Biological Control Strategies for Western Flower and

Gerben Messelink, Wageningen UR Greenhouse Horticulture

Nursery/Floriculture Insect symposium, Watson Ville, December 12, 2013 Wageningen University and Research Centre

Social Sciences Group

Animal Sciences Group

Environmental Sciences Group

Plant Sciences Group

Agrotechnology and Food Sciences Group Wageningen UR Greenhouse Horticulture

° Mission: Initiate and stimulate innovations for a sustainable greenhouse sector ° Strategic and applied research ° Staff: > 100 researchers Location: Bleiswijk

¢ 90 greenhouse compartments ¢ Crop protection laboratories ¢ Test facility taste of products ¢ Innovation and Demonstration Centre Greenhouse as Energy Source Greenhouse area: 10000 ha, ± 45% in Westland-Oostland 2009 Total area (ha) 10325 Floriculture 5435 Cut flowers 2690 Potplants 1460 Other (eg. gardenplants) 1285

Food 4890 Vegetables 4560 Fruit 330 Damage caused by thrips

Options for biological control

stage BioControl agent

eggs unknown

Young larvae Predatory mites (cucumeris, swirskii, limonicus, montdorensis)

Older larvae Predatory limonicus, predatory bugs

pupae (in soil) Soil-dwelling predatory mites, Staphylinid beetles, entomopathogenic nematodes, predatory fly larvae

Adult thrips Predatory bugs, entomopathogenic fungi

Evaluation phytoseiids on cucumber 2003

1400

1200 predatory mites thrips larvae 1000 800 600 400

relative abundancerelative (%) 200 0

ri s i is ii y al sk p ir T. sw eris NDS E. ovalis m N. barker E. scut T. T. limonicus cu E. finlandicu N. cucumerisI. degenerans . cu N Generalist predatory mites

whiteflies thrips Spider mites Amblyseius swirskii feeding on whitefly eggs and thrips larvae

How do predators perform in presence of > 1 pest species? Variation in morphology of predatory mites Selection should be based on both pests and plant traits

° Some predatory mites feed on plant tissue (depending on their morphology)! ° Differences in micro-climate ° Differences in plant provided food (nectar, pollen) Dr. Palevsky, Israel ° Differences in numbers and diversity of prey important plant traits

Extrafloral nectar

Predatory mite eggs on domatia leaves with pollen perform well perform in roses: in Euseius gallicus Euseius and Due tofeeding? Due nectar+ plant

Euseius ovalisEuseius Selection of predatory mites for chrysanthemum

° 1000 predatory mites/plot of 7 m2 ° Follow in 6 crop cycles predatory mite densities

40

35 roofmijten uitzet

30 a

25 a a

20 ab 15 bc 10 d cd

5 d Roofmijtdichtheid (gemiddelde per takken) 3per (gemiddelde Roofmijtdichtheid

0 2 6 10 2 6 10 2 6 10 2 6 10 2 6 10 2 6 10 2 6 10 2 6 10 onbehandeld N. barkeri N. cucumeris A. andersoni N. reductus A. limonicus A. swirskii A. montdorensis Exploring the potential of soil-dwelling predatory mites:

Greenhouse survey’s in 38 companies: ° 2002: 7x organic greenhouse vegetables ° 2005: 10x chrysanthemums ° 2006: 16x amaryllis ° 2007: 5x freesia’s Results of survey’s in Dutch greenhouses> 22 species

species number of companies Ameroseius corbiculus 2 Arctoseius cetratus 7 aculeifer 10 Hypoaspis angusta 5 3 Hypoaspis spp. 8 Lasioseius fimetorum 2 Lasioseius sp. 1 Macrocheles robustulus 7 Macrochelus spp. 4 Macrochelus subbadius 3 Macrochelus vagabundus 1 Neoseiulus barkeri 7 Pachylaelaps imitans 1 Parasitus concors 1 Parasitus islandicus 3 Parasitus luminarissimilis 1 Parasitus spp . 17 Proctolaelaps pygmaeus 2 Proctolaelaps ventrianalis 1 Rhodacarus spp small 7 Rhodacarus spp. Large 9 Results of survey’s in Dutch greenhouses

80

70 soil-dwelling predatory mites > 400 µm 60

50

40

30

20

companiespresent (%) where 10

0

e e ida da itidae ini aras aelapidae P Podoc hyl Macrochel Rhodacaridae Ameroseiidae Pac Species tested for laboratory predation experiment

Parasitus concors Hypoaspis aculeifer (ca. 800 µm) (550-685 µm) Hypoaspis miles Macrocheles robustulus (520-650 µm) (660-770 µm) Predation rates of thrips pupae in the lab

7 a a 6

5 b b 4

3

2

1 predation rate (thripspupae/24h) rate predation

0 P. concors H. miles H. aculeifer M. robustulus Macrocheles robustulus feeding on a thrips pupae Assessing effects on thrips: cage experiments

° Chrysanthemum plants in cages ° Releasing 50 thrips females/cage ° After one week removing adults, adding soil-dwelling mites and a sticky plate ° After 4 weeks: collecting sticky plates and analyzing soil with Tullgren funnels Assessing effects on thrips in cage experiments Results cage experiment

600

a ab 500

400

300 bc cd d 200

100

Thrips density (number/sticky plate) (number/sticky Thrips density 0 control H. aculeifer H. aculeifer M. M. low high robustulus robustulus low high Other soil-dwelling predators

Larvae of Coenosia attenuata

Atheta coriaria Control of adult thrips with Orius spp. Control of adult thrips with entomopathogenic fungi Reproduction after infection

20 onbehandeld a Beauveria bassiana 18 ab Metarhizium anisopliae 16 abc 14 12 cde bcde 10 bcd 8 de e 6 e 4

Aantal nakomelingen per tripsvrouwtje per nakomelingen Aantal 2 0 15 °C 20 °C 25 °C Project “Lure & Infect” Tips & Tricks for controlling thrips

° Combine several biocontrol agents that target different stages of thrips ° Select the most suitable predatory mite for your crop depending on target pests, climate and food present ° Take preventive measures: establish populations of predators ° Be aware that efficacy of entomopathogenic fungi and nematodes strongly depend on humidity, thrips stage, and thrips behaviour Spider mites and tarsonemid mites Specialist predator: Phytoseiulus persimilis Mites in amaryllis The bulb scale mite: Steneotarsonemus laticeps

The bulb scale mite: Steneotarsonemus laticeps

Some facts: ° Very tiny tarsonemid mite (200 µm) ° Causing red decoloration, growth inhibition, flower deformation ° Ca. 90 % of the amaryllis nurseries are contaminated ° Easily overlooked ° Control based on chemicals ° Little knowledge from literature Options for biological control

° Phytoseiid predatory mites do have potential for biological control (successes with other tarsonemid mites) ° Mass releases of Neoseiulus cucumeris not succesful in amaryllis (IPM-project) ° Soil-dwelling predatory mites (Hypoaspis) are suggested Greenhouse survey of 15 amaryllis nurseries

number of location in plant predatory mite species nurseries size (µm)* roots where bulb leaves and soil observed Proctolaelaps ventrianalis 260 – 285 1 x x Rhodacarus sp .(small) 300 3 x x Arctoseius cetratus 310 – 360 1 x Proctolaelaps pygmaeus 345 – 410 2 x x Neoseiulus barkeri 350 – 380 7 x x x Ameroseius corbiculus 450 1 x x Lasioseius sp. 450 1 x Hypoaspis miles 520 – 650 2 x x Hypoaspis angusta 545 5 x x Hypoaspis aculeifer 550 – 685 6 x x Parasitus sp . 600 1 x Rhodacarus sp .(large) 600 5 x x Parasitus islandicus 650 – 730 2 x x Macrocheles robustulus 660 – 770 1 x Parasitus luminarissimilis 675 - 720 1 x * mea n len gth of ♀ idiosoma Laboratory tests

100 a 90

ab b 80 predation attempt 70 succesful predation

60

50

40 percentage (%) percentage 30

20 c

10 c 0 N. barkeri A. andersoni N. cucumeris H. miles H. aculeifer Laboratory tests

1.0

0.9 barkeri 0.8

0.7 andersoni cucumeris 0.6 observed 0.5 simulation 0.4

0.3 y = -0.0044x + 2.4067

fraction effective predations 2 0.2 R = 0.9938 miles 0.1 aculeifer 0.0 300 350 400 450 500 550 600 mean body length female predatory mite (µm) feeding on bulb onfeeding mitebulb scale

Neoseius barkeri Hypoaspis more interested in larger prey? Further steps

° Is Neoseiulus barkeri able to eliminate bulb scale mites into amaryllis bulbs? ° Is Neoseiulus barkeri able to restrict contamination of amaryllis bulbs with the bulb scale mite from “hot spots”? ° Do mass releases on nurseries make sense? Set up small scale greenhouse experiment

AB AC

BC CB

CA BA

blok 1 deur blok 2 blok 3 deur blok 4

deur deur

= gezonde amaryllisbol

= amaryllisbol met narcismijt Set up small scale greenhouse experiment Results greenhouse experiment

80

70 untreated control N. barkeri 60 A. andersoni 3e release of A. andersoni 50

40 e 2 release of predatory mites

30

e 20 1 release of predatory mites

10 % bulbs% with symptoms of bulb scale mite 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 Time (week number in 2006) Results final assessment after 18 weeks

100

90 bulbs leaves 80

70

60

50

40

30 mean precentage of injury precentage ofmean 20

10

0 control A. andersoni N. barkeri Conclusion

Generalist predatory mites are able to slow down spread of tarsonemid mites, but combined treatments with pesticides may be required to control them Thanks for your atention

Questions

Space for partner logo’s (place a white shape behind the logo’s to hide this text and border)