1 Isolation and Characterization of Cul1-7, a Recessive Allele Of
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Vascular Inflammatory Response Deneddylase-1/SENP8 in Fine
Central Role for Endothelial Human Deneddylase-1/SENP8 in Fine-Tuning the Vascular Inflammatory Response This information is current as Stefan F. Ehrentraut, Douglas J. Kominsky, Louise E. of September 30, 2021. Glover, Eric L. Campbell, Caleb J. Kelly, Brittelle E. Bowers, Amanda J. Bayless and Sean P. Colgan J Immunol 2013; 190:392-400; Prepublished online 3 December 2012; doi: 10.4049/jimmunol.1202041 Downloaded from http://www.jimmunol.org/content/190/1/392 Supplementary http://www.jimmunol.org/content/suppl/2012/12/03/jimmunol.120204 Material 1.DC1 http://www.jimmunol.org/ References This article cites 53 articles, 15 of which you can access for free at: http://www.jimmunol.org/content/190/1/392.full#ref-list-1 Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision by guest on September 30, 2021 • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2012 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology Central Role for Endothelial Human Deneddylase-1/SENP8 in Fine-Tuning the Vascular Inflammatory Response Stefan F. -
Neddylation: a Novel Modulator of the Tumor Microenvironment Lisha Zhou1,2*†, Yanyu Jiang3†, Qin Luo1, Lihui Li1 and Lijun Jia1*
Zhou et al. Molecular Cancer (2019) 18:77 https://doi.org/10.1186/s12943-019-0979-1 REVIEW Open Access Neddylation: a novel modulator of the tumor microenvironment Lisha Zhou1,2*†, Yanyu Jiang3†, Qin Luo1, Lihui Li1 and Lijun Jia1* Abstract Neddylation, a post-translational modification that adds an ubiquitin-like protein NEDD8 to substrate proteins, modulates many important biological processes, including tumorigenesis. The process of protein neddylation is overactivated in multiple human cancers, providing a sound rationale for its targeting as an attractive anticancer therapeutic strategy, as evidence by the development of NEDD8-activating enzyme (NAE) inhibitor MLN4924 (also known as pevonedistat). Neddylation inhibition by MLN4924 exerts significantly anticancer effects mainly by triggering cell apoptosis, senescence and autophagy. Recently, intensive evidences reveal that inhibition of neddylation pathway, in addition to acting on tumor cells, also influences the functions of multiple important components of the tumor microenvironment (TME), including immune cells, cancer-associated fibroblasts (CAFs), cancer-associated endothelial cells (CAEs) and some factors, all of which are crucial for tumorigenesis. Here, we briefly summarize the latest progresses in this field to clarify the roles of neddylation in the TME, thus highlighting the overall anticancer efficacy of neddylaton inhibition. Keywords: Neddylation, Tumor microenvironment, Tumor-derived factors, Cancer-associated fibroblasts, Cancer- associated endothelial cells, Immune cells Introduction Overall, binding of NEDD8 molecules to target proteins Neddylation is a reversible covalent conjugation of an can affect their stability, subcellular localization, conform- ubiquitin-like molecule NEDD8 (neuronal precursor ation and function [4]. The best-characterized substrates cell-expressed developmentally down-regulated protein of neddylation are the cullin subunits of Cullin-RING li- 8) to a lysine residue of the substrate protein [1, 2]. -
Inhibition of SCF Ubiquitin Ligases by Engineered Ubiquitin Variants That Target the Cul1 Binding Site on the Skp1–F-Box Interface
Inhibition of SCF ubiquitin ligases by engineered ubiquitin variants that target the Cul1 binding site on the Skp1–F-box interface Maryna Gorelika,b, Stephen Orlickyc, Maria A. Sartoria,b, Xiaojing Tangc, Edyta Marcona,b, Igor Kurinovd, Jack F. Greenblatta,b, Mike Tyersc,e, Jason Moffata,b, Frank Sicheric,f, and Sachdev S. Sidhua,b,1 aBanting and Best Department of Medical Research, Terrence Donnelly Center for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada M5S 3E1; bDepartment of Molecular Genetics, Terrence Donnelly Center for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada M5S 3E1; cLunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada M5G 1X5; dDepartment of Chemistry and Chemical Biology, Cornell University, Argonne, IL 60439; eInstitut de Recherche en Immunologie et Cancérologie, Université de Montréal, Montreal, QC, Canada H3C 3J7; and fDepartment of Molecular Genetics, University of Toronto, Toronto, ON, Canada M5S 3E1 Edited by Mark Estelle, University of California, San Diego, La Jolla, CA, and approved February 17, 2016 (received for review October 14, 2015) Skp1–Cul1–F-box (SCF) E3 ligases play key roles in multiple cellular are subdivided into three subfamilies based on the structure of processes through ubiquitination and subsequent degradation of their substrate binding domains, including WD40, LRR, and substrate proteins. Although Skp1 and Cul1 are invariant compo- other domains, referred to as the Fbw, Fbl, and Fbo subfamilies, nents of all SCF complexes, the 69 different human F-box proteins respectively (3). are variable substrate binding modules that determine specificity. Numerous F-box proteins are involved in processes relevant to SCF E3 ligases are activated in many cancers and inhibitors could tumorigenesis, including cell proliferation, cell cycle progression, have therapeutic potential. -
Mouse Cul1 Conditional Knockout Project (CRISPR/Cas9)
https://www.alphaknockout.com Mouse Cul1 Conditional Knockout Project (CRISPR/Cas9) Objective: To create a Cul1 conditional knockout Mouse model (C57BL/6J) by CRISPR/Cas-mediated genome engineering. Strategy summary: The Cul1 gene (NCBI Reference Sequence: NM_012042 ; Ensembl: ENSMUSG00000029686 ) is located on Mouse chromosome 6. 22 exons are identified, with the ATG start codon in exon 2 and the TAA stop codon in exon 22 (Transcript: ENSMUST00000031697). Exon 5~6 will be selected as conditional knockout region (cKO region). Deletion of this region should result in the loss of function of the Mouse Cul1 gene. To engineer the targeting vector, homologous arms and cKO region will be generated by PCR using BAC clone RP23-18I21 as template. Cas9, gRNA and targeting vector will be co-injected into fertilized eggs for cKO Mouse production. The pups will be genotyped by PCR followed by sequencing analysis. Note: Homozygotes for targeted null mutations accumulate cyclin E1 and exhibit arrested development and lethality around embryonic day 6.5. Exon 5 starts from about 20.79% of the coding region. The knockout of Exon 5~6 will result in frameshift of the gene. The size of intron 4 for 5'-loxP site insertion: 3779 bp, and the size of intron 6 for 3'-loxP site insertion: 637 bp. The size of effective cKO region: ~1122 bp. The cKO region does not have any other known gene. Page 1 of 8 https://www.alphaknockout.com Overview of the Targeting Strategy Wildtype allele 5' gRNA region gRNA region 3' 1 5 6 7 22 Targeting vector Targeted allele Constitutive KO allele (After Cre recombination) Legends Exon of mouse Cul1 Homology arm cKO region loxP site Page 2 of 8 https://www.alphaknockout.com Overview of the Dot Plot Window size: 10 bp Forward Reverse Complement Sequence 12 Note: The sequence of homologous arms and cKO region is aligned with itself to determine if there are tandem repeats. -
A Systems-Wide Screen Identifies Substrates of the SCF Ubiquitin Ligase
RESEARCH RESOURCE PROTEOMICS A systems-wide screen identifies substrates of the SCFbTrCP ubiquitin ligase Teck Yew Low,1,2 Mao Peng,1,2* Roberto Magliozzi,3* Shabaz Mohammed,1,2† Daniele Guardavaccaro,3 Albert J. R. Heck1,2‡ Cellular proteins are degraded by the ubiquitin-proteasome system (UPS) in a precise and timely fashion. Such precision is conferred by the high substrate specificity of ubiquitin ligases. Identification of substrates of ubiquitin ligases is crucial not only to unravel the molecular mechanisms by which the UPS controls protein degradation but also for drug discovery purposes because many established UPS substrates are implicated in disease. We developed a combined bioinformatics and affinity purification– mass spectrometry (AP-MS) workflow for the system-wide identification of substrates of SCFbTrCP,a member of the SCF family of ubiquitin ligases. These ubiquitin ligases are characterized by a multi- subunit architecture typically consisting of the invariable subunits Rbx1, Cul1, and Skp1, and one of 69 F-box proteins. The F-box protein of this member of the family is bTrCP. SCFbTrCP binds, through the WD40 b repeats of TrCP, to the DpSGXX(X)pS diphosphorylated motif in its substrates. We recovered 27 pre- Downloaded from viously reported SCFbTrCP substrates, of which 22 were verified by two independent statistical proto- cols, thereby confirming the reliability of this approach. In addition to known substrates, we identified 221 proteins that contained the DpSGXX(X)pS motif and also interacted specifically with the WD40 repeats of bTrCP. Thus, with SCFbTrCP, as the example, we showed that integration of structural infor- mation, AP-MS, and degron motif mining constitutes an effective method to screen for substrates of ubiquitin ligases. -
Cyclin F-Chk1 Synthetic Lethality Mediated by E2F1 Degradation
bioRxiv preprint doi: https://doi.org/10.1101/509810; this version posted January 2, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Cyclin F-Chk1 synthetic lethality mediated by E2F1 degradation Kamila Burdova1, Hongbin Yang1, Roberta Faedda1, Samuel Hume1, Daniel Ebner2, Benedikt M Kessler2, Iolanda Vendrell1,2, David H Drewry3, Carrow I Wells3, Stephanie B Hatch2, Vincenzo D’Angiolella1* 1Medical Research Council Institute for Radiation Oncology, Department of Oncology, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, UK 2Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford OX3 7FZ, UK 3Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America * Corresponding Author: [email protected] Summary Cyclins are central engines of cell cycle progression when partnered with Cyclin Dependent Kinases (CDKs). Among the different cyclins controlling cell cycle progression, cyclin F does not partner with a CDK, but forms an E3 ubiquitin ligase, assembling through the F-box domain, an Skp1-Cul1-F-box (SCF) module. Although multiple substrates of cyclin F have been identified the vulnerabilities of cells lacking cyclin F are not known. Thus, we assessed viability of cells lacking cyclin F upon challenging cells with more than 200 kinase inhibitors. The screen revealed a striking synthetic lethality between Chk1 inhibition and cyclin F loss. -
8P23.2-Pter Microdeletions: Seven New Cases Narrowing the Candidate Region and Review of the Literature
G C A T T A C G G C A T genes Article 8p23.2-pter Microdeletions: Seven New Cases Narrowing the Candidate Region and Review of the Literature Ilaria Catusi 1,* , Maria Garzo 1 , Anna Paola Capra 2 , Silvana Briuglia 2 , Chiara Baldo 3 , Maria Paola Canevini 4 , Rachele Cantone 5, Flaviana Elia 6, Francesca Forzano 7, Ornella Galesi 8, Enrico Grosso 5, Michela Malacarne 3, Angela Peron 4,9,10 , Corrado Romano 11 , Monica Saccani 4 , Lidia Larizza 1 and Maria Paola Recalcati 1 1 Istituto Auxologico Italiano, IRCCS, Laboratory of Medical Cytogenetics and Molecular Genetics, 20145 Milan, Italy; [email protected] (M.G.); [email protected] (L.L.); [email protected] (M.P.R.) 2 Department of Biomedical, Dental, Morphological and Functional Imaging Sciences, University of Messina, 98100 Messina, Italy; [email protected] (A.P.C.); [email protected] (S.B.) 3 UOC Laboratorio di Genetica Umana, IRCCS Istituto Giannina Gaslini, 16147 Genova, Italy; [email protected] (C.B.); [email protected] (M.M.) 4 Child Neuropsychiatry Unit—Epilepsy Center, Department of Health Sciences, ASST Santi Paolo e Carlo, San Paolo Hospital, Università Degli Studi di Milano, 20142 Milan, Italy; [email protected] (M.P.C.); [email protected] (A.P.); [email protected] (M.S.) 5 Medical Genetics Unit, Città della Salute e della Scienza University Hospital, 10126 Turin, Italy; [email protected] (R.C.); [email protected] (E.G.) 6 Unit of Psychology, Oasi Research Institute-IRCCS, -
Potential Sperm Contributions to the Murine Zygote Predicted by in Silico Analysis
REPRODUCTIONRESEARCH Potential sperm contributions to the murine zygote predicted by in silico analysis Panagiotis Ntostis1,2, Deborah Carter3, David Iles1, John Huntriss1, Maria Tzetis2 and David Miller1 1Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, West Yorkshire, UK, 2Department of Medical Genetics, St. Sophia’s Children Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Attiki, Greece and 3Leeds Institute of Molecular Medicine, University of Leeds, Leeds, West Yorkshire, UK Correspondence should be addressed to D Miller; Email: [email protected] Abstract Paternal contributions to the zygote are thought to extend beyond delivery of the genome and paternal RNAs have been linked to epigenetic transgenerational inheritance in different species. In addition, sperm–egg fusion activates several downstream processes that contribute to zygote formation, including PLC zeta-mediated egg activation and maternal RNA clearance. Since a third of the preimplantation developmental period in the mouse occurs prior to the first cleavage stage, there is ample time for paternal RNAs or their encoded proteins potentially to interact and participate in early zygotic activities. To investigate this possibility, a bespoke next-generation RNA sequencing pipeline was employed for the first time to characterise and compare transcripts obtained from isolated murine sperm, MII eggs and pre-cleavage stage zygotes. Gene network analysis was then employed to identify potential interactions between paternally and maternally derived factors during the murine egg-to-zygote transition involving RNA clearance, protein clearance and post-transcriptional regulation of gene expression. Our in silico approach looked for factors in sperm, eggs and zygotes that could potentially interact co-operatively and synergisticallyp during zygote formation. -
Anti-BTRC / Beta Trcp1 Antibody (ARG57309)
Product datasheet [email protected] ARG57309 Package: 100 μl anti-BTRC / beta TrCP1 antibody Store at: -20°C Summary Product Description Rabbit Polyclonal antibody recognizes BTRC / beta TrCP1 Tested Reactivity Hu Tested Application IHC-P, WB Host Rabbit Clonality Polyclonal Isotype IgG Target Name BTRC / beta TrCP1 Antigen Species Human Immunogen Recombinant Protein of Human BTRC / beta-TrCP1. Conjugation Un-conjugated Alternate Names bTrCP1; betaTrCP; BETA-TRCP; FBW1A; Epididymis tissue protein Li 2a; F-box and WD repeats protein beta-TrCP; E3RSIkappaB; pIkappaBalpha-E3 receptor subunit; FBXW1A; FWD1; bTrCP; FBXW1; F- box/WD repeat-containing protein 1A Application Instructions Application table Application Dilution IHC-P 1:50 - 1:200 WB 1:500 - 1:2000 Application Note * The dilutions indicate recommended starting dilutions and the optimal dilutions or concentrations should be determined by the scientist. Positive Control BT474 Calculated Mw 69 kDa Properties Form Liquid Purification Affinity purification with immunogen. Buffer PBS (pH 7.3), 0.02% Sodium azide and 50% Glycerol. Preservative 0.02% Sodium azide Stabilizer 50% Glycerol Storage instruction For continuous use, store undiluted antibody at 2-8°C for up to a week. For long-term storage, aliquot and store at -20°C. Storage in frost free freezers is not recommended. Avoid repeated freeze/thaw cycles. Suggest spin the vial prior to opening. The antibody solution should be gently mixed before use. www.arigobio.com 1/3 Note For laboratory research only, not for drug, diagnostic or other use. Bioinformation Gene Symbol BTRC Gene Full Name beta-transducin repeat containing E3 ubiquitin protein ligase Background This gene encodes a member of the F-box protein family which is characterized by an approximately 40 amino acid motif, the F-box. -
Neddylation Regulates Class Iia and III Histone Deacetylases to Mediate Myoblast Differentiation
International Journal of Molecular Sciences Article Neddylation Regulates Class IIa and III Histone Deacetylases to Mediate Myoblast Differentiation Hongyi Zhou 1,* , Huabo Su 2 and Weiqin Chen 1 1 Department of Physiology, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA; [email protected] 2 Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA; [email protected] * Correspondence: [email protected]; Tel.: +1-706-721-8779 Abstract: As the largest tissue in the body, skeletal muscle has multiple functions in movement and energy metabolism. Skeletal myogenesis is controlled by a transcriptional cascade including a set of muscle regulatory factors (MRFs) that includes Myogenic Differentiation 1 (MYOD1), Myocyte En- hancer Factor 2 (MEF2), and Myogenin (MYOG), which direct the fusion of myogenic myoblasts into multinucleated myotubes. Neddylation is a posttranslational modification that covalently conjugates ubiquitin-like NEDD8 (neural precursor cell expressed, developmentally downregulated 8) to protein targets. Inhibition of neddylation impairs muscle differentiation; however, the underlying molec- ular mechanisms remain less explored. Here, we report that neddylation is temporally regulated during myoblast differentiation. Inhibition of neddylation through pharmacological blockade using MLN4924 (Pevonedistat) or genetic deletion of NEDD8 Activating Enzyme E1 Subunit 1 (NAE1), a subunit of the E1 neddylation-activating enzyme, blocks terminal myoblast differentiation par- tially through repressing MYOG expression. Mechanistically, we found that neddylation deficiency enhances the mRNA and protein expressions of class IIa histone deacetylases 4 and 5 (HDAC4 Citation: Zhou, H.; Su, H.; Chen, W. and 5) and prevents the downregulation and nuclear export of class III HDAC (NAD-Dependent Neddylation Regulates Class IIa and Protein Deacetylase Sirtuin-1, SIRT1), all of which have been shown to repress MYOD1-mediated III Histone Deacetylases to Mediate MYOG transcriptional activation. -
Short Article CAND1 Binds to Unneddylated CUL1 and Regulates
Molecular Cell, Vol. 10, 1519–1526, December, 2002, Copyright 2002 by Cell Press CAND1 Binds to Unneddylated CUL1 Short Article and Regulates the Formation of SCF Ubiquitin E3 Ligase Complex Jianyu Zheng,1 Xiaoming Yang,1 Despite the importance of cullins in controlling many Jennifer M. Harrell,1 Sophia Ryzhikov,1 essential biological processes, the mechanism that reg- Eun-Hee Shim,1 Karin Lykke-Andersen,2 ulates the cullin-containing ubiquitin E3 ligases remains Ning Wei,2 Hong Sun,1 Ryuji Kobayashi,3 unclear. In SCF, the F box proteins are short-lived pro- and Hui Zhang1,4 teins that undergo CUL1/SKP1-dependent degradation 1Department of Genetics (Wirbelauer et al., 2000; Zhou and Howley, 1998). Dele- Yale University School of Medicine tion of the F box region abolishes the binding of F box 333 Cedar Street proteins to SKP1 and CUL1, and consequently increases 2 Department of Molecular, Cellular, the stability of F box proteins. This substrate-indepen- and Developmental Biology dent proteolysis of F box proteins is likely the result of Yale University autoubiquitination by the ubiquitin E2 and E1 enzymes New Haven, Connecticut 06520 through a CUL1/SKP1-dependent mechanism. 3 Cold Spring Harbor Laboratory The carboxy-terminal ends of cullins are often covalently Cold Spring Harbor, New York 11724 modified by a ubiquitin-like protein, NEDD8/RUB1, and this modification appears to associate with active E3 li- gases (Hochstrasser, 2000). Like ubiquitin modification, Summary neddylation requires E1 (APP-BP1 and UBA3)-activating and E2 (UBC12)-conjugating enzymes (Hochstrasser, The SCF ubiquitin E3 ligase regulates ubiquitin-depen- 2000). -
BTRC Antibody Product Type
PRODUCT INFORMATION Product name: BTRC antibody Product type: Primary antibodies Description: Rabbit polyclonal to BTRC Immunogen:3 synthetic peptides (human) conjugated to KLH Reacts with: Human, Mouse Tested applications: ELISA, WB & IF GENE INFORMATION Gene Symbol:BTRC Gene Name:beta-transducin repeat containing E3 ubiquitin protein ligase Ensembl ID:ENSG00000166167 Entrez GeneID:8945 GenBank Accession number:Y14153 Swiss-Prot:Q9Y297 Molecular weight of BTRC: 68.9 & 65kDa Function:Substrate recognition component of a SCF (SKP1-CUL1-F-box protein) E3 ubiquitin-protein ligase complex which mediates the ubiquitination and subsequent proteasomal degradation of target proteins. Recognizes and binds to phosphorylated target proteins. SCF(BTRC) mediates the ubiquitination of CTNNB1 and participates in Wnt signaling. SCF(BTRC) mediates the ubiquitination of NFKBIA, NFKBIB and NFKBIE; the degradation frees the associated NFKB1 to translocate into the nucleus and to activate transcription. Ubiquitination of NFKBIA occurs at 'Lys-21' and 'Lys-22'. SCF(BTRC) mediates the ubiquitination of phosphorylated NFKB1/nuclear factor NF-kappa-B p105 subunit, ATF4, SMAD3, SMAD4, CDC25A, DLG1, FBXO5 and probably NFKB2. SCF(BTRC) mediates the ubiquitination of phosphorylated SNAI1. May be involved in ubiquitination and subsequent proteasomal degradation through a DBB1-CUL4 E3 ubiquitin-protein ligase. Required for activation of NFKB-mediated transcription by IL1B, MAP3K14, MAP3K1, IKBKB and TNF. Required for proteolytic processing of GLI3. Expected subcellular localization: Cytoplasm, Nucleus. Expected tissue specificity:Expressed in epididymis (at protein level). Summary:This gene encodes a member of the F-box protein family which is characterized by an approximately 40 amino acid motif, the F-box. The F-box proteins constitute one of the four subunits of ubiquitin protein ligase complex called SCFs (SKP1-cullin-F-box), which function in phosphorylation-dependent ubiquitination.