A New Parameter Estimator for the Generalized Pareto Distribution Under the Peaks Over Threshold Framework
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Independent Approximates Enable Closed-Form Estimation of Heavy-Tailed Distributions
Independent Approximates enable closed-form estimation of heavy-tailed distributions Kenric P. Nelson Abstract – Independent Approximates (IAs) are proven to enable a closed-form estimation of heavy-tailed distributions with an analytical density such as the generalized Pareto and Student’s t distributions. A broader proof using convolution of the characteristic function is described for future research. (IAs) are selected from independent, identically distributed samples by partitioning the samples into groups of size n and retaining the median of the samples in those groups which have approximately equal samples. The marginal distribution along the diagonal of equal values has a density proportional to the nth power of the original density. This nth-power-density, which the IAs approximate, has faster tail decay enabling closed-form estimation of its moments and retains a functional relationship with the original density. Computational experiments with between 1000 to 100,000 Student’s t samples are reported for over a range of location, scale, and shape (inverse of degree of freedom) parameters. IA pairs are used to estimate the location, IA triplets for the scale, and the geometric mean of the original samples for the shape. With 10,000 samples the relative bias of the parameter estimates is less than 0.01 and a relative precision is less than ±0.1. The theoretical bias is zero for the location and the finite bias for the scale can be subtracted out. The theoretical precision has a finite range when the shape is less than 2 for the location estimate and less than 3/2 for the scale estimate. -
ACTS 4304 FORMULA SUMMARY Lesson 1: Basic Probability Summary of Probability Concepts Probability Functions
ACTS 4304 FORMULA SUMMARY Lesson 1: Basic Probability Summary of Probability Concepts Probability Functions F (x) = P r(X ≤ x) S(x) = 1 − F (x) dF (x) f(x) = dx H(x) = − ln S(x) dH(x) f(x) h(x) = = dx S(x) Functions of random variables Z 1 Expected Value E[g(x)] = g(x)f(x)dx −∞ 0 n n-th raw moment µn = E[X ] n n-th central moment µn = E[(X − µ) ] Variance σ2 = E[(X − µ)2] = E[X2] − µ2 µ µ0 − 3µ0 µ + 2µ3 Skewness γ = 3 = 3 2 1 σ3 σ3 µ µ0 − 4µ0 µ + 6µ0 µ2 − 3µ4 Kurtosis γ = 4 = 4 3 2 2 σ4 σ4 Moment generating function M(t) = E[etX ] Probability generating function P (z) = E[zX ] More concepts • Standard deviation (σ) is positive square root of variance • Coefficient of variation is CV = σ/µ • 100p-th percentile π is any point satisfying F (π−) ≤ p and F (π) ≥ p. If F is continuous, it is the unique point satisfying F (π) = p • Median is 50-th percentile; n-th quartile is 25n-th percentile • Mode is x which maximizes f(x) (n) n (n) • MX (0) = E[X ], where M is the n-th derivative (n) PX (0) • n! = P r(X = n) (n) • PX (1) is the n-th factorial moment of X. Bayes' Theorem P r(BjA)P r(A) P r(AjB) = P r(B) fY (yjx)fX (x) fX (xjy) = fY (y) Law of total probability 2 If Bi is a set of exhaustive (in other words, P r([iBi) = 1) and mutually exclusive (in other words P r(Bi \ Bj) = 0 for i 6= j) events, then for any event A, X X P r(A) = P r(A \ Bi) = P r(Bi)P r(AjBi) i i Correspondingly, for continuous distributions, Z P r(A) = P r(Ajx)f(x)dx Conditional Expectation Formula EX [X] = EY [EX [XjY ]] 3 Lesson 2: Parametric Distributions Forms of probability -
A Family of Skew-Normal Distributions for Modeling Proportions and Rates with Zeros/Ones Excess
S S symmetry Article A Family of Skew-Normal Distributions for Modeling Proportions and Rates with Zeros/Ones Excess Guillermo Martínez-Flórez 1, Víctor Leiva 2,* , Emilio Gómez-Déniz 3 and Carolina Marchant 4 1 Departamento de Matemáticas y Estadística, Facultad de Ciencias Básicas, Universidad de Córdoba, Montería 14014, Colombia; [email protected] 2 Escuela de Ingeniería Industrial, Pontificia Universidad Católica de Valparaíso, 2362807 Valparaíso, Chile 3 Facultad de Economía, Empresa y Turismo, Universidad de Las Palmas de Gran Canaria and TIDES Institute, 35001 Canarias, Spain; [email protected] 4 Facultad de Ciencias Básicas, Universidad Católica del Maule, 3466706 Talca, Chile; [email protected] * Correspondence: [email protected] or [email protected] Received: 30 June 2020; Accepted: 19 August 2020; Published: 1 September 2020 Abstract: In this paper, we consider skew-normal distributions for constructing new a distribution which allows us to model proportions and rates with zero/one inflation as an alternative to the inflated beta distributions. The new distribution is a mixture between a Bernoulli distribution for explaining the zero/one excess and a censored skew-normal distribution for the continuous variable. The maximum likelihood method is used for parameter estimation. Observed and expected Fisher information matrices are derived to conduct likelihood-based inference in this new type skew-normal distribution. Given the flexibility of the new distributions, we are able to show, in real data scenarios, the good performance of our proposal. Keywords: beta distribution; centered skew-normal distribution; maximum-likelihood methods; Monte Carlo simulations; proportions; R software; rates; zero/one inflated data 1. -
Procedures for Estimation of Weibull Parameters James W
United States Department of Agriculture Procedures for Estimation of Weibull Parameters James W. Evans David E. Kretschmann David W. Green Forest Forest Products General Technical Report February Service Laboratory FPL–GTR–264 2019 Abstract Contents The primary purpose of this publication is to provide an 1 Introduction .................................................................. 1 overview of the information in the statistical literature on 2 Background .................................................................. 1 the different methods developed for fitting a Weibull distribution to an uncensored set of data and on any 3 Estimation Procedures .................................................. 1 comparisons between methods that have been studied in the 4 Historical Comparisons of Individual statistics literature. This should help the person using a Estimator Types ........................................................ 8 Weibull distribution to represent a data set realize some advantages and disadvantages of some basic methods. It 5 Other Methods of Estimating Parameters of should also help both in evaluating other studies using the Weibull Distribution .......................................... 11 different methods of Weibull parameter estimation and in 6 Discussion .................................................................. 12 discussions on American Society for Testing and Materials Standard D5457, which appears to allow a choice for the 7 Conclusion ................................................................ -
A New Weibull-X Family of Distributions: Properties, Characterizations and Applications Zubair Ahmad1* , M
Ahmad et al. Journal of Statistical Distributions and Applications (2018) 5:5 https://doi.org/10.1186/s40488-018-0087-6 RESEARCH Open Access A new Weibull-X family of distributions: properties, characterizations and applications Zubair Ahmad1* , M. Elgarhy2 and G. G. Hamedani3 * Correspondence: [email protected] Abstract 1Department of Statistics, Quaid-i-Azam University 45320, We propose a new family of univariate distributions generated from the Weibull random Islamabad 44000, Pakistan variable, called a new Weibull-X family of distributions. Two special sub-models of the Full list of author information is proposed family are presented and the shapes of density and hazard functions are available at the end of the article investigated. General expressions for some statistical properties are discussed. For the new family, three useful characterizations based on truncated moments are presented. Three different methods to estimate the model parameters are discussed. Monti Carlo simulation study is conducted to evaluate the performances of these estimators. Finally, the importance of the new family is illustrated empirically via two real life applications. Keywords: Weibull distribution, T-X family, Moment, Characterizations, Order statistics, Estimation 1. Introduction In the field of reliability theory, modeling of lifetime data is very crucial. A number of statistical distributions such as Weibull, Pareto, Gompertz, linear failure rate, Rayleigh, Exonential etc., are available for modeling lifetime data. However, in many practical areas, these classical distributions do not provide adequate fit in modeling data, and there is a clear need for the extended version of these classical distributions. In this re- gard, serious attempts have been made to propose new families of continuous prob- ability distributions that extend the existing well-known distributions by adding additional parameter(s) to the model of the baseline random variable. -
Fixed-K Asymptotic Inference About Tail Properties
Journal of the American Statistical Association ISSN: 0162-1459 (Print) 1537-274X (Online) Journal homepage: http://www.tandfonline.com/loi/uasa20 Fixed-k Asymptotic Inference About Tail Properties Ulrich K. Müller & Yulong Wang To cite this article: Ulrich K. Müller & Yulong Wang (2017) Fixed-k Asymptotic Inference About Tail Properties, Journal of the American Statistical Association, 112:519, 1334-1343, DOI: 10.1080/01621459.2016.1215990 To link to this article: https://doi.org/10.1080/01621459.2016.1215990 Accepted author version posted online: 12 Aug 2016. Published online: 13 Jun 2017. Submit your article to this journal Article views: 206 View related articles View Crossmark data Full Terms & Conditions of access and use can be found at http://www.tandfonline.com/action/journalInformation?journalCode=uasa20 JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION , VOL. , NO. , –, Theory and Methods https://doi.org/./.. Fixed-k Asymptotic Inference About Tail Properties Ulrich K. Müller and Yulong Wang Department of Economics, Princeton University, Princeton, NJ ABSTRACT ARTICLE HISTORY We consider inference about tail properties of a distribution from an iid sample, based on extreme value the- Received February ory. All of the numerous previous suggestions rely on asymptotics where eventually, an infinite number of Accepted July observations from the tail behave as predicted by extreme value theory, enabling the consistent estimation KEYWORDS of the key tail index, and the construction of confidence intervals using the delta method or other classic Extreme quantiles; tail approaches. In small samples, however, extreme value theory might well provide good approximations for conditional expectations; only a relatively small number of tail observations. -
Package 'Renext'
Package ‘Renext’ July 4, 2016 Type Package Title Renewal Method for Extreme Values Extrapolation Version 3.1-0 Date 2016-07-01 Author Yves Deville <[email protected]>, IRSN <[email protected]> Maintainer Lise Bardet <[email protected]> Depends R (>= 2.8.0), stats, graphics, evd Imports numDeriv, splines, methods Suggests MASS, ismev, XML Description Peaks Over Threshold (POT) or 'methode du renouvellement'. The distribution for the ex- ceedances can be chosen, and heterogeneous data (including histori- cal data or block data) can be used in a Maximum-Likelihood framework. License GPL (>= 2) LazyData yes NeedsCompilation no Repository CRAN Date/Publication 2016-07-04 20:29:04 R topics documented: Renext-package . .3 anova.Renouv . .5 barplotRenouv . .6 Brest . .8 Brest.years . 10 Brest.years.missing . 11 CV2............................................. 11 CV2.test . 12 Dunkerque . 13 EM.mixexp . 15 expplot . 16 1 2 R topics documented: fgamma . 17 fGEV.MAX . 19 fGPD ............................................ 22 flomax . 24 fmaxlo . 26 fweibull . 29 Garonne . 30 gev2Ren . 32 gof.date . 34 gofExp.test . 37 GPD............................................. 38 gumbel2Ren . 40 Hpoints . 41 ini.mixexp2 . 42 interevt . 43 Jackson . 45 Jackson.test . 46 logLik.Renouv . 47 Lomax . 48 LRExp . 50 LRExp.test . 51 LRGumbel . 53 LRGumbel.test . 54 Maxlo . 55 MixExp2 . 57 mom.mixexp2 . 58 mom2par . 60 NBlevy . 61 OT2MAX . 63 OTjitter . 66 parDeriv . 67 parIni.MAX . 70 pGreenwood1 . 72 plot.Rendata . 73 plot.Renouv . 74 PPplot . 78 predict.Renouv . 79 qStat . 80 readXML . 82 Ren2gev . 84 Ren2gumbel . 85 Renouv . 87 RenouvNoEst . 94 RLlegend . 96 RLpar . 98 RLplot . 99 roundPred . 101 rRendata . 102 Renext-package 3 SandT . 105 skip2noskip . -
Estimation of Pareto Distribution Functions from Samples Contaminated by Measurement Errors
UNIVERSITY of the WESTERN CAPE Estimation of Pareto Distribution Functions from Samples Contaminated by Measurement Errors Lwando Orbet Kondlo A thesis submitted in partial fulfillment of the requirements for the degree of Magister Scientiae in Statistics in the Faculty of Natural Sciences at the University of the Western Cape. Supervisor : Professor Chris Koen March 1, 2010 Keywords Deconvolution Distribution functions Error-Contaminated samples Errors-in-variables Jackknife Maximum likelihood method Measurement errors Nonparametric estimation Pareto distribution ABSTRACT MSc Statistics Thesis, Department of Statistics, University of the Western Cape. Estimation of population distributions, from samples which are contaminated by measurement errors, is a common problem. This study considers the prob- lem of estimating the population distribution of independent random variables Xj, from error-contaminated samples Yj (j = 1, . , n) such that Yj = Xj +j, where is the measurement error, which is assumed independent of X. The measurement error is also assumed to be normally distributed. Since the observed distribution function is a convolution of the error distribution with the true underlying distribution, estimation of the latter is often referred to as a deconvolution problem. A thorough study of the relevant deconvolution literature in statistics is reported. We also deal with the specific case when X is assumed to follow a truncated Pareto form. If observations are subject to Gaussian errors, then the observed Y is distributed as the convolution of the finite-support Pareto and Gaus- sian error distributions. The convolved probability density function (PDF) and cumulative distribution function (CDF) of the finite-support Pareto and Gaussian distributions are derived. The intention is to draw more specific connections between certain deconvolu- tion methods and also to demonstrate the application of the statistical theory of estimation in the presence of measurement error. -
Hand-Book on STATISTICAL DISTRIBUTIONS for Experimentalists
Internal Report SUF–PFY/96–01 Stockholm, 11 December 1996 1st revision, 31 October 1998 last modification 10 September 2007 Hand-book on STATISTICAL DISTRIBUTIONS for experimentalists by Christian Walck Particle Physics Group Fysikum University of Stockholm (e-mail: [email protected]) Contents 1 Introduction 1 1.1 Random Number Generation .............................. 1 2 Probability Density Functions 3 2.1 Introduction ........................................ 3 2.2 Moments ......................................... 3 2.2.1 Errors of Moments ................................ 4 2.3 Characteristic Function ................................. 4 2.4 Probability Generating Function ............................ 5 2.5 Cumulants ......................................... 6 2.6 Random Number Generation .............................. 7 2.6.1 Cumulative Technique .............................. 7 2.6.2 Accept-Reject technique ............................. 7 2.6.3 Composition Techniques ............................. 8 2.7 Multivariate Distributions ................................ 9 2.7.1 Multivariate Moments .............................. 9 2.7.2 Errors of Bivariate Moments .......................... 9 2.7.3 Joint Characteristic Function .......................... 10 2.7.4 Random Number Generation .......................... 11 3 Bernoulli Distribution 12 3.1 Introduction ........................................ 12 3.2 Relation to Other Distributions ............................. 12 4 Beta distribution 13 4.1 Introduction ....................................... -
Handbook on Probability Distributions
R powered R-forge project Handbook on probability distributions R-forge distributions Core Team University Year 2009-2010 LATEXpowered Mac OS' TeXShop edited Contents Introduction 4 I Discrete distributions 6 1 Classic discrete distribution 7 2 Not so-common discrete distribution 27 II Continuous distributions 34 3 Finite support distribution 35 4 The Gaussian family 47 5 Exponential distribution and its extensions 56 6 Chi-squared's ditribution and related extensions 75 7 Student and related distributions 84 8 Pareto family 88 9 Logistic distribution and related extensions 108 10 Extrem Value Theory distributions 111 3 4 CONTENTS III Multivariate and generalized distributions 116 11 Generalization of common distributions 117 12 Multivariate distributions 133 13 Misc 135 Conclusion 137 Bibliography 137 A Mathematical tools 141 Introduction This guide is intended to provide a quite exhaustive (at least as I can) view on probability distri- butions. It is constructed in chapters of distribution family with a section for each distribution. Each section focuses on the tryptic: definition - estimation - application. Ultimate bibles for probability distributions are Wimmer & Altmann (1999) which lists 750 univariate discrete distributions and Johnson et al. (1994) which details continuous distributions. In the appendix, we recall the basics of probability distributions as well as \common" mathe- matical functions, cf. section A.2. And for all distribution, we use the following notations • X a random variable following a given distribution, • x a realization of this random variable, • f the density function (if it exists), • F the (cumulative) distribution function, • P (X = k) the mass probability function in k, • M the moment generating function (if it exists), • G the probability generating function (if it exists), • φ the characteristic function (if it exists), Finally all graphics are done the open source statistical software R and its numerous packages available on the Comprehensive R Archive Network (CRAN∗). -
Theoretical Properties of the Weighted Feller-Pareto Distributions." Asian Journal of Mathematics and Applications, 2014: 1-12
CORE Metadata, citation and similar papers at core.ac.uk Provided by Georgia Southern University: Digital Commons@Georgia Southern Georgia Southern University Digital Commons@Georgia Southern Mathematical Sciences Faculty Publications Mathematical Sciences, Department of 2014 Theoretical Properties of the Weighted Feller- Pareto Distributions Oluseyi Odubote Georgia Southern University Broderick O. Oluyede Georgia Southern University, [email protected] Follow this and additional works at: https://digitalcommons.georgiasouthern.edu/math-sci-facpubs Part of the Mathematics Commons Recommended Citation Odubote, Oluseyi, Broderick O. Oluyede. 2014. "Theoretical Properties of the Weighted Feller-Pareto Distributions." Asian Journal of Mathematics and Applications, 2014: 1-12. source: http://scienceasia.asia/index.php/ama/article/view/173/ https://digitalcommons.georgiasouthern.edu/math-sci-facpubs/307 This article is brought to you for free and open access by the Mathematical Sciences, Department of at Digital Commons@Georgia Southern. It has been accepted for inclusion in Mathematical Sciences Faculty Publications by an authorized administrator of Digital Commons@Georgia Southern. For more information, please contact [email protected]. ASIAN JOURNAL OF MATHEMATICS AND APPLICATIONS Volume 2014, Article ID ama0173, 12 pages ISSN 2307-7743 http://scienceasia.asia THEORETICAL PROPERTIES OF THE WEIGHTED FELLER-PARETO AND RELATED DISTRIBUTIONS OLUSEYI ODUBOTE AND BRODERICK O. OLUYEDE Abstract. In this paper, for the first time, a new six-parameter class of distributions called weighted Feller-Pareto (WFP) and related family of distributions is proposed. This new class of distributions contains several other Pareto-type distributions such as length-biased (LB) Pareto, weighted Pareto (WP I, II, III, and IV), and Pareto (P I, II, III, and IV) distributions as special cases. -
Probability Distributions Used in Reliability Engineering
Probability Distributions Used in Reliability Engineering Probability Distributions Used in Reliability Engineering Andrew N. O’Connor Mohammad Modarres Ali Mosleh Center for Risk and Reliability 0151 Glenn L Martin Hall University of Maryland College Park, Maryland Published by the Center for Risk and Reliability International Standard Book Number (ISBN): 978-0-9966468-1-9 Copyright © 2016 by the Center for Reliability Engineering University of Maryland, College Park, Maryland, USA All rights reserved. No part of this book may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or by any information storage and retrieval system, without permission in writing from The Center for Reliability Engineering, Reliability Engineering Program. The Center for Risk and Reliability University of Maryland College Park, Maryland 20742-7531 In memory of Willie Mae Webb This book is dedicated to the memory of Miss Willie Webb who passed away on April 10 2007 while working at the Center for Risk and Reliability at the University of Maryland (UMD). She initiated the concept of this book, as an aid for students conducting studies in Reliability Engineering at the University of Maryland. Upon passing, Willie bequeathed her belongings to fund a scholarship providing financial support to Reliability Engineering students at UMD. Preface Reliability Engineers are required to combine a practical understanding of science and engineering with statistics. The reliability engineer’s understanding of statistics is focused on the practical application of a wide variety of accepted statistical methods. Most reliability texts provide only a basic introduction to probability distributions or only provide a detailed reference to few distributions.