The Effects of Autocorrelation in the Estimation of Process Capability Indices." (1998)

Total Page:16

File Type:pdf, Size:1020Kb

The Effects of Autocorrelation in the Estimation of Process Capability Indices. Louisiana State University LSU Digital Commons LSU Historical Dissertations and Theses Graduate School 1998 The ffecE ts of Autocorrelation in the Estimation of Process Capability Indices. Lawrence Lee Magee Louisiana State University and Agricultural & Mechanical College Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_disstheses Recommended Citation Magee, Lawrence Lee, "The Effects of Autocorrelation in the Estimation of Process Capability Indices." (1998). LSU Historical Dissertations and Theses. 6847. https://digitalcommons.lsu.edu/gradschool_disstheses/6847 This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Historical Dissertations and Theses by an authorized administrator of LSU Digital Commons. For more information, please contact [email protected]. INFORMATION TO USERS This manuscript has been reproduced from the microfilm master. U M I films the text directly from die original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type o f computer printer. The quality o f this reproduction is dependent upon the quality o f the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction. hi the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note w ill indicate the deletion. Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand corner and continuing from left to right in equal sections with small overlaps. Each original is also photographed in one exposure and is included in reduced form at the back o f the book Photographs included in the original manuscript have been reproduced xerographically in this copy. Higher quality 6” x 9” black and white photographic prints are available for any photographs or illustrations appearing in this copy for an additional charge. Contact UMI directly to order. UMI A Bell & Howdl Information Company 300 North Zeeb Road, Ann Arbor MI 48106-1346 USA 313/761-4700 800/521-0600 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. THE EFFECTS OF AUTOCORRELATION IN THE ESTIMATION OF PROCESS CAPABILITY INDICES A Dissertation Submitted to the Graduate Faculty o f the Louisiana State University and Agricultural and Mechanical College in partial fulfillment o f the requirements for the degree o f Doctor o f Philosophy in The Interdepartmental Program in Business Administration in Inform ation Systems and Decision Sciences by Lawrence Lee Magee B.S., Louisiana State University, 1971 M.S., Louisiana State University, 1977 M.S., University o f Wisconsin, 1985 December 1998 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. UMI Number: 9922096 UMI Microform 9922096 Copyright 1999, by UMI Company. All rights reserved. This microform edition is protected against unauthorized copying under Title 17, United States Code. UMI 300 North Zeeb Road Ann Arbor, MI 48103 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. ACKNOWLEDGMENTS In a very real sense, there are many individuals to thank for this work. Elementary, secondary, and university school teachers recede in time, but not in memory. Recently my major professor, Dr. Helmut Schneider, has provided the necessary guidance. More importantly, the quantity o f patience he has demonstrated can only be described as o f biblical proportion. I must thank the members o f my dissertation committee, Drs. Kwei Tang, Peter Kelle, Edward Watson, and Michael Salassi. Their helpful suggestions have produced a better work. Errors, o f course, must be attributed to me. My son, John and my sisters, Sharon, Deborah, Barbara, and Mary Ellen, deserve recognition for their moral and practical support during this period. Finally, my father. LeRoy and mother, Gloria are due incalculable portions o f gratitude and love. ii Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. TABLE OF CONTENTS ACKNOWLEDGMENTS......................................................................................................ii LIST OF TABLES................................................................................................................. v LIST OF FIGURES.............................................................................................................. vi ABSTRACT .........................................................................................................................vii CHAPTER 1. INTRODUCTION ..................................................................................................... 1 1.1. Process Capability Analysis ............................................................................ I 1.2. The Stability o f a Process ...............................................................................3 1.3. The Indices Cp, C p l, Cpu, and C p k ............................................................... 5 1.4. The P roportion tZq o f Product Outside Specification ...................................7 1.5. The (Cp/, Cpu) Indices as Reparameterization o f (p, cr) .............................. 8 1.6. The (Cpl, Cp, Cpu ) D iagram ........................................................................11 1.7. The (Cpl, Cpu) Indices as Measure of Actual versus Ideal (p, a ) ................ 14 1.8. A Compendium o f Bijections ........................................................................ 16 1.9. Criticisms o f the Indices Cp, Cpl, Cpu, and C p k .........................................17 1.10. Contribution o f the Research ....................................................................... 22 1.11. Organization o f the Research ....................................................................... 23 2. REVIEW OF THE LITERATURE....................................................................... 24 2.1. The Cp In d e x ................................................................................................ 25 2.2. The Cpk Index ............................................................................................... 27 2.3. The Cpm Index and Its Variants .................................................................. 32 2.4. The Effect o f Autocorrelation on ProcessCapability Indices ......................36 2.5. Non-Normality and Robustness ................................................................... 37 2.6. Multivariate Process Capability Indices........................................................43 2.7. Recent Approaches and Criticism ................................................................ 45 3. CAPABILITY INDICES UNDER NORMAL INDEPENDENCE.....................49 3.1. Why Some Real World Data Exhibit Norm ality ......................................... 49 3.2. Estimating Cp when p is Known and cr is Unknown ..................................52 3.3. Estimating Cp when B oth p and a are U n kn o w n ....................................... 64 3.4. Estimating (Cpl. Cp, Cpu) when p is Unknown and cr is Known .............. 68 3.5. Estimating (Cpl, Cp, Cpu) when p is Known and cr is Unknown ...............74 3.6. Estimating (Cpl, Cp, Cpu) when Both p and cr are Unknown .................... 82 3.7. Estimating Cpk when B oth p and a are U n k n o w n .................................. 100 4. CAPABILITY INDICES UNDER NORMAL CORRELATION..................... 105 4.1. Why Some Real World Data Exhibit Autocorrelation .............................. 106 4.2. The Indices (Cpl, Cp, Cpu) and the ARMA(p, q) M o d e l ..........................113 iii Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 4.3. The Effect o f Autocorrelation on the Sample Variance ........................... 114 4.4. A Low er B o u n d ......................................................................................... 116 4.5. Estimating Cp when p. is Known and ct is Unknown ............................... 119 4.6. Estimating Cp when Both p and a are Unknown ...................................... 136 4.7. Estimating (Cpl, Cp, Cpu ) when p is Unknown and a is Known 143 4.8. Estimating (Cpl, Cp, Cpu) when p. is Known and a is Unknown 147 4.9. Estimating (Cpl, Cp, Cpu) when Both p and <J are Unknown ................... 149 5. SUMMARY AND CONCLUSIONS.................................................................... 157 BIBLIOGRAPHY............................................................................................................... 160 APPEN D IX A DERIVATION OF AN IMPORTANT MEAN .................................................... 167 B. MOMENTS OF THE MULTIVARIATE NORMAL.......................................... 170 C. THE AR( 1) CORRELATION M ATRIX............................................................ 175 D DERIVATION OF AN IMPORTANT VARIANCE .......................................... 178 VITA ..................................................................................................................................
Recommended publications
  • Implementing SPC for Non-Normal Processes with the I-MR Chart: a Case Study
    Implementing SPC for non-normal processes with the I-MR chart: A case study Axl Elisson Master of Science Thesis TPRMM 2017 KTH Industrial Engineering and Management Production Engineering and Management SE-100 44 STOCKHOLM Acknowledgements This master thesis was performed at the brake manufacturer Haldex as my master of science degree project in Industrial Engineering and Management at the Royal Institute of Technology (KTH) in Stockholm, Sweden. It was conducted during the spring semester of 2017. I would first like to thank my supervisor at Haldex, Roman Berg, and Annika Carlius for their daily support and guidance which made this project possible. I would also like to thank the quality department, production engineers and operators at Haldex for all insight in different subjects. Finally, I would like to thank my supervisor at KTH, Jerzy Mikler, for his support during my thesis. All of your combined expertise have been very valuable. Stockholm, July 2017 Axl Elisson Abstract The application of statistical process control (SPC) requires normal distributed data that is in statistical control in order to determine valid process capability indices and to set control limits that reflects the process’ true variation. This study examines a case of several non-normal processes and evaluates methods to estimate the process capability and set control limits that is in relation to the processes’ distributions. Box-Cox transformation, Johnson transformation, Clements method and process performance indices were compared to estimate the process capability and the Anderson-Darling goodness-of-fit test was used to identify process distribution. Control limits were compared using Clements method, the sample standard deviation and from machine tool variation.
    [Show full text]
  • Research Participants' Rights to Data Protection in the Era of Open Science
    DePaul Law Review Volume 69 Issue 2 Winter 2019 Article 16 Research Participants’ Rights To Data Protection In The Era Of Open Science Tara Sklar Mabel Crescioni Follow this and additional works at: https://via.library.depaul.edu/law-review Part of the Law Commons Recommended Citation Tara Sklar & Mabel Crescioni, Research Participants’ Rights To Data Protection In The Era Of Open Science, 69 DePaul L. Rev. (2020) Available at: https://via.library.depaul.edu/law-review/vol69/iss2/16 This Article is brought to you for free and open access by the College of Law at Via Sapientiae. It has been accepted for inclusion in DePaul Law Review by an authorized editor of Via Sapientiae. For more information, please contact [email protected]. \\jciprod01\productn\D\DPL\69-2\DPL214.txt unknown Seq: 1 21-APR-20 12:15 RESEARCH PARTICIPANTS’ RIGHTS TO DATA PROTECTION IN THE ERA OF OPEN SCIENCE Tara Sklar and Mabel Crescioni* CONTENTS INTRODUCTION ................................................. 700 R I. REAL-WORLD EVIDENCE AND WEARABLES IN CLINICAL TRIALS ....................................... 703 R II. DATA PROTECTION RIGHTS ............................. 708 R A. General Data Protection Regulation ................. 709 R B. California Consumer Privacy Act ................... 710 R C. GDPR and CCPA Influence on State Data Privacy Laws ................................................ 712 R III. RESEARCH EXEMPTION AND RELATED SAFEGUARDS ... 714 R IV. RESEARCH PARTICIPANTS’ DATA AND OPEN SCIENCE . 716 R CONCLUSION ................................................... 718 R Clinical trials are increasingly using sensors embedded in wearable de- vices due to their capabilities to generate real-world data. These devices are able to continuously monitor, record, and store physiological met- rics in response to a given therapy, which is contributing to a redesign of clinical trials around the world.
    [Show full text]
  • Overview of Reliability Engineering
    Overview of reliability engineering Eric Marsden <[email protected]> Context ▷ I have a fleet of airline engines and want to anticipate when they mayfail ▷ I am purchasing pumps for my refinery and want to understand the MTBF, lambda etc. provided by the manufacturers ▷ I want to compare different system designs to determine the impact of architecture on availability 2 / 32 Reliability engineering ▷ Reliability engineering is the discipline of ensuring that a system will function as required over a specified time period when operated and maintained in a specified manner. ▷ Reliability engineers address 3 basic questions: • When does something fail? • Why does it fail? • How can the likelihood of failure be reduced? 3 / 32 The termination of the ability of an item to perform a required function. [IEV Failure Failure 191-04-01] ▷ A failure is always related to a required function. The function is often specified together with a performance requirement (eg. “must handleup to 3 tonnes per minute”, “must respond within 0.1 seconds”). ▷ A failure occurs when the function cannot be performed or has a performance that falls outside the performance requirement. 4 / 32 The state of an item characterized by inability to perform a required function Fault Fault [IEV 191-05-01] ▷ While a failure is an event that occurs at a specific point in time, a fault is a state that will last for a shorter or longer period. ▷ When a failure occurs, the item enters the failed state. A failure may occur: • while running • while in standby • due to demand 5 / 32 Discrepancy between a computed, observed, or measured value or condition and Error Error the true, specified, or theoretically correct value or condition.
    [Show full text]
  • Lochner</I> in Cyberspace: the New Economic Orthodoxy Of
    Georgetown University Law Center Scholarship @ GEORGETOWN LAW 1998 Lochner in Cyberspace: The New Economic Orthodoxy of "Rights Management" Julie E. Cohen Georgetown University Law Center, [email protected] This paper can be downloaded free of charge from: https://scholarship.law.georgetown.edu/facpub/811 97 Mich. L. Rev. 462-563 (1998) This open-access article is brought to you by the Georgetown Law Library. Posted with permission of the author. Follow this and additional works at: https://scholarship.law.georgetown.edu/facpub Part of the Intellectual Property Law Commons, Internet Law Commons, and the Law and Economics Commons LOCHNER IN CYBERSPACE: THE NEW ECONOMIC ORTHODOXY OF "RIGHTS MANAGEMENT" JULIE E. COHEN * Originally published 97 Mich. L. Rev. 462 (1998). TABLE OF CONTENTS I. THE CONVERGENCE OF ECONOMIC IMPERATIVES AND NATURAL RIGHTS..........6 II. THE NEW CONCEPTUALISM.....................................................18 A. Constructing Consent ......................................................18 B. Manufacturing Scarcity.....................................................32 1. Transaction Costs and Common Resources................................33 2. Incentives and Redistribution..........................................40 III. ON MODELING INFORMATION MARKETS........................................50 A. Bargaining Power and Choice in Information Markets.............................52 1. Contested Exchange and the Power to Switch.............................52 2. Collective Action, "Rent-Seeking," and Public Choice.......................67
    [Show full text]
  • Understanding Functional Safety FIT Base Failure Rate Estimates Per IEC 62380 and SN 29500
    www.ti.com Technical White Paper Understanding Functional Safety FIT Base Failure Rate Estimates per IEC 62380 and SN 29500 Bharat Rajaram, Senior Member, Technical Staff, and Director, Functional Safety, C2000™ Microcontrollers, Texas Instruments ABSTRACT Functional safety standards like International Electrotechnical Commission (IEC) 615081 and International Organization for Standardization (ISO) 262622 require that semiconductor device manufacturers address both systematic and random hardware failures. Systematic failures are managed and mitigated by following rigorous development processes. Random hardware failures must adhere to specified quantitative metrics to meet hardware safety integrity levels (SILs) or automotive SILs (ASILs). Consequently, systematic failures are excluded from the calculation of random hardware failure metrics. Table of Contents 1 Introduction.............................................................................................................................................................................2 2 Types of Faults and Quantitative Random Hardware Failure Metrics .............................................................................. 2 3 Random Failures Over a Product Lifetime and Estimation of BFR ...................................................................................3 4 BFR Estimation Techniques ................................................................................................................................................. 4 5 Siemens SN 29500 FIT model
    [Show full text]
  • Process Capability Analysis
    6 Process capability analysis In general, process capability indices have been quite controversial. (Ryan, 2000, p. 186) Overview Capability indices are widely used in assessing how well processes perform in relation to customer requirements. The most widely used indices will be defined and links with the concept of sigma quality level established. Minitab facilities for capability analysis of both measurement and attribute data will be introduced. 6.1 Process capability 6.1.1 Process capability analysis with measurement data Imagine that four processes produce bottles of the same type for a customer who specifies that weight should lie between 485 and 495 g, with a target of 490 g. Imagine, too, that all four processes are behaving in a stable and predictable manner as indicated by control charting of data from regular samples of bottles from the processes. Let us suppose that the distribution of weight is normal in all four cases, with the parameters in Table 6.1. The four distributions of weight are displayed in Figure 6.1, together with reference lines showing lower specification limit (LSL), upper specification limit (USL) and Target (T). How well are these processes performing in relation to the customer requirements? In the long term the fall-out, in terms of nonconforming bottles, would be as shown in the penultimate column of Table 6.1. The fall-out is given as number of parts bottles) per million (ppm) that would fail to meet the customer specifications. The table in Appendix 1 indicates that these fall-outs correspond to sigma quality levels of 4.64, 3.50, 2.81 and 3.72 respectively for lines 1–4.
    [Show full text]
  • Probability Analysis in Determining the Behaviour of Variable Amplitude Strain Signal Based on Extraction Segments
    2141 Probability Analysis in Determining the Behaviour of Variable Amplitude Strain Signal Based on Extraction Segments Abstract M. F. M. Yunoh a This paper focuses on analysis in determining the behaviour of vari- S. Abdullah b, * able amplitude strain signals based on extraction of segments. The M. H. M. Saad c constant Amplitude loading (CAL), that was used in the laboratory d Z. M. Nopiah tests, was designed according to the variable amplitude loading e (VAL) from Society of Automotive Engineers (SAE). The SAE strain M. Z. Nuawi signal was then edited to obtain those segments that cause fatigue a damage to components. The segments were then sorted according to Department of Mechanical and Materials their amplitude and were used as a reference in the design of the Engineering, Faculty of Engineering & CAL loading for the laboratory tests. The strain signals that were Built Enviroment, Universiti Kebangsaan obtained from the laboratory tests were then analysed using fatigue Malaysia, 43600 UKM Bangi, Selangor, life prediction approach and statistics, i.e. Weibull distribution anal- Malaysia. [email protected] b ysis. Based on the plots of the Probability Density Function (PDF), [email protected] c Cumulative Distribution Function (CDF) and the probability of fail- [email protected]; d ure in the Weibull distribution analysis, it was shown that more than [email protected]; e 70% failure occurred when the number of cycles approached 1.0 x [email protected] 1011. Therefore, the Weibull distribution analysis can be used as an alternative to predict the failure probability. * Corresponding author: S.
    [Show full text]
  • Individual Failure Rate Modelling and Exploratory Failure Data Analysis for Power System Components
    INDIVIDUAL FAILURE RATE MODELLING AND EXPLORATORY FAILURE DATA ANALYSIS FOR POWER SYSTEM COMPONENTS REPORT 2018:549 RISK- OCH TILLFÖRLITLIGHETSANALYS Individual Failure Rate Modelling and Exploratory Failure Data Analysis for Power System Components JAN HENNING JÜRGENSEN ISBN 978-91-7673-549-7 | © Energiforsk December 2018 Energiforsk AB | Phone: 08-677 25 30 | E-mail: [email protected] | www.energiforsk.se INDIVIDUAL FAILURE RATE MODELLING AND EXPLORATORY FAILURE DATA ANALYSIS FOR POWER SYSTEM COMPONENTS Foreword Detta projekt är en fortsättning på ett doktorandprojekt från tidigare programperiod. Etappen Riskanalys III hanterade projektet från licentiat till doktorsavhandling genom att stötta en slutrapportering. Projektet studerade om felfrekvensnoggrannheten på en enskild komponentnivå kan öka trots att det tillgängliga historiska feldatat är begränsat. Resultatet var att effekterna av riskfaktorer på felfrekvens med regressionsmodeller kvantifierades, samt en ökad förståelse av riskfaktorer och högre noggrannhet av felfrekvensen. Statistisk data-underbyggda metoder används fortfarande sällan i kraftsystemen samtidigt som metoder behövs för att förbättra felfrekvensnoggrannheten trots begränsade tillgängliga data. Metoden beräknar individuella felfrekvenser. Jan Henning Jürgensen från Kungliga Tekniska Högskolan, har varit projektledare för projektet. Han har arbetat under handledning av docent Patrik Hilber och professor Lars Nordström, bägge på KTH. Stort tack till följande programstyrelse för all hjälp och vägledning: • Jenny
    [Show full text]
  • Improving Process Capability Database Usage for Robust Design Engineering by Generalising Measurement Data
    Downloaded from orbit.dtu.dk on: Sep 25, 2021 Improving process capability database usage for robust design engineering by generalising measurement data Okholm, A.B.; Rask, M.; Ebro, Martin ; Eifler, Tobias; Holmberg, M.; Howard, Thomas J. Published in: 13th International Design Conference - Design 2014 Publication date: 2014 Document Version Publisher's PDF, also known as Version of record Link back to DTU Orbit Citation (APA): Okholm, A. B., Rask, M., Ebro, M., Eifler, T., Holmberg, M., & Howard, T. J. (2014). Improving process capability database usage for robust design engineering by generalising measurement data. In 13th International Design Conference - Design 2014 (pp. 1133-1144). Design Society. General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. Users may download and print one copy of any publication from the public portal for the purpose of private study or research. You may not further distribute the material or use it for any profit-making activity or commercial gain You may freely distribute the URL identifying the publication in the public portal If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. INTERNATIONAL DESIGN CONFERENCE - DESIGN 2014 Dubrovnik - Croatia, May 19 - 22, 2014. IMPROVING PROCESS CAPABILITY DATABASE USAGE FOR ROBUST DESIGN ENGINEERING BY GENERALISING MEASUREMENT DATA A. B. Okholm, M. Rask, M.
    [Show full text]
  • Assignment 9 Control Charts, Process Capability and QFD
    Assignment 9 Control Charts, Process capability and QFD Instructions: 1. Total No. of Questions: 25. Each question carries one point. 2. All questions are objective type. Only one answer is correct per numbered item. 1. How do you find the process capability? a) By Process Capability Ratio = Cp = − b) By USL and LSL only 6 c) By normal distribution curve d) By spread and mean shift of the process 2. In a certain process it is given that USL is 14, LSL is zero. The process has a mean of 10 and standard deviation 2. What will be the Process Capability Ratio? a) 0.83 b) 1.17 c) 1.33 d) 1.5 3. In a process the inverse of process capability ratio is 0.65. Which statement is correct? a) The process is capable. b) The process is incapable. c) The process is capable with tight control. d) None of the above 4. A process having mean 8.80 and process standard deviation 0.12 has spread of specification limit: 9.0±0.4. What will be the process capability index? a) 0.55 b) 1.67 c) 1.33 d) 0.83 5. How is different than ? a) Looks at the centrality of the process. b) Looks at the overall variability of the process. c) Both look at the overall variability of the process. d) Looks at the centrality of the process. 6. A QC scheme is in operation for a process producing ball-bearings. A sample of 6 bearings is taken every hour and diameters is measured.
    [Show full text]
  • Use Process Capability to Ensure Product Quality
    Use Process Capability to Ensure Product Quality Lawrence X. Yu, Ph.D. Director (acting) Office of Pharmaceutical Science, CDER, FDA FDA/ PQRI Conference on Evolving Product Quality September 16-17, 2104, Bethesda, MD 1 2 Quality by Testing vs. Quality by Design Quality by Testing – Specification acceptance criteria are based on one or more batch data (process capability) – Testing must be made to release batches Quality by Design – Specification acceptance criteria are based on performance – Testing may not be necessary to release batches L. X. Yu. Pharm. Res. 25:781-791 (2008) 3 ICH Q6A: Test Procedures and Acceptance Criteria… 4 5 Pharmaceutical QbD Objectives Achieve meaningful product quality specifications that are based on assuring clinical performance Increase process capability and reduce product variability and defects by enhancing product and process design, understanding, and control Increase product development and manufacturing efficiencies Enhance root cause analysis and post-approval change management 6 Concept of Process Capability First introduced in Statistical Quality Control Handbook by the Western Electric Company (1956). – “process capability” is defined as “the natural or undisturbed performance after extraneous influences are eliminated. This is determined by plotting data on a control chart.” ISO, AIAG, ASQ, ASTM ….. published their guideline or manual on process capability index calculation 7 Nomenclature Four indices: – Cp: process capability index – Cpk: minimum process capability index – Pp: process
    [Show full text]
  • Chapter 2 Failure Models Part 1: Introduction
    Chapter 2 Failure Models Part 1: Introduction Marvin Rausand Department of Production and Quality Engineering Norwegian University of Science and Technology [email protected] Marvin Rausand, March 14, 2006 System Reliability Theory (2nd ed), Wiley, 2004 – 1 / 31 Introduction Rel. measures Life distributions State variable Time to failure Distr. function Probability density Distribution of T Reliability funct. Failure rate Introduction Bathtub curve Some formulas MTTF Example 2.1 Median Mode MRL Example 2.2 Discrete distributions Life distributions Marvin Rausand, March 14, 2006 System Reliability Theory (2nd ed), Wiley, 2004 – 2 / 31 Reliability measures Introduction In this chapter we introduce the following measures: Rel. measures Life distributions State variable Time to failure ■ Distr. function The reliability (survivor) function R(t) Probability density ■ The failure rate function z(t) Distribution of T ■ Reliability funct. The mean time to failure (MTTF) Failure rate ■ The mean residual life (MRL) Bathtub curve Some formulas MTTF Example 2.1 of a single item that is not repaired when it fails. Median Mode MRL Example 2.2 Discrete distributions Life distributions Marvin Rausand, March 14, 2006 System Reliability Theory (2nd ed), Wiley, 2004 – 3 / 31 Life distributions Introduction The following life distributions are discussed: Rel. measures Life distributions State variable ■ The exponential distribution Time to failure ■ Distr. function The gamma distribution Probability density ■ The Weibull distribution Distribution of
    [Show full text]