Genetics: Published Articles Ahead of Print, published on February 25, 2009 as 10.1534/genetics.108.097675 Isolation and Characterization of cul1-7, a Recessive Allele of CULLIN1 that Disrupts SCF Function at the C-terminus of CUL1 in Arabidopsis thaliana Jonathan Gilkerson*,†, Jianhong Hu‡, Jessica Brown*, Alexander Jones* 1, Tai-ping Sun‡ and Judy Callis*,†,2 *Department of Molecular and Cellular Biology and †Plant Biology Graduate Group, University of California-Davis, Davis, CA 95616, ‡Department of Biology, Duke University, Durham, North Carolina 27708-1000 1 Current Address: Department of Plant and Microbial Biology, UC-Berkeley, Berkeley, CA 94720-3102 1 Running head: Characterization of cul1-7 Key words: Protein Degradation, Aux/IAA, RGA, SCF Ubiquitin Ligase, RBX1 2Corresponding Author: Judy Callis Department of Molecular and Cellular Biology University of California-Davis One Shields Avenue Davis, CA 95616 Phone: 530-752-1015 Fax: 530-752-3085 E-mail:
[email protected] 2 ABSTRACT Many aspects of plant biology depend on the ubiquitin proteasome system for degradation of regulatory proteins. Ubiquitin E3 ligases confer substrate specificity in this pathway, and SCF-type ligases comprise a major class of E3s. SCF ligases have four subunits: SKP1, CUL1, RBX1, and an F-box protein for substrate recognition. The Aux/IAAs are a well- characterized family of SCF substrates in plants. Here, we report characterization of a mutant isolated from a genetic screen in Arabidopsis thaliana designed to identify plants defective in degradation of an Aux/IAA fusion protein, Aux/IAA1-luciferase (IAA1-LUC). This mutant exhibited four-fold slower IAA1-LUC degradation compared to the progenitor line, and seedlings displayed altered auxin responses.