RESUMEN Panicum Coloratum Es Una Especie C4 Perenne Originaria Del
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A Phylogeny of the Hubbardochloinae Including Tetrachaete (Poaceae: Chloridoideae: Cynodonteae)
Peterson, P.M., K. Romaschenko, and Y. Herrera Arrieta. 2020. A phylogeny of the Hubbardochloinae including Tetrachaete (Poaceae: Chloridoideae: Cynodonteae). Phytoneuron 2020-81: 1–13. Published 18 November 2020. ISSN 2153 733 A PHYLOGENY OF THE HUBBARDOCHLOINAE INCLUDING TETRACHAETE (CYNODONTEAE: CHLORIDOIDEAE: POACEAE) PAUL M. PETERSON AND KONSTANTIN ROMASCHENKO Department of Botany National Museum of Natural History Smithsonian Institution Washington, D.C. 20013-7012 [email protected]; [email protected] YOLANDA HERRERA ARRIETA Instituto Politécnico Nacional CIIDIR Unidad Durango-COFAA Durango, C.P. 34220, México [email protected] ABSTRACT The phylogeny of subtribe Hubbardochloinae is revisited, here with the inclusion of the monotypic genus Tetrachaete, based on a molecular DNA analysis using ndhA intron, rpl32-trnL, rps16 intron, rps16- trnK, and ITS markers. Tetrachaete elionuroides is aligned within the Hubbardochloinae and is sister to Dignathia. The biogeography of the Hubbardochloinae is discussed, its origin likely in Africa or temperate Asia. In a previous molecular DNA phylogeny (Peterson et al. 2016), the subtribe Hubbardochloinae Auquier [Bewsia Gooss., Dignathia Stapf, Gymnopogon P. Beauv., Hubbardochloa Auquier, Leptocarydion Hochst. ex Stapf, Leptothrium Kunth, and Lophacme Stapf] was found in a clade with moderate support (BS = 75, PP = 1.00) sister to the Farragininae P.M. Peterson et al. In the present study, Tetrachaete elionuroides Chiov. is included in a phylogenetic analysis (using ndhA intron, rpl32- trnL, rps16 intron, rps16-trnK, and ITS DNA markers) in order to test its relationships within the Cynodonteae with heavy sampling of species in the supersubtribe Gouiniodinae P.M. Peterson & Romasch. Chiovenda (1903) described Tetrachaete Chiov. with a with single species, T. -
Panicum Coloratum Scientific Name Panicum Coloratum L
Tropical Forages Panicum coloratum Scientific name Panicum coloratum L. Subordinate taxa: cv. Bambatsi post-flowering, Eritrea var. makarikariense cv. Bambatsi, pre- Panicum coloratum L. var. makarikariense Gooss. flowering Panicum coloratum L. var. coloratum Synonyms var. makarikariense: Panicum makarikariense (Gooss.) Rensb. var. coloratum: Panicum swynnertonii Rendle Family/tribe var. coloratum (Klein grass) reselection from RSA (APG 55524) Family: Poaceae (alt. Gramineae) subfamily: tribe: subtribe: Panicoideae Paniceae Panicinae. var. coloratum, large, robust, Kabulabula type (APG 54512) Morphological description A highly variable species, in the P. coloratum - P. stapfianum complex, with types varying in appearance from small and fine to large and robust. A shortly rhizomatous, tufted (erect, geniculate or decumbent) perennial, sometimes with long spreading stolons; stems 2‒4 mm in diameter, and culms 0.3‒1.5 m tall at maturity; culm-nodes glabrous, rarely pubescent. Foliage mostly 20‒70 cm tall; ligule a ciliate membrane sometimes cv. Bushman Mine, strongly Stoloniferous form of var. coloratum reduced to a ring of short hairs; leaf-blade base simple, stoloniferous, drought-hardy perennial, (CPI 59876) with characteristics intermediate broadly rounded, cordate or auriculate; leaf blades between var. coloratum and var. makarikariense. glabrous to pilose, 5‒40 cm long and 4‒14 mm wide, varying in colour from green to glaucous blue-green; apex acute, or acuminate. Panicle open, erect or nodding, 6‒30 (‒40) cm long, the lower branches mostly single, occasionally paired, rarely whorled, appressed, ascending, or spreading; spikelets green and purple, 2‒3 mm long, obtuse or subacute. 0.8‒1.4 million seeds per kg. Inflorescence an erect or nodding, open var. -
Global Relationships Between Plant Functional Traits and Environment in Grasslands
GLOBAL RELATIONSHIPS BETWEEN PLANT FUNCTIONAL TRAITS AND ENVIRONMENT IN GRASSLANDS EMMA JARDINE A thesis submitted in partial fulfilment of the requirements for the degree of Doctor of Philosophy The University of Sheffield Department of Animal and Plant Sciences Submission Date July 2017 ACKNOWLEDGMENTS First of all I am enormously thankful to Colin Osborne and Gavin Thomas for giving me the opportunity to undertake the research presented in this thesis. I really appreciate all their invaluable support, guidance and advice. They have helped me to grow in knowledge, skills and confidence and for this I am extremely grateful. I would like to thank the students and post docs in both the Osborne and Christin lab groups for their help, presentations and cake baking. In particular Marjorie Lundgren for teaching me to use the Licor, for insightful discussions and general support. Also Kimberly Simpson for all her firey contributions and Ruth Wade for her moral support and employment. Thanks goes to Dave Simpson, Maria Varontsova and Martin Xanthos for allowing me to work in the herbarium at the Royal Botanic Gardens Kew, for letting me destructively harvest from the specimens and taking me on a worldwide tour of grasses. I would also like to thank Caroline Lehman for her map, her useful comments and advice and also Elisabeth Forrestel and Gareth Hempson for their contributions. I would like to thank Brad Ripley for all of his help and time whilst I was in South Africa. Karmi Du Plessis and her family and Lavinia Perumal for their South African friendliness, warmth and generosity and also Sean Devonport for sharing all the much needed teas and dub. -
A Checklist of Lesotho Grasses
Guidelines for Using the Checklist The genera and species are arranged in alphabetical order. Accepted genus and species names are in bold print, for example, Agrostis barbuligera. Synonyms are in italics, for example, Agrostis natalensis. Not all synonyms for a species are listed. Naturalised taxa are preceded by an asterisk, for example, Pennisetum *clandestinum. These are species that were intro- duced from outside Lesotho but now occur in the wild as part of the natural flora. Single letters after the species names, on the right-hand side of the column, indicate the distribution of species within Lesotho as reflected by the ROML and MASE collections. This indicates that a species has definitely been recorded in Lesotho. L—Lowlands F—Foothills M—Mountains S—Senqu Valley Double letters after species names, on the right-hand side of the column, indicate the distribution of species along the border with South Africa as reflected in the literature. This indicates that a species could occur in Lesotho, but has not yet been recorded. KN—KwaZulu-Natal FS—Free State EC—Eastern Cape Literature references are abbreviated as follows: G—Gibbs Russell et al. (1990) J—Jacot Guillarmod (1971) SCH—Schmitz (1984) V—Van Oudtshoorn (1999) For example, G:103 refers to page 103 in the Gibbs Russell et al. (1990) publication, Grasses of southern Africa. The seven-digit number to the right of the genus names is the numbering system followed at Kew Herbarium (K) and used in Arnold & De Wet (1993) and Leistner (2000). N M F L M Free State S Kwa-Zulu Natal Key L Lowlands Zone Maize (Mabalane) F Foothills Zone Sorghum M Mountain Zone Wheat (Maloti) S Senqu Valley Zone Peas Cattle Beans Scale 1 : 1 500 000 Sheep and goats 20 40 60 km Eastern Cape Zones of Lesotho based on agricultural practices. -
New Hawaiian Plant Records from Herbarium Pacificum for 2019
Published online: 29 April 2020 ISSN (online) 2376-3191 Records of the Hawaii Biological Survey for 2019. Edited by Neal L. Evenhuis. Bishop Museum Occasional Papers 129: 67 –92 (2020) New Hawaiian plant records from Herbarium Pacificum for 2019 CLydE T. I mAdA & B ArBArA H. K ENNEdy Hawaii Biological Survey, Bishop Museum, 1525 Bernice St., Honolulu, Hawai‘i 96817-2704, USA; email: [email protected]; [email protected] reducing the backlog of unprocessed historical collections in Bishop museum’s Herbarium Pacificum , combined with a sweep through the Hawaiian vascular plant data - base, has revealed a number of new plant records for the Hawaiian Islands. Among these are four new state records (naturalized taxa previously unrecorded in Hawai‘i), four new naturalized records (naturalized taxa previously known only in cultivation in Hawai‘i), numerous new island records (naturalized taxa now reported on a new island), and one cultivated species showing signs of adventive naturalization. Among the 51 taxa included in this paper, all are introduced except for 4 native taxa ( Cyperus hillebrandii var. hille - brandii, Microlepia strigosa var. mauiensis, Peperomia cookiana, Panicum fauriei var. carteri ). All identifications of taxa included in this paper were made by staff of Bishop museum’s department of Natural Sciences/Botany, except where noted in the acknowl - edgments, and all supporting voucher specimens are on deposit at Herbarium Pacificum (BISH), except as otherwise noted. readers of the Records of the Hawaii Biological Survey should note that Herbarium Pacificum subscribes to the taxonomic constructs recommended by the Angiosperm Phylogeny Group (1998, 2003, 2009, 2016) and Pteridophyte Phylogeny Group (2016). -
A Classification of the Chloridoideae (Poaceae)
Molecular Phylogenetics and Evolution 55 (2010) 580–598 Contents lists available at ScienceDirect Molecular Phylogenetics and Evolution journal homepage: www.elsevier.com/locate/ympev A classification of the Chloridoideae (Poaceae) based on multi-gene phylogenetic trees Paul M. Peterson a,*, Konstantin Romaschenko a,b, Gabriel Johnson c a Department of Botany, National Museum of Natural History, Smithsonian Institution, Washington, DC 20013, USA b Botanic Institute of Barcelona (CSICÀICUB), Pg. del Migdia, s.n., 08038 Barcelona, Spain c Department of Botany and Laboratories of Analytical Biology, Smithsonian Institution, Suitland, MD 20746, USA article info abstract Article history: We conducted a molecular phylogenetic study of the subfamily Chloridoideae using six plastid DNA Received 29 July 2009 sequences (ndhA intron, ndhF, rps16-trnK, rps16 intron, rps3, and rpl32-trnL) and a single nuclear ITS Revised 31 December 2009 DNA sequence. Our large original data set includes 246 species (17.3%) representing 95 genera (66%) Accepted 19 January 2010 of the grasses currently placed in the Chloridoideae. The maximum likelihood and Bayesian analysis of Available online 22 January 2010 DNA sequences provides strong support for the monophyly of the Chloridoideae; followed by, in order of divergence: a Triraphideae clade with Neyraudia sister to Triraphis; an Eragrostideae clade with the Keywords: Cotteinae (includes Cottea and Enneapogon) sister to the Uniolinae (includes Entoplocamia, Tetrachne, Biogeography and Uniola), and a terminal Eragrostidinae clade of Ectrosia, Harpachne, and Psammagrostis embedded Classification Chloridoideae in a polyphyletic Eragrostis; a Zoysieae clade with Urochondra sister to a Zoysiinae (Zoysia) clade, and a Grasses terminal Sporobolinae clade that includes Spartina, Calamovilfa, Pogoneura, and Crypsis embedded in a Molecular systematics polyphyletic Sporobolus; and a very large terminal Cynodonteae clade that includes 13 monophyletic sub- Phylogenetic trees tribes. -
Resource Use Efficiency of C4 Grasses with Different Evolutionary Origins
RESOURCE USE EFFICIENCY OF C4 GRASSES WITH DIFFERENT EVOLUTIONARY ORIGINS Harshini Sugandika Uswattha Liyanange Pinto A thesis submitted in fulfilment of the requirements for the degree of Doctor of Philosophy Degree Hawkesbury Institute for the Environment University of Western Sydney Australia SEPTEMBER 2015 This thesis is dedicated to my parents and beloved husband for their endless support and encouragement. ACKNOWLEDGEMENTS It is with great pleasure that I wish to express my utmost gratitude to my principal supervisor, Dr. Oula Ghannoum for her continuous encouragement, advice, and guidance. She has been a source of generosity, insight and inspiration; guiding me in all my efforts throughout my candidature. I owe my research achievements to her enthusiastic supervision. I acknowledge with great gratitude my co-supervisors Prof. David Tissue, Prof. Jann Conroy and Dr. Robert Sharwood who provided me with the unflinching encouragement, support and feedback during the candidature. Successful completion of this thesis would not have been possible without your invaluable insights and comments on my work. I am also thankful to Dr. Jeff Powell, Dr. Barbara Drigo (HIE-UWS), Dr. Pascal- Antoine Christin and Dr. Rebecca Atkinson (Sheffield University, UK) for their generous support in statistical analysis. I would like to thank Ms. Liz Kabanoff and Dr. Anya Salih (UWS) for their kind help and support on microscopy. I am also thankful to Dr. Kristine Crous and Dr. Craig Barton (UWS) for their assistance with the tuneable diode laser and carbon isotope discrimination measurements. I gratefully acknowledge the University of Western Sydney and the Hawkesbury Institute for the Environment for granting me the Australian Postgraduate Award. -
A Molecular Phylogeny and Classification of the Cynodonteae
TAXON 65 (6) • December 2016: 1263–1287 Peterson & al. • Phylogeny and classification of the Cynodonteae A molecular phylogeny and classification of the Cynodonteae (Poaceae: Chloridoideae) with four new genera: Orthacanthus, Triplasiella, Tripogonella, and Zaqiqah; three new subtribes: Dactylocteniinae, Orininae, and Zaqiqahinae; and a subgeneric classification of Distichlis Paul M. Peterson,1 Konstantin Romaschenko,1,2 & Yolanda Herrera Arrieta3 1 Smithsonian Institution, Department of Botany, National Museum of Natural History, Washington, D.C. 20013-7012, U.S.A. 2 M.G. Kholodny Institute of Botany, National Academy of Sciences, Kiev 01601, Ukraine 3 Instituto Politécnico Nacional, CIIDIR Unidad Durango-COFAA, Durango, C.P. 34220, Mexico Author for correspondence: Paul M. Peterson, [email protected] ORCID PMP, http://orcid.org/0000-0001-9405-5528; KR, http://orcid.org/0000-0002-7248-4193 DOI https://doi.org/10.12705/656.4 Abstract Morphologically, the tribe Cynodonteae is a diverse group of grasses containing about 839 species in 96 genera and 18 subtribes, found primarily in Africa, Asia, Australia, and the Americas. Because the classification of these genera and spe cies has been poorly understood, we conducted a phylogenetic analysis on 213 species (389 samples) in the Cynodonteae using sequence data from seven plastid regions (rps16-trnK spacer, rps16 intron, rpoC2, rpl32-trnL spacer, ndhF, ndhA intron, ccsA) and the nuclear ribosomal internal transcribed spacer regions (ITS 1 & 2) to infer evolutionary relationships and refine the -
Physical Purity and Germination of Caryopses of Chloris Gayana Kunth and Panicum Coloratum L
ARTICLES RIA / Vol. 44 / N.º 1 Physical purity and germination of caryopses of Chloris gayana Kunth and Panicum coloratum L. harvested from plants grown in an alkaline-sodium soil GARCÍA, M.D.1; PESQUEIRA, J.1; OTONDO, J.2 ABSTRACT The objective of the study was to evaluate physical purity, germination percentage (G) and germination velocity (GV) of caryopses of Chloris gayana cv. Finecut (Cg) and Panicum coloratum cv. Klein Verde (Pc) collected from plants grown in an alkaline-sodic soil (pH = 9.8, ECe = 0.69 dS m-1, EPS = 26.2%). To compare G of both species, 50 caryopses (n= 5) were incubated in deionized water. To evaluate G res- ponses to salinity and alkalinity, an experiment with completely randomized design and factorial structure (n= 4) of two species x four concentrations of Na+-salts (25, 50, 100 and 150 mM) x two pHs (6 and 10) was per- formed. Treatments consisted in combinations 1:1 of NaCl + SO4Na (pH= 6) and Na2CO3 + NaHCO3 (pH= 10): 25mMpH6 (control); 25mM-pH10; 50mM-pH6; 50 mM-pH10; 100mM-pH6; 100mM-pH10; 150mM-pH6 and 150mM-pH10. Samples of the natural-dispersal material from panicles of Cg and Pc contained (mean ± SEM; % of total weight): caryopses covered by glumes (53 ± 2.6; 41.3 ± 4.6), isolated caryopses (1.4 ± 0.6; 10.3 ± 1.95), empty caryopses (32.9 ± 2.4; 22.7 ± 2.4) and inert materials (12.5 ± 2.2; 25.7 ± 2.1). Caryopses of Cg and Pc incu- bated in water showed similar values (mean ± SEM, in %) of G (96.5 ± 2.4 and 89.2 ± 3.6) and GV (54.7 ± 7 and 51.7 ± 5.5). -
C4 Photosynthetic Evolution
C4 PHOTOSYNTHETIC EVOLUTION: SUB-TYPES, DIVERSITY, AND FUNCTION WITHIN THE GRASS TRIBE PANICEAE _______________________________________ A Dissertation presented to the Faculty of the Graduate School at the University of Missouri-Columbia _______________________________________________________ In Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy _____________________________________________________ by JACOB DANIEL WASHBURN Dr. J. Chris Pires, Dissertation Supervisor MAY 2017 The undersigned, appointed by the dean of the Graduate School, have examined the dissertation entitled: C4 PHOTOSYNTHETIC EVOLUTION: SUB-TYPES, DIVERSITY, AND FUNCTION WITHIN THE GRASS TRIBE PANICEAE Presented by Jacob Daniel Washburn, a candidate for the degree of doctor of philosophy, and hereby certify that, in their opinion, it is worthy of acceptance. _____________________________ Dr. J. Chris Pires _____________________________ Dr. James A. Birchler _____________________________ Dr. Paula McSteen _____________________________ Dr. Gavin Conant ACKNOWLEDGEMENTS I would first like to thank my beautiful wife and sweetheart Melinda for her constant companionship, support, and sacrifice over the past five years. Also my three children: Nathan, Sam, and Emma. The four of you have been, and continue to be my inspiration, and my happiness. I also want to thank my parents, Shelley and Kevin Washburn, who instilled in me a love for learning and for hard work. This degree is for you as well. I also thank my advisor Chris for being the most supportive, helpful, and forward- thinking mentor I have ever had the privilege of associating with. I credit you with the success I have had in grant writing during my Ph.D., and with many of the life skills I have learned. My co-advisor Jim has also been an incredible help. -
Studies of Reproduction and Variation in Some Panicum Subgenus Dichanthelium Michel Georges Lelong Iowa State University
Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1965 Studies of reproduction and variation in some Panicum subgenus Dichanthelium Michel Georges LeLong Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Botany Commons Recommended Citation LeLong, Michel Georges, "Studies of reproduction and variation in some Panicum subgenus Dichanthelium " (1965). Retrospective Theses and Dissertations. 3307. https://lib.dr.iastate.edu/rtd/3307 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. This dissertation has been microiihned exactly as received 66-2998 Le LONG, Michel Georges, 1932- STUDIES OF REPRODUCTION AND VARIATION IN SOME PANICUM SUBGENUS DICHANTHELIUM. Iowa State University of Science and Technology Ph.D., 1965 Botany University Microfilms, Inc., Ann Arbor, Michigan STUDIES OF REPRODUCTION AND VARIATION IN SOME PANICUM SUBGENUS DICHANTHELIUM by Michel Georges Lelong A Dissertation Submitted to the Graduate Faculty in Partial Fulfillment of The Requirements for the Degree of DOCTOR OF PHILOSOPHY Major Subject: Plant Taxonomy Approved: Signature was redacted for privacy. In Charge of Major Work Signature was redacted -
Pre-Breeding Studies in Panicum Coloratum Var. Coloratum
Tropical Grasslands-Forrajes Tropicales (2018) Vol. 6(2):82–92 82 DOI: 10.17138/TGFT(6)82-92 Research Paper Pre-breeding studies in Panicum coloratum var. coloratum: Characterization using agro-morphological traits and molecular markers Estudios de pre-mejoramiento genético en Panicum coloratum var. coloratum: Caracterización usando marcadores moleculares y caracteres agro-morfológicos ESTANISLAO BURGOS1, CAROLINA THOMPSON2, MABEL GIORDANO3 AND MARIA A. TOMAS3 1Instituto de Biotecnología, CICVyA, Instituto Nacional de Tecnología Agropecuaria (INTA), Hurlingham, Buenos Aires, Argentina. inta.gob.ar/instdebiotecnologia 2 Laboratorio de Inmunología, EEA Rafaela, INTA, Rafaela, Santa Fe, Argentina. inta.gob.ar/rafaela 3Mejoramiento Genético de Forrajeras, EEA Rafaela, INTA, Rafaela, Santa Fe, Argentina. inta.gob.ar/rafaela Abstract Panicum coloratum var. coloratum is a native African perennial C4 grass, introduced to Argentina. It is tolerant of salinity and cold and has good forage production. The scarce genotypic and phenotypic information about this grass limits its breeding in order to satisfy market demands. The aim of this study was to evaluate the variability in a collection of P. coloratum var. coloratum formed by 8 accessions and grown at EEA INTA Rafaela during the summer of 2011, based on 15 ISSR molecular markers and 17 morphological characters. For all morphological characters, the distribution of variability observed in the collection was high and not homogenous. The characters that showed greater variation were related to forage and seed production. Eight ISSRs, selected according to their reproducibility, showed 127 bands with 100% polymorphism and allowed grouping of populations according to their site of collection. AMOVA study indicated that more than 58% of the molecular variation existed within accessions; this would be consistent with the predominant allogamous form of reproduction.