABSTRACT…………………………………………………………………………… xxviii ACKNOWLEDGEMENTS……………………………………………………………… xxxii CHAPTER 1 INTRODUCTION ............................................................................... 1 1.1. HISTORY OF NATURAL PRODUCTS. .............................................................. 2 1.2.
    [Show full text]
  • WO 2016/149821 Al 29 September 2016 (29.09.2016) P O P C T
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2016/149821 Al 29 September 2016 (29.09.2016) P O P C T (51) International Patent Classification: AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, C12N 9/02 (2006.01) C12N 15/81 (2006.01) BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, C12N 1/19 (2006.01) C12N 9/04 (2006.01) DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, C12N 15/53 (2006.01) CI2P 17/10 (2006.01) HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, C12N 15/54 (2006.01) C12P 17/12 (2006.01) KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, (21) International Application Number: PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, PCT/CA2016/050334 SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, (22) International Filing Date: TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. 23 March 2016 (23.03.2016) (84) Designated States (unless otherwise indicated, for every (25) Filing Language: English kind of regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, (26) Publication Language: English TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, (30) Priority Data: TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, 62/136,912 23 March 2015 (23.03.2015) US DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, (71) Applicant: VALORBEC SOCIETE EN COMMAN¬ SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, DITE [CA/CA]; 355 Peel, Carrefour INGO, Suite 503, GW, KM, ML, MR, NE, SN, TD, TG).
    [Show full text]
  • Influence of Different Elicitors on BIA Production in Macleaya Cordata
    www.nature.com/scientificreports OPEN Infuence of diferent elicitors on BIA production in Macleaya cordata Peng Huang1,2,7, Liqiong Xia3,7, Li Zhou1,7, Wei Liu1,4, Peng Wang1, Zhixing Qing5* & Jianguo Zeng1,6* Sanguinarine (SAN) and chelerythrine (CHE) have been widely used as substitutes for antibiotics for decades. For a long time, SAN and CHE have been extracted from mainly Macleaya cordata, a plant species that is a traditional herb in China and belongs to the Papaveraceae family. However, with the sharp increase in demand for SAN and CHE, it is necessary to develop a new method to enhance the supply of raw materials. Here, we used methyl jasmonate (MJ), salicylic acid (SA) and wounding alone and in combination to stimulate aseptic seedlings of M. cordata at 0 h, 24 h, 72 h and 120 h and then compared the diferences in metabolic profles and gene expression. Ultimately, we found that the efect of using MJ alone was the best treatment, with the contents of SAN and CHE increasing by 10- and 14-fold, respectively. However, the increased SAN and CHE contents in response to combined wounding and MJ were less than those for induced by the treatment with MJ alone. Additionally, after MJ treatment, SAN and CHE biosynthetic pathway genes, such as those encoding the protopine 6-hydroxylase and dihydrobenzophenanthridine oxidase enzymes, were highly expressed, which is consistent with the accumulation of SAN and CHE. At the same time, we have also studied the changes in the content of synthetic intermediates of SAN and CHE after elicitor induction.
    [Show full text]
  • Modulatory Effects of Eschscholzia Californica Alkaloids on Recombinant GABAA Receptors
    Hindawi Publishing Corporation Biochemistry Research International Volume 2015, Article ID 617620, 9 pages http://dx.doi.org/10.1155/2015/617620 Research Article Modulatory Effects of Eschscholzia californica Alkaloids on Recombinant GABAA Receptors Milan Fedurco,1 Jana Gregorová,2 Kristýna Šebrlová,2 Jana Kantorová,2 Ondlej Peš,2 Roland Baur,3 Erwin Sigel,3 and Eva Táborská2 1 Michelin Recherche et Technique S.A., Route Andre-Piller´ 30, 1762 Givisiez, Switzerland 2Department of Biochemistry, Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic 3Institute of Biochemistry and Molecular Medicine, University of Bern, Buhlstrasse¨ 28, 3012 Bern, Switzerland Correspondence should be addressed to Milan Fedurco; [email protected] Received 28 July 2015; Revised 5 September 2015; Accepted 15 September 2015 Academic Editor: Emanuel Strehler Copyright © 2015 Milan Fedurco et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The California poppy (Eschscholzia californica Cham.) contains a variety of natural compounds including several alkaloids found exclusively in this plant. Because of the sedative, anxiolytic, and analgesic effects, this herb is currently sold in pharmacies in many countries. However, our understanding of these biological effects at the molecular level is still lacking. Alkaloids detected in E. californica could be hypothesized to act at GABAA receptors, which are widely expressed in the brain mainly at the inhibitory interneurons. Electrophysiological studies on a recombinant 1 2 2 GABAA receptor showed no effect of N-methyllaurotetanine at concentrations lower than 30 M. However, ()-reticuline behaved as positive allosteric modulator at the 3, 5,and6 isoforms of GABAA receptors.
    [Show full text]
  • Research Article Modulatory Effects of Eschscholzia Californica Alkaloids on Recombinant GABAA Receptors
    Hindawi Publishing Corporation Biochemistry Research International Volume 2015, Article ID 617620, 9 pages http://dx.doi.org/10.1155/2015/617620 Research Article Modulatory Effects of Eschscholzia californica Alkaloids on Recombinant GABAA Receptors Milan Fedurco,1 Jana Gregorová,2 Kristýna Šebrlová,2 Jana Kantorová,2 Ondlej Peš,2 Roland Baur,3 Erwin Sigel,3 and Eva Táborská2 1 Michelin Recherche et Technique S.A., Route Andre-Piller´ 30, 1762 Givisiez, Switzerland 2Department of Biochemistry, Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic 3Institute of Biochemistry and Molecular Medicine, University of Bern, Buhlstrasse¨ 28, 3012 Bern, Switzerland Correspondence should be addressed to Milan Fedurco; [email protected] Received 28 July 2015; Revised 5 September 2015; Accepted 15 September 2015 Academic Editor: Emanuel Strehler Copyright © 2015 Milan Fedurco et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The California poppy (Eschscholzia californica Cham.) contains a variety of natural compounds including several alkaloids found exclusively in this plant. Because of the sedative, anxiolytic, and analgesic effects, this herb is currently sold in pharmacies in many countries. However, our understanding of these biological effects at the molecular level is still lacking. Alkaloids detected in E. californica could be hypothesized to act at GABAA receptors, which are widely expressed in the brain mainly at the inhibitory interneurons. Electrophysiological studies on a recombinant 1 2 2 GABAA receptor showed no effect of N-methyllaurotetanine at concentrations lower than 30 M. However, ()-reticuline behaved as positive allosteric modulator at the 3, 5,and6 isoforms of GABAA receptors.
    [Show full text]
  • Argemone Ochroleuca: (PAPAVERACEAE), ALKALOID POTENTIAL SOURCE for AGRICULTURAL and MEDICINAL USES †
    Tropical and Subtropical Agroecosystems 23 (2020): #31 Hernández-Ruiz et al., 2020 Review [Revisión] Argemone ochroleuca: (PAPAVERACEAE), ALKALOID POTENTIAL SOURCE FOR AGRICULTURAL AND MEDICINAL USES † [Argemone ochroleuca: (PAPAVERACEAE), FUENTE POTENCIAL DE ALCALOIDES PARA LA AGRICULTURA, Y USO MEDICINAL] J. Hernández-Ruiz1, J. Bernal2, J. Gonzales-Castañeda1, J. E. Ruiz-Nieto1 and A. I. Mireles-Arriaga1* 1División de Ciencias de la Vida, Universidad de Guanajuato. Km 9 carretera Irapuato-Silao, Ex Hacienda. El Copal, Irapuato, Guanajuato. 36500 México. Email: [email protected] 2Department of Entomology, Texas A&M University, College Station, TX 77843-247, USA *Corresponding author SUMMARY Background. The genus Argemone contains 24 species, A. ochorleuca is present in national territory and is used in agriculture and traditional medical treatments for various conditions. Results. A. ochorleuca is an herbaceous and/or perennial plant that blooms all year. This plant had the potential as a source of benzyl isoquinoline alkaloids, which are the main bioactive compounds responsible for antibacterial, antifungal properties. However, some of these compounds are associated with toxic effects too. Information about concentrations and parts of the plant it is important for all uses and applications. Implications. The present work summarizes available information on phytochemical and medicinal properties. Conclusion. In A. ochrolecuca, six of the 45 alkaloids reported for the genus Argemone have been studied, dihydro-keleritrin and dihydro-sanguiranine are the most abundant in the seeds and vegetative tissue of the species. The updated information should be useful to guide future research on this plant. Keywords: Alkaloids; papaveraceae; berberine; sanguinarine. RESUMEN Antecedentes. El género Argemone contiene 24 especies, A.
    [Show full text]