ACE Inhibitors in Congestive Heart Failure Theodore R

Total Page:16

File Type:pdf, Size:1020Kb

ACE Inhibitors in Congestive Heart Failure Theodore R Clinical Review ACE Inhibitors in Congestive Heart Failure Theodore R. Kantner, MD Lubbock, Texas Despite improved understanding of both disease mech­ nin-angiotensin-aldosterone system. In addition, some anisms and the quality of care, congestive heart failure studies indicate that ACE inhibitors may improve (CHF) remains a serious clinical problem. The tradi­ symptoms and survival. Recent evidence suggests that tional treatments, diuretics and digitalis, continue to in patients with mild to moderate CHF, ACE inhibitor play a major role in the management of many patients and a diuretic should be administered with or w ithout with CHF; however, in the last decade, angiotensin­ digitalis to achieve the maximum clinical benefit. converting enzyme (ACE) inhibitors have been added Key words. Angiotensin-converting enzyme inhibitors; as an important treatment option. These agents coun­ heart failure, congestive. teract the overstimulation effects of diuretics on the rc- / Tam Tract 1992; 35:305-314. Congestive heart failure (CHF) is a serious and growing output, in turn, triggers a number of interrelated hor­ clinical problem. Although our understanding of the monal and neurohormonal responses designed to in­ disease process has improved over the last several dec­ crease blood volume and systemic vascular resistance to ades, the incidence of CHF has increased, w'hile the maintain perfusion of major organ systems. However, survival rate has not substantially improved. There are hormonal and neurohormonal overstimulation contrib­ approximately 3 million existing cases and 400,000 new' utes to decompensation, perpetuating the downward spi­ cases of CHF each year in the United States.12 The ral of heart failure. 5-year survival rate of patients treated wfith the traditional One of the most important of these responses is regimen of diuretics and digitalis glycosides remains less activation of the renin-angiotensin-aldosterone (RAA) than 50%.3 4 Development of new, more effective treat­ system, which is primarily stimulated by reduced perfu­ ments for CHF has therefore been a medical priority. sion of the kidney.5-7 As a result, renin is released, and The purpose of this review is to briefly summarize angiotensinogen is converted to the physiologically inac­ the pathophysiology of CHF and to discuss the major tive peptide angiotensin I. The angiotensin-converting therapeutic interventions, addressing especially the enzyme then transforms angiotensin I into the potent emerging evidence for the utility of the angiotensin­ vasoconstrictor angiotensin II. In addition to increasing converting enzyme (ACE) inhibitors in this difficult vascular resistance, angiotensin II also stimulates the treatment situation. This review focuses on the most secretion of aldosterone from the adrenal glands.5 The common cause of heart failure, which results from sys­ release of aldosterone causes an increase in blood volume tolic left ventricular dysfunction. due to the retention of sodium and water and excretion of potassium.1-6 The resulting arterial vasoconstriction increases im­ Overview of Pathophysiology pedance to left ventricular ejection, further impairing cardiac performance, and also limits blood flow to skel­ In congestive heart failure due to systolic dysfunction, etal muscles, leading to fatigue.8 The sodium-retentive myocardial contractility, left ventricular performance, effects of aldosterone result in increases in blood volume and cardiac output arc reduced. The decline in cardiac and left ventricular filling pressure, contributing to pul­ monary edema.5-8 This increase in blood volume also raises atrial filling pressures and contributes to peripheral Submitted, revised, February 13, 1992. edema. From the Department of Family Medicine, Texas Tech University Health Sciences Other biochemical and metabolic changes observed Center, Lubbock, Texas. Requests for reprints should be addressed to Theodore R. in heart failure include increases in the levels of circulat­ Kantner, M D, Department of Family Medicine, Texas Tech University Health Sciences Center, Lubbock, T X 79430. ing catecholamines1-9 and plasma vasopressin,1-10 and © 1992 Appleton & Lange ISSN 0094-3509 The Journal of Family Practice, Vol. 35, No. 3, 1992 305 ACE Inhibitors in Congestive Heart Failure Kantner Causal Factors patients.13-14 In addition, diuretics can stimulate the RAA system, producing markedly increased plasma renin and angiotensin II activity, with concurrently raised plasma aldosterone levels.1516 Diuretic therapy may also stimulate the sympathetic nervous system, causing an increase in circulating norepinephrine levels.15’16 These stimulatory effects can further increase systemic vascular t Systemic Vascular 4 Cardiac Output resistance and reduce cardiac output, thereby exacerbat­ Resistance (afterload) ing the vicious circle of heart failure.5 A large percentage of patients who are adequately controlled initially begin t Blood Volume (preload) T LVED Pressure to experience clinical deterioration within months when managed on diuretic monotherapy.13 These limitations indicate that although diuretics continue to be highly useful in CHF, they may not represent optimal treatment when used alone. Figure 1. Vicious circle of heart failure. Decreased cardiac Digitalis output causes stimulation of the renin-angiotensin-aldosterone system and aldosterone release. The resultant vasoconstriction After more than 200 years of clinical use, the efficacy and and increased systemic vascular resistance eventually act to safety of digitalis glycosides in all degrees of CHF remain perpetuate heart failure. LVED denotes left ventricular end- controversial.5’17 The usefulness of digitalis has been diastolic pressure; RAAS, renin-angiotensin-aldosterone sys­ demonstrated in severe heart failure and in cases where tem; SNS, sympathetic nervous system. (From Faxon.1 Re­ atrial fibrillation is a complication of CHF.5’18 Conflict­ printed with permission from the American Heart Journal.) ing data have been reported concerning the use of digi­ talis in the treatment of patients with mild to moderate decreases in plasma levels of bradykinin and vasodilatory CHF and normal sinus rhythm. Several controlled trials prostaglandins.1 All of these responses may be useful to have found the drug to be effective in the treatment of compensate for acute heart failure; however, they are some patients with chronic heart failure in normal sinus deleterious in chronic heart failure, leading to progres­ rhythm.19-20 In contrast, placebo-controlled, double- sively declining myocardial function and organ perfusion blind investigations by Fleg et al21’22 did not demonstrate (Figure l).1 The degree of activation of the ncurohor- any noticeable effect of digoxin on symptoms in patients monal system has been shown to be inversely related to with mild CHF. Further, whether discontinuation of prognosis in patients with CHF.511 digoxin in mild CHF leads to clinical deterioration has not been established.21-23-24 An additional consideration in the decision to institute treatment with digitalis gly­ Principal Treatments cosides in CHF is their potential for arrhythmic ef­ fects.25-27 Sudden cardiac death, presumably due to ven­ Diuretics tricular arrhythmias, is the terminal event in approximately 40% of patients with CHF.26 Digitalis Diuretic therapy remains a key component of treatment sensitizes the heart to low concentrations of potassium, a for all classes of heart failure. These agents stimulate risk factor for the development of arrhythmias.26 The excretion of sodium and water, thereby reducing pulmo­ assessment of digitalis may be complicated because dig­ nary congestion and improving dyspnea and edema. Po­ italis toxicity can occur in some patients at drug levels tent loop diuretics, such as furosemide and bumetanidc, generally regarded as safe, whereas in other patients even are preferred in patients with severe heart failure, whereas elevated levels of digitalis may not produce symptoms of oral thiazides may suffice for patients with milder condi­ toxicity or ECG abnormalities.5’28 Finally, an association tions.5 A loop diuretic can also be used in combination between digitalis and increased mortality in patients who with a thiazide or mctolazone (a quinazolinc) to achieve have had a myocardial infarction has been reported.29’30 an added effect.512 Despite these conflicting studies, in general the data Despite their considerable value in CHF, there are a suggest that digitalis remains a valuable therapeutic agent number of serious considerations regarding the use of for relieving symptoms and improving exercise perfor­ diuretic therapy. Diuretics may deplete electrolytes and mance and left: ventricular function in patients with con­ increase the risk of ventricular arrhythmias in susceptible gestive heart failure.31 It has been suggested, however, continued on page 309 306 The Journal of Family Practice, Vol. 35, No. 3, 1992 ACE Inhibitors in Congestive Heart Failure Kantner O— o Placebo (n = 26) o—o Placebo (n - 25) A— A C a p to p ril (n = 46) A— A Captopril (n > 43) Significantly < baseline (P < .05) ■“ Significantly < baseline (P < .001) Significantly < baseline (P < .01) Baseline Weeks of Therapy Baseline Weeks of Therapy Figure 2. New York Heart Association (NYHA) functional class ratings (left) and exercise tolerance (right) for patients treated with captopril or placebo in addition to digoxin and diuretics. (From Captopril Multicenter Research Group.34 Reprinted with permission from the Journal
Recommended publications
  • Angiotensin-Converting Enzyme Inhibitors Or Angiotensin II Receptor Blockers and the Risk of Developing Rheumatoid Arthritis in Antihypertensive Drug Users
    Jong, H.J.I. de, Vandebriel, R.J., Saldi, S.R.F., Dijk, L. van, Loveren, H. van, Cohen Tervaert, J.W., Klungel, O.H. Angiotensin-converting enzyme inhibitors or angiotensin II receptor blockers and the risk of developing rheumatoid arthritis in antihypertensive drug users. Pharmacoepidemiology and Drug Safety: 2012, 21(8), 835-843 Postprint Version 1.0 Journal website http://dx.doi.org/10.1002/pds.3291 Pubmed link http://www.ncbi.nlm.nih.gov/pubmed/22674737 DOI 10.1002/pds.3291 This is a NIVEL certified Post Print, more info at http://www.nivel.eu Angiotensin-converting enzyme inhibitors or angiotensin II receptor blockers and the risk of developing rheumatoid arthritis in antihypertensive drug users†‡ HILDA J. I. DE JONG1,2,3, ROB J. VANDEBRIEL1, SITI R. F. SALDI3, LISET VAN DIJK4, HENK VAN LOVEREN1,2, JAN WILLEM COHEN TERVAERT5, OLAF H. KLUNGEL3,* ABSTRACT Purpose: Angiotensin-converting enzyme (ACE) inhibitors and angiotensin II receptor blockers (ARBs) are effective in the treatment of cardiovascular disease. Next to effects on hypertension and cardiac function, these drugs have anti-inflammatory and immunomodulating properties which may either facilitate or protect against the development of autoimmunity, potentially resulting in autoimmune diseases. Therefore, we determined in the current study the association between ACE inhibitor and ARB use and incident rheumatoid arthritis (RA). Methods: A matched case–control study was conducted among patients treated with antihypertensive drugs using the Netherlands Information Network of General Practice (LINH) database in 2001–2006. Cases were patients with a first-time diagnosis of RA. Each case was matched to five controls for age, sex, and index date, which was selected 1 year before the first diagnosis of RA.
    [Show full text]
  • Ace Inhibitors (Angiotensin-Converting Enzyme)
    Medication Instructions Ace Inhibitors (Angiotensin-Converting Enzyme) Generic Brand Benazepril Lotensin Captopril Capoten Enalapril Vasotec Fosinopril Monopril Lisinopril Prinivil, Zestril Do not Moexipril Univasc Quinapril Accupril stop taking Ramipril Altace this medicine Trandolapril Mavik About this Medicine unless told ACE inhibitors are used to treat both high blood pressure (hypertension) and heart failure (HF). They block an enzyme that causes blood vessels to constrict. This to do so allows the blood vessels to relax and dilate. Untreated, high blood pressure can damage to your heart, kidneys and may lead to stroke or heart failure. In HF, using by your an ACE inhibitor can: • Protect your heart from further injury doctor. • Improve your health • Reduce your symptoms • Can prevent heart failure. Generic forms of ACE Inhibitors (benazepril, captopril, enalapril, fosinopril, and lisinopril) may be purchased at a lower price. There are no “generics” for Accupril, Altace Mavik, and of Univasc. Thus their prices are higher. Ask your doctor if one of the generic ACE Inhibitors would work for you. How to Take Use this drug as directed by your doctor. It is best to take these drugs, especially captopril, on an empty stomach one hour before or two hours after meals (unless otherwise instructed by your doctor). Side Effects Along with needed effects, a drug may cause some unwanted effects. Many people will not have any side effects. Most of these side effects are mild and short-lived. Check with your doctor if any of the following side effects occur: • Fever and chills • Hoarseness • Swelling of face, mouth, hands or feet or any trouble in swallowing or breathing • Dizziness or lightheadedness (often a problem with the first dose) Report these side effects if they persist: • Cough – dry or continuing • Loss of taste, diarrhea, nausea, headache or unusual fatigue • Fast or irregular heartbeat, dizziness, lightheadedness • Skin rash Special Guidelines • Sodium in the diet may cause you to retain fluid and increase your blood pressure.
    [Show full text]
  • Deprescribing for Older Patients
    CMAJ Review CME Deprescribing for older patients Christopher Frank MD, Erica Weir MD MSc See related editorial at www.cmaj.ca/lookup/doi:10.1503/cmaj.122099 and articles at www.cmaj.ca/lookup/doi:10.1503/cmaj.122012 and www.cmaj.ca/lookup/doi:10.1503/cmaj.130523 he principles that guide optimal prescribing outcomes related to medications than other older Competing interests: None for older patients1,2 (Box 1) include depre- patients. They are also more likely to have limited declared. scribing medications that are no longer indi- life expectancy than well older people of similar This article has been peer T 17 cated, appropriate or aligned with evolving goals of age. Medication lists tend to lengthen as patients reviewed. care. Deprescribing is a relatively new term that age, and there are few guidelines to inform medi- Correspondence to: focuses attention on the sometimes overlooked step cation management in the context of polyphar- Christopher Frank, frankc in medication review of stopping medications to macy, multiple morbidities and age-related @providencecare.ca improve outcomes and decrease risks associated changes to pharmacokinetics and pharmacody- CMAJ 2014. DOI:10.1503 with polypharmacy in older people.3–5 These risks namics (Box 1). All prescribers contributing to the /cmaj.131873 include nonadherence,6 adverse drug reactions,7 medication list need to be alert to “prescribing functional and cognitive decline,8 and falls.9,10 In inertia”18 (the tendency to automatically renew a Canada, more than 50% of older people living in medication even when the original indication is long-term care facilities and 27% of those living in no longer present) and should view polypharmacy the community take more than five medications a as an impetus to deprescribe when appropriate.
    [Show full text]
  • Icatibant Compared to Steroids and Antihistamines for ACE-Inhibitor-Induced Angioedema
    KNOWLEDGE TO PRACTICE DES CONNAISSANCES ÀLA PRATIQUE CJEM Journal Club Icatibant Compared to Steroids and Antihistamines for ACE-Inhibitor-Induced Angioedema Reviewed by: Tudor Botnaru, MD, CM*; Antony Robert, MD, MASc*; Salvatore Mottillo, MD, MSc* syndromes, and acute heart failure NYHA class III or Article chosen IV,aswellasthosepregnantandlactating,were Bas M, Greve J, Stelter K, et al. A Randomized Trial of excluded. Icatibant in ACE-Inhibitor-Induced Angioedema. N Engl J Med 2015;372:418-25. doi:10.1056/NEJMoa1312524. STUDY DESIGN This was an industry and government funded, multi-centre, Keywords: angioedema, icatibant, corticosteroids, ACE-inhibitor, antihistamines double-blind, double-dummy randomized phase 2 study. Block randomization was performed online. Patients were randomly assigned in a 1:1 ratio. Primary investigators and BACKGROUND patients were blinded to the treatment. Investigators who were responsible for the randomization, study-drug administration, and assessment of injection site reactions Angiotensin-converting-enzyme-inhibitor (ACEI) induced were aware of study assignments. Patients in the treatment angioedema occurs in 0.68% of those taking the group received icatibant 30 mg subcutaneously and those in medication1 and accounts for one-third of angioedema the control group (standard therapy group) received pre- cases treated in the emergency department. Upper airway dnisolone 500 mg and clemastine 2 mg (an antihistamine) compromise, potentially leading to acute laryngeal intravenously. Patients assessed the intensity of symptoms obstruction and death, may occur in up to 10% of cases.1,2 at several intervals within 48 hours. Blinded investigators Standard therapy consists of glucocorticoids and anti- further assessed the signs and symptoms. If there was no histamines.
    [Show full text]
  • Angiotensin Modulators/Calcium Channel Blocker Combinations Review 02/05/2009
    Angiotensin Modulators/Calcium Channel Blocker Combinations Review 02/05/2009 Copyright © 2004 - 2009 by Provider Synergies, L.L.C. All rights reserved. Printed in the United States of America. All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, digital scanning, or via any information storage and retrieval system without the express written consent of Provider Synergies, L.L.C. All requests for permission should be mailed to: Attention: Copyright Administrator Intellectual Property Department Provider Synergies, L.L.C. 5181 Natorp Blvd., Suite 205 Mason, Ohio 45040 The materials contained herein represent the opinions of the collective authors and editors and should not be construed to be the official representation of any professional organization or group, any state Pharmacy and Therapeutics committee, any state Medicaid Agency, or any other clinical committee. This material is not intended to be relied upon as medical advice for specific medical cases and nothing contained herein should be relied upon by any patient, medical professional or layperson seeking information about a specific course of treatment for a specific medical condition. All readers of this material are responsible for independently obtaining medical advice and guidance from their own physician and/or other medical professional in regard to the best course of treatment for their specific medical condition. This publication, inclusive of all forms contained herein, is intended to be educational in nature and is intended to be used for informational purposes only. Comments and suggestions may be sent to [email protected].
    [Show full text]
  • Angiotensin-Converting Enzyme (ACE) Inhibitors
    Angiotensin-Converting Enzyme (ACE) Inhibitors Summary Blood pressure reduction is similar for the ACE inhibitors class, with no clinically meaningful differences between agents. Side effects are infrequent with ACE inhibitors, and are usually mild in severity; the most commonly occurring include cough and hypotension. Captopril and lisinopril do not require hepatic conversion to active metabolites and may be preferred in patients with severe hepatic impairment. Captopril differs from other oral ACE inhibitors in its rapid onset and shorter duration of action, which requires it to be given 2-3 times per day; enalaprilat, an injectable ACE inhibitor also has a rapid onset and shorter duration of action. Pharmacology Angiotensin Converting Enzyme Inhibitors (ACE inhibitors) block the conversion of angiotensin I to angiotensin II through competitive inhibition of the angiotensin converting enzyme. Angiotensin is formed via the renin-angiotensin-aldosterone system (RAAS), an enzymatic cascade that leads to the proteolytic cleavage of angiotensin I by ACEs to angiotensin II. RAAS impacts cardiovascular, renal and adrenal functions via the regulation of systemic blood pressure and electrolyte and fluid balance. Reduction in plasma levels of angiotensin II, a potent vasoconstrictor and negative feedback mediator for renin activity, by ACE inhibitors leads to increased plasma renin activity and decreased blood pressure, vasopressin secretion, sympathetic activation and cell growth. Decreases in plasma angiotensin II levels also results in a reduction in aldosterone secretion, with a subsequent decrease in sodium and water retention.[51035][51036][50907][51037][24005] ACE is found in both the plasma and tissue, but the concentration appears to be greater in tissue (primarily vascular endothelial cells, but also present in other organs including the heart).
    [Show full text]
  • Basic Cardiac Rhythms – Identification and Response Module 1 ANATOMY, PHYSIOLOGY, & ELECTRICAL CONDUCTION Objectives
    Basic Cardiac Rhythms – Identification and Response Module 1 ANATOMY, PHYSIOLOGY, & ELECTRICAL CONDUCTION Objectives ▪ Describe the normal cardiac anatomy and physiology and normal electrical conduction through the heart. ▪ Identify and relate waveforms to the cardiac cycle. Cardiac Anatomy ▪ 2 upper chambers ▪ Right and left atria ▪ 2 lower chambers ▪ Right and left ventricle ▪ 2 Atrioventricular valves (Mitral & Tricuspid) ▪ Open with ventricular diastole ▪ Close with ventricular systole ▪ 2 Semilunar Valves (Aortic & Pulmonic) ▪ Open with ventricular systole ▪ Open with ventricular diastole The Cardiovascular System ▪ Pulmonary Circulation ▪ Unoxygenated – right side of the heart ▪ Systemic Circulation ▪ Oxygenated – left side of the heart Anatomy Coronary Arteries How The Heart Works Anatomy Coronary Arteries ▪ 2 major vessels of the coronary circulation ▪ Left main coronary artery ▪ Left anterior descending and circumflex branches ▪ Right main coronary artery ▪ The left and right coronary arteries originate at the base of the aorta from openings called the coronary ostia behind the aortic valve leaflets. Physiology Blood Flow Unoxygenated blood flows from inferior and superior vena cava Right Atrium Tricuspid Valve Right Ventricle Pulmonic Valve Lungs Through Pulmonary system Physiology Blood Flow Oxygenated blood flows from the pulmonary veins Left Atrium Mitral Valve Left Ventricle Aortic Valve Systemic Circulation ▪ Blood Flow Through The Heart ▪ Cardiology Rap Physiology ▪ Cardiac cycle ▪ Represents the actual time sequence between
    [Show full text]
  • Pulse Wave Analysis to Estimate Cardiac Output
    CLINICAL FOCUS REVIEW Jerrold H. Levy, M.D., F.A.H.A., F.C.C.M., Editor Pulse Wave Analysis to Estimate Cardiac Output Karim Kouz, M.D., Thomas W. L. Scheeren, M.D., Daniel de Backer, M.D., Bernd Saugel, M.D. ardiac output (CO)–guided therapy is a promising reference CO value measured using an indicator dilution Capproach to hemodynamic management in high-risk method (transpulmonary thermodilution or lithium dilu- patients having major surgery1 and in critically ill patients tion).5,9 CO measurement using indicator dilution methods with circulatory shock.2 Pulmonary artery thermodilu- requires a (central) venous catheter for indicator injection tion remains the clinical reference method for CO mea- upstream in the circulation and a dedicated arterial catheter Downloaded from http://pubs.asahq.org/anesthesiology/article-pdf/134/1/119/513741/20210100.0-00023.pdf by guest on 29 September 2021 surement,3 but the use of the pulmonary artery catheter and measurement system to detect downstream indicator decreased over the past two decades.4 Today, various CO temperature or concentration changes.5,9–11 monitoring methods with different degrees of invasiveness The VolumeView system (Edwards Lifesciences, are available, including pulse wave analysis.5 Pulse wave USA) and the PiCCO system (Pulsion Medical Systems, analysis is the mathematical analysis of the arterial blood Germany) calibrate pulse wave analysis–derived CO to pressure waveform and enables CO to be estimated con- transpulmonary thermodilution–derived CO. To measure tinuously and in real time.6 In this article, we review pulse CO using transpulmonary thermodilution, a bolus of cold wave analysis methods for CO estimation, including their crystalloid solution is injected in the central venous circu- underlying measurement principles and their clinical appli- lation.10 The cold indicator bolus injection causes changes cation in perioperative and intensive care medicine.
    [Show full text]
  • Effects of Statins on Renin–Angiotensin System
    Journal of Cardiovascular Development and Disease Review Effects of Statins on Renin–Angiotensin System Nasim Kiaie 1,†, Armita Mahdavi Gorabi 1,†, Željko Reiner 2, Tannaz Jamialahmadi 3,4, Massimiliano Ruscica 5 and Amirhossein Sahebkar 6,7,8,9,* 1 Research Center for Advanced Technologies in Cardiovascular Medicine, Tehran Heart Center, Tehran University of Medical Sciences, Tehran 1411713138, Iran; [email protected] (N.K.); [email protected] (A.M.G.) 2 Department of Internal Diseases, School of Medicine, University Hospital Center Zagreb, Zagreb University, 10000 Zagreb, Croatia; [email protected] 3 Quchan Branch, Department of Food Science and Technology, Islamic Azad University, Quchan 9479176135, Iran; [email protected] 4 Department of Nutrition, Mashhad University of Medical Sciences, Mashhad 9177948564, Iran 5 Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20133 Milan, Italy; [email protected] 6 Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad 9177948564, Iran 7 Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad 9177948564, Iran 8 School of Medicine, The University of Western Australia, Perth 6009, Australia 9 School of Pharmacy, Mashhad University of Medical Sciences, Mashhad 9177948564, Iran * Correspondence: [email protected] or [email protected] † Equally contributed. Abstract: Statins, a class of drugs for lowering serum LDL-cholesterol, have attracted attention because of their wide range of pleiotropic effects. An important but often neglected effect of statins is their role in the renin–angiotensin system (RAS) pathway. This pathway plays an integral role in the progression of several diseases including hypertension, heart failure, and renal disease.
    [Show full text]
  • JUGULAR VENOUS PRESSURE Maddury Jyotsna
    INDIAN JOURNAL OF CARDIOVASCULAR DISEASES JOURNAL in women (IJCD) 2017 VOL 2 ISSUE 2 CLINICAL ROUNDS 1 WINCARS JVP- JUGULAR VENOUS PRESSURE Maddury Jyotsna DEFINITION OF JUGULAR VENOUS PULSE AND The external jugular vein descends from the angle of the PRESSURE mandible to the middle of the clavicle at the posterior Jugular venous pulse is defined as the oscillating top of border of the sternocleidomastoid muscle. The external vertical column of blood in the right Internal Jugular jugular vein possesses valves that are occasionally Vein (IJV) that reflects the pressure changes in the right visible. Blood flow within the external jugular vein is atrium in cardiac cycle. In other words, Jugular venous nonpulsatile and thus cannot be used to assess the pressure (JVP) is the vertical height of oscillating column contour of the jugular venous pulse. of blood (Fig 1). Reasons for Internal Jugular Vein (IJV) preferred over Fig 1: Schematic diagram of JVP other neck veins are IJV is anatomically closer to and has a direct course to right atrium while EJV does not directly drain into Superior vena cava. It is valve less and pulsations can be seen. Due to presence of valves in External Jugular vein, pulsations cannot be seen. Vasoconstriction secondary to hypotension (as in congestive heart failure) can make EJV small and barely visible. EJV is superficial and prone to kinking. Partial compression of the left in nominate vein is usually relieved during modest inspiration as the diaphragm and the aorta descend and the pressure in the two internal
    [Show full text]
  • Chapter 9 Monitoring of the Heart and Vascular System
    Chapter 9 Monitoring of the Heart and Vascular System David L. Reich, MD • Alexander J. Mittnacht, MD • Martin J. London, MD • Joel A. Kaplan, MD Hemodynamic Monitoring Cardiac Output Monitoring Arterial Pressure Monitoring Indicator Dilution Arterial Cannulation Sites Analysis and Interpretation Indications of Hemodynamic Data Insertion Techniques Systemic and Pulmonary Vascular Resistances Central Venous Pressure Monitoring Frank-Starling Relationships Indications Monitoring Coronary Perfusion Complications Electrocardiography Pulmonary Arterial Pressure Monitoring Lead Systems Placement of the Pulmonary Artery Catheter Detection of Myocardial Ischemia Indications Intraoperative Lead Systems Complications Arrhythmia and Pacemaker Detection Pacing Catheters Mixed Venous Oxygen Saturation Catheters Summary References HEMODYNAMIC MONITORING For patients with severe cardiovascular disease and those undergoing surgery associ- ated with rapid hemodynamic changes, adequate hemodynamic monitoring should be available at all times. With the ability to measure and record almost all vital physi- ologic parameters, the development of acute hemodynamic changes may be observed and corrective action may be taken in an attempt to correct adverse hemodynamics and improve outcome. Although outcome changes are difficult to prove, it is a rea- sonable assumption that appropriate hemodynamic monitoring should reduce the incidence of major cardiovascular complications. This is based on the presumption that the data obtained from these monitors are interpreted correctly and that thera- peutic decisions are implemented in a timely fashion. Many devices are available to monitor the cardiovascular system. These devices range from those that are completely noninvasive, such as the blood pressure (BP) cuff and ECG, to those that are extremely invasive, such as the pulmonary artery (PA) catheter. To make the best use of invasive monitors, the potential benefits to be gained from the information must outweigh the potential complications.
    [Show full text]
  • Online Appendix
    The More We Die, The More We Sell? A Simple Test of the Home-Market Effect Online Appendix Arnaud Costinot Dave Donaldson MIT, CEPR, and NBER MIT, CEPR, and NBER Margaret Kyle Heidi Williams Mines ParisTech and CEPR MIT and NBER December 28, 2018 1 Contents A Theoretical Appendix3 A.1 Multinational Enterprises (Section III.1)..........................3 A.2 Log-Linearization (Section III.2)...............................3 A.3 Beyond Perfect Competition (Section III.3).........................6 A.3.1 Monopolistic Competition..............................6 A.3.2 Variable Markups...................................7 A.3.3 Endogenous Innovation...............................8 A.3.4 Price Regulations...................................9 A.4 Bilateral Sales (Section VI.1)................................. 12 B Empirical Appendix 12 B.1 Rich versus Poor Countries................................. 12 B.2 Additional Empirical Results................................ 13 B.3 Benchmarking IMS MIDAS data.............................. 13 B.3.1 Benchmarking to the OECD HealthStat Data................... 13 B.3.2 Benchmarking to the MEPS Data.......................... 14 B.4 ATC to GBD Mapping.................................... 15 2 A Theoretical Appendix A.1 Multinational Enterprises (Section III.1) In this appendix, we illustrate how to incorporate multinational production into our basic envi- ronment. Following Ramondo and Rodríguez-Clare(2013), suppose that each firm headquartered in country i that sells drugs targeting disease n in country j 6= i can choose the country l in which its production takes place. If l = i, then the firm exports, if l = j, it engages in horizontal FDI, and if l 6= i, j, it engages in platform FDI. Like in Ramondo and Rodríguez-Clare(2013), we assume that firm-level production functions exhibit constant returns to scale, but we further allow for external economies of scale at the level of the headquarter country for each disease.
    [Show full text]