Mapping Planetary Caves with an Autonomous, Heterogeneous Robot Team Ammar Husain Heather Jones Balajee Kannan Robotics Institute Robotics Institute GE Global Research Carnegie Mellon University Carnegie Mellon University Schenectady, NY 12309 Pittsburgh, PA 15213 Pittsburgh, PA 15213
[email protected] [email protected] [email protected] Uland Wong Tiago Pimentel Martins da Silva Sarah Tang Robotics Institute Mechatronics Engineering Dept. Mechanical and Aerospace Eng. Dept. Carnegie Mellon University University of Brasilia Princeton University Pittsburgh, PA 15213 Brasilia, DF, Brazil Princeton, NJ 08544
[email protected] [email protected] [email protected] Shreyansh Daftry Steven Huber William L. “Red” Whittaker Electronics and Communication Dept. Astrobotic Technology, Inc. Robotics Institute Manipal Institute of Technology Pittsburgh, PA 15213 Carnegie Mellon University Manipal, Karnataka, India
[email protected] Pittsburgh, PA 15213
[email protected] [email protected] Abstract— d Caves on other planetary bodies offer sheltered habitat for future human explorers and numerous clues to a planet’s past for scientists. While recent orbital imagery pro- vides exciting new details about cave entrances on the Moon and Mars, the interiors of these caves are still unknown and not observable from orbit. Multi-robot teams offer unique solutions for exploration and modeling subsurface voids during precursor missions. Robot teams that are diverse in terms of size, mobility, sensing, and capability can provide great advantages, but this diversity, coupled with inherently distinct low-level behavior (a) Lunar skylight (b) Skylight in a funnel- architectures, makes coordination a challenge. This paper shaped pit on Mars presents a framework that consists of an autonomous frontier and capability-based task generator, a distributed market-based Figure 1.