Probability Distributions Used in Reliability Engineering

Total Page:16

File Type:pdf, Size:1020Kb

Probability Distributions Used in Reliability Engineering Probability Distributions Used in Reliability Engineering Probability Distributions Used in Reliability Engineering Andrew N. O’Connor Mohammad Modarres Ali Mosleh Center for Risk and Reliability 0151 Glenn L Martin Hall University of Maryland College Park, Maryland Published by the Center for Risk and Reliability International Standard Book Number (ISBN): 978-0-9966468-1-9 Copyright © 2016 by the Center for Reliability Engineering University of Maryland, College Park, Maryland, USA All rights reserved. No part of this book may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or by any information storage and retrieval system, without permission in writing from The Center for Reliability Engineering, Reliability Engineering Program. The Center for Risk and Reliability University of Maryland College Park, Maryland 20742-7531 In memory of Willie Mae Webb This book is dedicated to the memory of Miss Willie Webb who passed away on April 10 2007 while working at the Center for Risk and Reliability at the University of Maryland (UMD). She initiated the concept of this book, as an aid for students conducting studies in Reliability Engineering at the University of Maryland. Upon passing, Willie bequeathed her belongings to fund a scholarship providing financial support to Reliability Engineering students at UMD. Preface Reliability Engineers are required to combine a practical understanding of science and engineering with statistics. The reliability engineer’s understanding of statistics is focused on the practical application of a wide variety of accepted statistical methods. Most reliability texts provide only a basic introduction to probability distributions or only provide a detailed reference to few distributions. Most texts in statistics provide theoretical detail which is outside the scope of likely reliability engineering tasks. As such the objective of this book is to provide a single reference text of closed form probability formulas and approximations used in reliability engineering. This book provides details on 22 probability distributions. Each distribution section provides a graphical visualization and formulas for distribution parameters, along with distribution formulas. Common statistics such as moments and percentile formulas are followed by likelihood functions and in many cases the derivation of maximum likelihood estimates. Bayesian non-informative and conjugate priors are provided followed by a discussion on the distribution characteristics and applications in reliability engineering. Each section is concluded with online and hardcopy references which can provide further information followed by the relationship to other distributions. The book is divided into six parts. Part 1 provides a brief coverage of the fundamentals of probability distributions within a reliability engineering context. Part 1 is limited to concise explanations aimed to familiarize readers. For further understanding the reader is referred to the references. Part 2 to Part 6 cover Common Life Distributions, Univariate Continuous Distributions, Univariate Discrete Distributions and Multivariate Distributions respectively. The authors would like to thank the many students in the Reliability Engineering Program particularly Reuel Smith for proof reading. Contents i Contents PREFACE ...................................................................................................................................................... V CONTENTS .................................................................................................................................................... I 1. FUNDAMENTALS OF PROBABILITY DISTRIBUTIONS ...................................................... 1 1.1. Probability Theory .......................................................................................................... 2 1.1.1. Theory of Probability ................................................................................................ 2 1.1.2. Interpretations of Probability Theory ....................................................................... 2 1.1.3. Laws of Probability.................................................................................................... 3 1.1.4. Law of Total Probability ............................................................................................ 4 1.1.5. Bayes’ Law ................................................................................................................ 4 1.1.6. Likelihood Functions ................................................................................................. 5 1.1.7. Fisher Information Matrix ......................................................................................... 6 1.2. Distribution Functions .................................................................................................... 9 1.2.1. Random Variables ..................................................................................................... 9 1.2.2. Statistical Distribution Parameters ........................................................................... 9 1.2.3. Probability Density Function ..................................................................................... 9 1.2.4. Cumulative Distribution Function ........................................................................... 11 1.2.5. Reliability Function ................................................................................................. 12 1.2.6. Conditional Reliability Function .............................................................................. 13 1.2.7. 100α% Percentile Function ..................................................................................... 13 1.2.8. Mean Residual Life .................................................................................................. 13 1.2.9. Hazard Rate ............................................................................................................ 13 1.2.10. Cumulative Hazard Rate ......................................................................................... 14 1.2.11. Characteristic Function ........................................................................................... 15 1.2.12. Joint Distributions ................................................................................................... 16 1.2.13. Marginal Distribution .............................................................................................. 17 1.2.14. Conditional Distribution .......................................................................................... 17 1.2.15. Bathtub Distributions.............................................................................................. 17 1.2.16. Truncated Distributions .......................................................................................... 18 1.2.17. Summary ................................................................................................................. 19 1.3. Distribution Properties ................................................................................................. 20 1.3.1. Median / Mode ....................................................................................................... 20 1.3.2. Moments of Distribution ........................................................................................ 20 1.3.3. Covariance .............................................................................................................. 21 1.4. Parameter Estimation ................................................................................................... 22 1.4.1. Probability Plotting Paper ....................................................................................... 22 1.4.2. Total Time on Test Plots ......................................................................................... 23 1.4.3. Least Mean Square Regression ............................................................................... 24 1.4.4. Method of Moments .............................................................................................. 25 1.4.5. Maximum Likelihood Estimates .............................................................................. 26 1.4.6. Bayesian Estimation ................................................................................................ 27 ii Probability Distributions Used in Reliability Engineering 1.4.7. Confidence Intervals ............................................................................................... 30 1.5. Related Distributions .................................................................................................... 33 1.6. Supporting Functions .................................................................................................... 34 1.6.1. Beta Function , ................................................................................................ 34 1.6.2. Incomplete Beta Function ( ; , ) .................................................................... 34 1.6.3. Regularized Incomplete Beta Function ( ; , ) .................................................. 34 1.6.4. Complete Gamma Function ( ) ................................ ........................................... 34 1.6.5. Upper Incomplete Gamma Function (, ) ................................ .......................... 35 1.6.6. Lower Incomplete Gamma Function ( , ) ..........................................................
Recommended publications
  • Relationships Among Some Univariate Distributions
    IIE Transactions (2005) 37, 651–656 Copyright C “IIE” ISSN: 0740-817X print / 1545-8830 online DOI: 10.1080/07408170590948512 Relationships among some univariate distributions WHEYMING TINA SONG Department of Industrial Engineering and Engineering Management, National Tsing Hua University, Hsinchu, Taiwan, Republic of China E-mail: [email protected], wheyming [email protected] Received March 2004 and accepted August 2004 The purpose of this paper is to graphically illustrate the parametric relationships between pairs of 35 univariate distribution families. The families are organized into a seven-by-five matrix and the relationships are illustrated by connecting related families with arrows. A simplified matrix, showing only 25 families, is designed for student use. These relationships provide rapid access to information that must otherwise be found from a time-consuming search of a large number of sources. Students, teachers, and practitioners who model random processes will find the relationships in this article useful and insightful. 1. Introduction 2. A seven-by-five matrix An understanding of probability concepts is necessary Figure 1 illustrates 35 univariate distributions in 35 if one is to gain insights into systems that can be rectangle-like entries. The row and column numbers are modeled as random processes. From an applications labeled on the left and top of Fig. 1, respectively. There are point of view, univariate probability distributions pro- 10 discrete distributions, shown in the first two rows, and vide an important foundation in probability theory since 25 continuous distributions. Five commonly used sampling they are the underpinnings of the most-used models in distributions are listed in the third row.
    [Show full text]
  • A New Parameter Estimator for the Generalized Pareto Distribution Under the Peaks Over Threshold Framework
    mathematics Article A New Parameter Estimator for the Generalized Pareto Distribution under the Peaks over Threshold Framework Xu Zhao 1,*, Zhongxian Zhang 1, Weihu Cheng 1 and Pengyue Zhang 2 1 College of Applied Sciences, Beijing University of Technology, Beijing 100124, China; [email protected] (Z.Z.); [email protected] (W.C.) 2 Department of Biomedical Informatics, College of Medicine, The Ohio State University, Columbus, OH 43210, USA; [email protected] * Correspondence: [email protected] Received: 1 April 2019; Accepted: 30 April 2019 ; Published: 7 May 2019 Abstract: Techniques used to analyze exceedances over a high threshold are in great demand for research in economics, environmental science, and other fields. The generalized Pareto distribution (GPD) has been widely used to fit observations exceeding the tail threshold in the peaks over threshold (POT) framework. Parameter estimation and threshold selection are two critical issues for threshold-based GPD inference. In this work, we propose a new GPD-based estimation approach by combining the method of moments and likelihood moment techniques based on the least squares concept, in which the shape and scale parameters of the GPD can be simultaneously estimated. To analyze extreme data, the proposed approach estimates the parameters by minimizing the sum of squared deviations between the theoretical GPD function and its expectation. Additionally, we introduce a recently developed stopping rule to choose the suitable threshold above which the GPD asymptotically fits the exceedances. Simulation studies show that the proposed approach performs better or similar to existing approaches, in terms of bias and the mean square error, in estimating the shape parameter.
    [Show full text]
  • Research Participants' Rights to Data Protection in the Era of Open Science
    DePaul Law Review Volume 69 Issue 2 Winter 2019 Article 16 Research Participants’ Rights To Data Protection In The Era Of Open Science Tara Sklar Mabel Crescioni Follow this and additional works at: https://via.library.depaul.edu/law-review Part of the Law Commons Recommended Citation Tara Sklar & Mabel Crescioni, Research Participants’ Rights To Data Protection In The Era Of Open Science, 69 DePaul L. Rev. (2020) Available at: https://via.library.depaul.edu/law-review/vol69/iss2/16 This Article is brought to you for free and open access by the College of Law at Via Sapientiae. It has been accepted for inclusion in DePaul Law Review by an authorized editor of Via Sapientiae. For more information, please contact [email protected]. \\jciprod01\productn\D\DPL\69-2\DPL214.txt unknown Seq: 1 21-APR-20 12:15 RESEARCH PARTICIPANTS’ RIGHTS TO DATA PROTECTION IN THE ERA OF OPEN SCIENCE Tara Sklar and Mabel Crescioni* CONTENTS INTRODUCTION ................................................. 700 R I. REAL-WORLD EVIDENCE AND WEARABLES IN CLINICAL TRIALS ....................................... 703 R II. DATA PROTECTION RIGHTS ............................. 708 R A. General Data Protection Regulation ................. 709 R B. California Consumer Privacy Act ................... 710 R C. GDPR and CCPA Influence on State Data Privacy Laws ................................................ 712 R III. RESEARCH EXEMPTION AND RELATED SAFEGUARDS ... 714 R IV. RESEARCH PARTICIPANTS’ DATA AND OPEN SCIENCE . 716 R CONCLUSION ................................................... 718 R Clinical trials are increasingly using sensors embedded in wearable de- vices due to their capabilities to generate real-world data. These devices are able to continuously monitor, record, and store physiological met- rics in response to a given therapy, which is contributing to a redesign of clinical trials around the world.
    [Show full text]
  • Overview of Reliability Engineering
    Overview of reliability engineering Eric Marsden <[email protected]> Context ▷ I have a fleet of airline engines and want to anticipate when they mayfail ▷ I am purchasing pumps for my refinery and want to understand the MTBF, lambda etc. provided by the manufacturers ▷ I want to compare different system designs to determine the impact of architecture on availability 2 / 32 Reliability engineering ▷ Reliability engineering is the discipline of ensuring that a system will function as required over a specified time period when operated and maintained in a specified manner. ▷ Reliability engineers address 3 basic questions: • When does something fail? • Why does it fail? • How can the likelihood of failure be reduced? 3 / 32 The termination of the ability of an item to perform a required function. [IEV Failure Failure 191-04-01] ▷ A failure is always related to a required function. The function is often specified together with a performance requirement (eg. “must handleup to 3 tonnes per minute”, “must respond within 0.1 seconds”). ▷ A failure occurs when the function cannot be performed or has a performance that falls outside the performance requirement. 4 / 32 The state of an item characterized by inability to perform a required function Fault Fault [IEV 191-05-01] ▷ While a failure is an event that occurs at a specific point in time, a fault is a state that will last for a shorter or longer period. ▷ When a failure occurs, the item enters the failed state. A failure may occur: • while running • while in standby • due to demand 5 / 32 Discrepancy between a computed, observed, or measured value or condition and Error Error the true, specified, or theoretically correct value or condition.
    [Show full text]
  • Lochner</I> in Cyberspace: the New Economic Orthodoxy Of
    Georgetown University Law Center Scholarship @ GEORGETOWN LAW 1998 Lochner in Cyberspace: The New Economic Orthodoxy of "Rights Management" Julie E. Cohen Georgetown University Law Center, [email protected] This paper can be downloaded free of charge from: https://scholarship.law.georgetown.edu/facpub/811 97 Mich. L. Rev. 462-563 (1998) This open-access article is brought to you by the Georgetown Law Library. Posted with permission of the author. Follow this and additional works at: https://scholarship.law.georgetown.edu/facpub Part of the Intellectual Property Law Commons, Internet Law Commons, and the Law and Economics Commons LOCHNER IN CYBERSPACE: THE NEW ECONOMIC ORTHODOXY OF "RIGHTS MANAGEMENT" JULIE E. COHEN * Originally published 97 Mich. L. Rev. 462 (1998). TABLE OF CONTENTS I. THE CONVERGENCE OF ECONOMIC IMPERATIVES AND NATURAL RIGHTS..........6 II. THE NEW CONCEPTUALISM.....................................................18 A. Constructing Consent ......................................................18 B. Manufacturing Scarcity.....................................................32 1. Transaction Costs and Common Resources................................33 2. Incentives and Redistribution..........................................40 III. ON MODELING INFORMATION MARKETS........................................50 A. Bargaining Power and Choice in Information Markets.............................52 1. Contested Exchange and the Power to Switch.............................52 2. Collective Action, "Rent-Seeking," and Public Choice.......................67
    [Show full text]
  • Understanding Functional Safety FIT Base Failure Rate Estimates Per IEC 62380 and SN 29500
    www.ti.com Technical White Paper Understanding Functional Safety FIT Base Failure Rate Estimates per IEC 62380 and SN 29500 Bharat Rajaram, Senior Member, Technical Staff, and Director, Functional Safety, C2000™ Microcontrollers, Texas Instruments ABSTRACT Functional safety standards like International Electrotechnical Commission (IEC) 615081 and International Organization for Standardization (ISO) 262622 require that semiconductor device manufacturers address both systematic and random hardware failures. Systematic failures are managed and mitigated by following rigorous development processes. Random hardware failures must adhere to specified quantitative metrics to meet hardware safety integrity levels (SILs) or automotive SILs (ASILs). Consequently, systematic failures are excluded from the calculation of random hardware failure metrics. Table of Contents 1 Introduction.............................................................................................................................................................................2 2 Types of Faults and Quantitative Random Hardware Failure Metrics .............................................................................. 2 3 Random Failures Over a Product Lifetime and Estimation of BFR ...................................................................................3 4 BFR Estimation Techniques ................................................................................................................................................. 4 5 Siemens SN 29500 FIT model
    [Show full text]
  • A Tail Quantile Approximation Formula for the Student T and the Symmetric Generalized Hyperbolic Distribution
    A Service of Leibniz-Informationszentrum econstor Wirtschaft Leibniz Information Centre Make Your Publications Visible. zbw for Economics Schlüter, Stephan; Fischer, Matthias J. Working Paper A tail quantile approximation formula for the student t and the symmetric generalized hyperbolic distribution IWQW Discussion Papers, No. 05/2009 Provided in Cooperation with: Friedrich-Alexander University Erlangen-Nuremberg, Institute for Economics Suggested Citation: Schlüter, Stephan; Fischer, Matthias J. (2009) : A tail quantile approximation formula for the student t and the symmetric generalized hyperbolic distribution, IWQW Discussion Papers, No. 05/2009, Friedrich-Alexander-Universität Erlangen-Nürnberg, Institut für Wirtschaftspolitik und Quantitative Wirtschaftsforschung (IWQW), Nürnberg This Version is available at: http://hdl.handle.net/10419/29554 Standard-Nutzungsbedingungen: Terms of use: Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen Documents in EconStor may be saved and copied for your Zwecken und zum Privatgebrauch gespeichert und kopiert werden. personal and scholarly purposes. Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle You are not to copy documents for public or commercial Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich purposes, to exhibit the documents publicly, to make them machen, vertreiben oder anderweitig nutzen. publicly available on the internet, or to distribute or otherwise use the documents in public. Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen (insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten, If the documents have been made available under an Open gelten abweichend von diesen Nutzungsbedingungen die in der dort Content Licence (especially Creative Commons Licences), you genannten Lizenz gewährten Nutzungsrechte. may exercise further usage rights as specified in the indicated licence. www.econstor.eu IWQW Institut für Wirtschaftspolitik und Quantitative Wirtschaftsforschung Diskussionspapier Discussion Papers No.
    [Show full text]
  • Asymmetric Generalizations of Symmetric Univariate Probability Distributions Obtained Through Quantile Splicing
    Asymmetric generalizations of symmetric univariate probability distributions obtained through quantile splicing a* a b Brenda V. Mac’Oduol , Paul J. van Staden and Robert A. R. King aDepartment of Statistics, University of Pretoria, Pretoria, South Africa; bSchool of Mathematical and Physical Sciences, University of Newcastle, Callaghan, Australia *Correspondence to: Brenda V. Mac’Oduol; Department of Statistics, University of Pretoria, Pretoria, South Africa. email: [email protected] Abstract Balakrishnan et al. proposed a two-piece skew logistic distribution by making use of the cumulative distribution function (CDF) of half distributions as the building block, to give rise to an asymmetric family of two-piece distributions, through the inclusion of a single shape parameter. This paper proposes the construction of asymmetric families of two-piece distributions by making use of quantile functions of symmetric distributions as building blocks. This proposition will enable the derivation of a general formula for the L-moments of two-piece distributions. Examples will be presented, where the logistic, normal, Student’s t(2) and hyperbolic secant distributions are considered. Keywords Two-piece; Half distributions; Quantile functions; L-moments 1. Introduction Balakrishnan, Dai, and Liu (2017) introduced a skew logistic distribution as an alterna- tive to the model proposed by van Staden and King (2015). It proposed taking the half distribution to the right of the location parameter and joining it to the half distribution to the left of the location parameter which has an inclusion of a single shape parameter, a > 0. The methodology made use of the cumulative distribution functions (CDFs) of the parent distributions to obtain the two-piece distribution.
    [Show full text]
  • A Comparison Between Skew-Logistic and Skew-Normal Distributions 1
    MATEMATIKA, 2015, Volume 31, Number 1, 15–24 c UTM Centre for Industrial and Applied Mathematics A Comparison Between Skew-logistic and Skew-normal Distributions 1Ramin Kazemi and 2Monireh Noorizadeh 1,2Department of Statistics, Imam Khomeini International University Qazvin, Iran e-mail: [email protected] Abstract Skew distributions are reasonable models for describing claims in property- liability insurance. We consider two well-known datasets from actuarial science and fit skew-normal and skew-logistic distributions to these dataset. We find that the skew-logistic distribution is reasonably competitive compared to skew-normal in the literature when describing insurance data. The value at risk and tail value at risk are estimated for the dataset under consideration. Also, we compare the skew distributions via Kolmogorov-Smirnov goodness-of-fit test, log-likelihood criteria and AIC. Keywords Skew-logistic distribution; skew-normal distribution; value at risk; tail value at risk; log-likelihood criteria; AIC; Kolmogorov-Smirnov goodness-of-fit test. 2010 Mathematics Subject Classification 62P05, 91B30 1 Introduction Fitting an adequate distribution to real data sets is a relevant problem and not an easy task in actuarial literature, mainly due to the nature of the data, which shows several fea- tures to be accounted for. Eling [1] showed that the skew-normal and the skew-Student t distributions are reasonably competitive compared to some models when describing in- surance data. Bolance et al. [2] provided strong empirical evidence in favor of the use of the skew-normal, and log-skew-normal distributions to model bivariate claims data from the Spanish motor insurance industry.
    [Show full text]
  • A Family of Skew-Normal Distributions for Modeling Proportions and Rates with Zeros/Ones Excess
    S S symmetry Article A Family of Skew-Normal Distributions for Modeling Proportions and Rates with Zeros/Ones Excess Guillermo Martínez-Flórez 1, Víctor Leiva 2,* , Emilio Gómez-Déniz 3 and Carolina Marchant 4 1 Departamento de Matemáticas y Estadística, Facultad de Ciencias Básicas, Universidad de Córdoba, Montería 14014, Colombia; [email protected] 2 Escuela de Ingeniería Industrial, Pontificia Universidad Católica de Valparaíso, 2362807 Valparaíso, Chile 3 Facultad de Economía, Empresa y Turismo, Universidad de Las Palmas de Gran Canaria and TIDES Institute, 35001 Canarias, Spain; [email protected] 4 Facultad de Ciencias Básicas, Universidad Católica del Maule, 3466706 Talca, Chile; [email protected] * Correspondence: [email protected] or [email protected] Received: 30 June 2020; Accepted: 19 August 2020; Published: 1 September 2020 Abstract: In this paper, we consider skew-normal distributions for constructing new a distribution which allows us to model proportions and rates with zero/one inflation as an alternative to the inflated beta distributions. The new distribution is a mixture between a Bernoulli distribution for explaining the zero/one excess and a censored skew-normal distribution for the continuous variable. The maximum likelihood method is used for parameter estimation. Observed and expected Fisher information matrices are derived to conduct likelihood-based inference in this new type skew-normal distribution. Given the flexibility of the new distributions, we are able to show, in real data scenarios, the good performance of our proposal. Keywords: beta distribution; centered skew-normal distribution; maximum-likelihood methods; Monte Carlo simulations; proportions; R software; rates; zero/one inflated data 1.
    [Show full text]
  • Logistic Distribution Becomes Skew to the Right and When P>1 It Becomes Skew to the Left
    FITTING THE VERSATILE LINEARIZED, COMPOSITE, AND GENERALIZED LOGISTIC PROBABILITY DISTRIBUTION TO A DATA SET R.J. Oosterbaan, 06-08-2019. On www.waterlog.info public domain. Abstract The logistic probability distribution can be linearized for easy fitting to a data set using a linear regression to determine the parameters. The logistic probability distribution can also be generalized by raising the data values to the power P that is to be optimized by an iterative method based on the minimization of the squares of the deviations of calculated and observed data values (the least squares or LS method). This enhances its applicability. When P<1 the logistic distribution becomes skew to the right and when P>1 it becomes skew to the left. When P=1, the distribution is symmetrical and quite like the normal probability distribution. In addition, the logistic distribution can be made composite, that is: split into two parts with different parameters. Composite distributions can be used favorably when the data set is obtained under different external conditions influencing its probability characteristics. Contents 1. The standard logistic cumulative distribution function (CDF) and its linearization 2. The logistic cumulative distribution function (CDF) generalized 3. The composite generalized logistic distribution 4. Fitting the standard, generalized, and composite logistic distribution to a data set, available software 5. Construction of confidence belts 6. Constructing histograms and the probability density function (PDF) 7. Ranking according to goodness of fit 8. Conclusion 9. References 1. The standard cumulative distribution function (CDF) and its linearization The cumulative logistic distribution function (CDF) can be written as: Fc = 1 / {1 + e (A*X+B)} where Fc = cumulative logistic distribution function or cumulative frequency e = base of the natural logarithm (Ln), e = 2.71 .
    [Show full text]
  • Procedures for Estimation of Weibull Parameters James W
    United States Department of Agriculture Procedures for Estimation of Weibull Parameters James W. Evans David E. Kretschmann David W. Green Forest Forest Products General Technical Report February Service Laboratory FPL–GTR–264 2019 Abstract Contents The primary purpose of this publication is to provide an 1 Introduction .................................................................. 1 overview of the information in the statistical literature on 2 Background .................................................................. 1 the different methods developed for fitting a Weibull distribution to an uncensored set of data and on any 3 Estimation Procedures .................................................. 1 comparisons between methods that have been studied in the 4 Historical Comparisons of Individual statistics literature. This should help the person using a Estimator Types ........................................................ 8 Weibull distribution to represent a data set realize some advantages and disadvantages of some basic methods. It 5 Other Methods of Estimating Parameters of should also help both in evaluating other studies using the Weibull Distribution .......................................... 11 different methods of Weibull parameter estimation and in 6 Discussion .................................................................. 12 discussions on American Society for Testing and Materials Standard D5457, which appears to allow a choice for the 7 Conclusion ................................................................
    [Show full text]