Applied Mathematics, 2013, 4, 560-573 http://dx.doi.org/10.4236/am.2013.43080 Published Online March 2013 (http://www.scirp.org/journal/am) Importance of Generalized Logistic Distribution in Extreme Value Modeling K. Nidhin1, C. Chandran2 1Department of Mathematics, Indian Institute of Science, Bangalore, India 2Department of Statistics, University of Calicut, Calicut, India Email:
[email protected],
[email protected] Received September 10, 2012; revised February 1, 2013; accepted February 8, 2013 ABSTRACT We consider a problem from stock market modeling, precisely, choice of adequate distribution of modeling extremal behavior of stock market data. Generalized extreme value (GEV) distribution and generalized Pareto (GP) distribution are the classical distributions for this problem. However, from 2004, [1] and many other researchers have been empiri- cally showing that generalized logistic (GL) distribution is a better model than GEV and GP distributions in modeling extreme movement of stock market data. In this paper, we show that these results are not accidental. We prove the theoretical importance of GL distribution in extreme value modeling. For proving this, we introduce a general multi- variate limit theorem and deduce some important multivariate theorems in probability as special cases. By using the theorem, we derive a limit theorem in extreme value theory, where GL distribution plays central role instead of GEV distribution. The proof of this result is parallel to the proof of classical extremal types theorem, in the sense that, it pos- sess important characteristic in classical extreme value theory, for e.g. distributional property, stability, convergence and multivariate extension etc. Keywords: Financial Risk Modeling; Stock Market Analysis; Generalized Logistic Distribution; Generalized Extreme Value Distribution; Tail Equivalence; Maximum Stability; Random Sample Size; Limit Distribution 1.