Power Normal Distribution

Total Page:16

File Type:pdf, Size:1020Kb

Power Normal Distribution Power Normal Distribution Debasis Kundu1 and Rameshwar D. Gupta2 Abstract Recently Gupta and Gupta [10] proposed the power normal distribution for which normal distribution is a special case. The power normal distribution is a skewed distri- bution, whose support is the whole real line. Our main aim of this paper is to consider bivariate power normal distribution, whose marginals are power normal distributions. We obtain the proposed bivariate power normal distribution from Clayton copula, and by making a suitable transformation in both the marginals. Lindley-Singpurwalla dis- tribution also can be used to obtain the same distribution. Different properties of this new distribution have been investigated in details. Two different estimators are proposed. One data analysis has been performed for illustrative purposes. Finally we propose some generalizations to multivariate case also along the same line and discuss some of its properties. Key Words and Phrases: Clayton copula; maximum likelihood estimator; failure rate; approximate maximum likelihood estimator. 1 Department of Mathematics and Statistics, Indian Institute of Technology Kanpur, Pin 208016, India. Corresponding author. e-mail: [email protected]. Part of his work has been supported by a grant from the Department of Science and Technology, Government of India. 2 Department of Computer Science and Applied Statistics. The University of New Brunswick, Saint John, Canada, E2L 4L5. Part of the work was supported by a grant from the Natural Sciences and Engineering Research Council. 1 1 Introduction The skew-normal distribution proposed by Azzalini [3] has received a considerable attention in the recent years. Due to its flexibility, it has been used quite extensively for analyzing skewed data on the entire real line. It has a nice physical interpretation also, as a hid- den truncation model, see Arnold and Beaver [2]. Several generalizations namely to other distributions and also to multivariate cases have been proposed and investigated in details. Although, it is well known that for skew normal distribution the maximum likelihood estimators (MLEs) are consistent and asymptotically normally distributed, the probability of non-existence of the MLEs is quite high, particularly, if the sample size is small. By extensive simulation studies, it has been observed by Gupta and Gupta [10] that even for moderate skewness, one needs a very large sample size to achieve a reasonable estimate of the skewness parameter. Due to this reason, Gupta and Gupta [10] proposed an alternative skewed model for which normal distribution becomes a special case and named it a power normal distribution. The power normal distribution is defined as follows: The random variable X is said to have a power normal distribution if it has the cumulative distribution function (CDF); F (x; α)= P (X x) = (Φ(x))α ; <x< . (1) X ≤ −∞ ∞ Here α> 0, and Φ( ) denoted the CDF of a standard normal distribution. Different proper- · ties of the power normal distribution have been discussed by Gupta and Gupta [10]. The aim of this paper is to introduce a bivariate power normal distribution (BPN) whose marginals are power normal distributions. This new distribution has been obtained from Clayton copula coupled with power normal marginals. Many properties of Clayton copula can be used in establishing different properties of the proposed bivariate power normal dis- tribution. It can also be obtained by making a suitable transformation from the well known 2 Lindley-Singpurwalla distribution, see [23]. Multivariate generalization and the generaliza- tion for the other distribution functions are also possible along the same line. It can be easily seen that the bivariate power normal distribution is an absolute contin- uous distribution. The joint probability density function (PDF) can take different shapes depending on the values of the parameters. The joint PDF can be expressed in terms of Φ( ) function. The conditional PDF can be easily obtained from the joint and marginal · distribution functions. It has been shown that although the power normal distribution has an increasing hazard rate but the bivariate hazard rate in the sense of Johnson and Kotz [19] is a decreasing function. We study different dependency properties using the properties of Clayton copula. It is ob- served that the two variables (marginals) are positive quadrant dependent. It automatically implies that Kendall’s τ, Spearman’s τ, Gini’s γ and Blomqvist’s β are all non-negative. We provide all these concordance measures. It has been shown that one variable is stochastically increasing with respect to the other. It can be verified that Clayton copula satisfies the total positivity of order two (TP2) property in the sense of Karlin [15]. Therefore, if a bivariate random vector has a BPN distribution, it satisfies the left corner set property also. Estimation of the unknown parameters is an important problem for any inferential pro- cedure. We propose to use the maximum likelihood method to estimate the unknown pa- rameters. The maximum likelihood estimators (MLEs) can be obtained by solving a two dimensional optimization process. The expected Fisher information matrix has also been provided which can be used for testing of hypothesis or for constructing confidence intervals. Further we propose to use a two-step procedure as suggested by Joe [18], mainly to avoid the two dimensional optimization process, and we provide the asymptotic distribution of the proposed estimators. One data set has been analyzed for illustrative purposes. Finally we provide the multivariate power normal distribution and study some of its properties. 3 Rest of the paper is organized as follows. In Section 2, we briefly describe the power normal distribution. The bivariate power normal distribution is introduced in Section 3. Different properties of the proposed bivariate power normal are discussed in Section 4. In Section 5, we provide the two estimation procedures. Analysis of one data set is presented in Section 6. In Section 7 we provide the multivariate power normal distribution. Finally we conclude the paper in Section 8. The elements of the Fisher information matrix and the elements of the asymptotic variance covariance matrix of the proposed estimators are provided in the Appendix. 2 Power Normal Distribution: A Brief Review Power Normal distribution was proposed by Gupta and Gupta [10], as an alternative to the Azzalini’s skew normal distribution. A random variable X is said to have a power normal distribution with parameter α> 0, if X has the CDF (1), and therefore, it has the probability density function (PDF); f (x; α)= α (Φ(x))α−1 φ(x); <x< . (2) X −∞ ∞ It is clear that the PDF (2) is a weighted normal PDF with weight function (Φ(x))α−1. For α = 1, it coincides with the standard normal density function. The power normal density function is a unimodal density function, which is skewed to the right if α> 1 and to the left if α< 1. It has some nice physical interpretations when α is an integer. It can be observed as the lifetime of a parallel system, see Gupta and Gupta [10] for a detailed discussions on this issue. Note that a class of distribution functions F ( ; α); α > 0 is said to be a proportional { · } reversed hazard rate family, if F (x; α)=(F (x))α ; <x< . (3) 0 −∞ ∞ 4 Here F ( ) is known as the baseline distribution function. Proportional reversed hazard rate 0 · model was introduced as an alternative to the celebrated proportional hazard rate model of Cox. Proportional reversed hazard rate model was originally introduced by Lehmann [20], in a testing of hypothesis problem, and it is known as Lehmann alternatives also. Power normal distribution can be seen as a member of the proportional reversed hazard rate family. Many general properties of the proportional reversed hazard rate models can be easily translated for the power normal distribution. It can be easily seen that the power normal distribution has an increasing hazard rate function and hence a decreasing mean residual life for all α > 0. It has likelihood ratio ordering, and hence it has hazard rate ordering and mean residual life ordering. Furthermore, unlike the skew normal distribution, the maximum likelihood estimator of the power normal distribution always exist. Therefore, for data analysis purposes power normal distribution can be used more effectively than the skew normal distribution. 3 Bivariate Power Normal Distribution In this section first we introduce the bivariate power normal distribution and discuss its different properties. It may be mentioned that every bivariate distribution function, FX1,X2 with continuous marginals F and F , corresponds a unique function C : [0, 1]2 [0, 1], X1 X2 → called a copula such that F (x , x )= C F (x ),F (x ) , for (x , x ) ( , ) ( , ). (4) X1,X2 1 2 { X1 1 X2 2 } 1 2 ∈ −∞ ∞ × −∞ ∞ Conversely, it is possible to construct a bivariate distribution function having the desired marginal distributions and a chosen description structure, i.e. copula. Let us consider the following copula −α C (u, v)= u−1/α + v−1/α 1 ; 0 <u,v < 1, (5) α − 5 known as Clayton copula, see for example Nelsen [28]. The following properties of the random vector (U, V ) with the joint CDF (5) can be easily established, and therefore the proofs are omitted. Theorem 3.1: If (U, V ) has the joint CDF (5) for α> 0, then (i) U, V uniform[0, 1]. ∼ (ii) The joint PDF of (U, V ) for 0 u, v 1 is ≤ ≤ (α + 1) 1 1 fU,V (u, v)= 1+α α+2 α × (uv) α × (u−1/α + v−1/α 1) · − (iii) The joint survival function of (U, V ) for 0 <u,v < 1 is −α S (u, v)= P (U u, V v) = 1 u v + u−1/α + v−1/α 1 . U,V ≥ ≥ − − − (iv) U V = v has the CDF | 1 1 P (U u V = v)= ≤ | v(α+1)/α × (u−1/α + v−1/α 1)α+1 · − Now we would like to define a bivariate power normal distribution using this Clayton cop- ula so that the marginals are univariate power normal distributions.
Recommended publications
  • Half Logistic Inverse Lomax Distribution with Applications
    S S symmetry Article Half Logistic Inverse Lomax Distribution with Applications Sanaa Al-Marzouki 1, Farrukh Jamal 2, Christophe Chesneau 3,* and Mohammed Elgarhy 4 1 Statistics Department, Faculty of Science, King AbdulAziz University, Jeddah 21551, Saudi Arabia; [email protected] 2 Department of Statistics, The Islamia University of Bahawalpur, Punjab 63100, Pakistan; [email protected] 3 Department of Mathematics, LMNO, Université de Caen-Normandie, Campus II, Science 3, 14032 Caen, France 4 The Higher Institute of Commercial Sciences, Al mahalla Al kubra, Algarbia 31951, Egypt; [email protected] * Correspondence: [email protected]; Tel.: +33-02-3156-7424 Abstract: The last years have revealed the importance of the inverse Lomax distribution in the un- derstanding of lifetime heavy-tailed phenomena. However, the inverse Lomax modeling capabilities have certain limits that researchers aim to overcome. These limits include a certain stiffness in the modulation of the peak and tail properties of the related probability density function. In this paper, a solution is given by using the functionalities of the half logistic family. We introduce a new three- parameter extended inverse Lomax distribution called the half logistic inverse Lomax distribution. We highlight its superiority over the inverse Lomax distribution through various theoretical and practical approaches. The derived properties include the stochastic orders, quantiles, moments, incomplete moments, entropy (Rényi and q) and order statistics. Then, an emphasis is put on the corresponding parametric model. The parameters estimation is performed by six well-established methods. Numerical results are presented to compare the performance of the obtained estimates. Also, a simulation study on the estimation of the Rényi entropy is proposed.
    [Show full text]
  • Study of Generalized Lomax Distribution and Change Point Problem
    STUDY OF GENERALIZED LOMAX DISTRIBUTION AND CHANGE POINT PROBLEM Amani Alghamdi A Dissertation Submitted to the Graduate College of Bowling Green State University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY August 2018 Committee: Arjun K. Gupta, Committee Co-Chair Wei Ning, Committee Co-Chair Jane Chang, Graduate Faculty Representative John Chen Copyright c 2018 Amani Alghamdi All rights reserved iii ABSTRACT Arjun K. Gupta and Wei Ning, Committee Co-Chair Generalizations of univariate distributions are often of interest to serve for real life phenomena. These generalized distributions are very useful in many fields such as medicine, physics, engineer- ing and biology. Lomax distribution (Pareto-II) is one of the well known univariate distributions that is considered as an alternative to the exponential, gamma, and Weibull distributions for heavy tailed data. However, this distribution does not grant great flexibility in modeling data. In this dissertation, we introduce a generalization of the Lomax distribution called Rayleigh Lo- max (RL) distribution using the form obtained by El-Bassiouny et al. (2015). This distribution provides great fit in modeling wide range of real data sets. It is a very flexible distribution that is related to some of the useful univariate distributions such as exponential, Weibull and Rayleigh dis- tributions. Moreover, this new distribution can also be transformed to a lifetime distribution which is applicable in many situations. For example, we obtain the inverse estimation and confidence intervals in the case of progressively Type-II right censored situation. We also apply Schwartz information approach (SIC) and modified information approach (MIC) to detect the changes in parameters of the RL distribution.
    [Show full text]
  • Research Participants' Rights to Data Protection in the Era of Open Science
    DePaul Law Review Volume 69 Issue 2 Winter 2019 Article 16 Research Participants’ Rights To Data Protection In The Era Of Open Science Tara Sklar Mabel Crescioni Follow this and additional works at: https://via.library.depaul.edu/law-review Part of the Law Commons Recommended Citation Tara Sklar & Mabel Crescioni, Research Participants’ Rights To Data Protection In The Era Of Open Science, 69 DePaul L. Rev. (2020) Available at: https://via.library.depaul.edu/law-review/vol69/iss2/16 This Article is brought to you for free and open access by the College of Law at Via Sapientiae. It has been accepted for inclusion in DePaul Law Review by an authorized editor of Via Sapientiae. For more information, please contact [email protected]. \\jciprod01\productn\D\DPL\69-2\DPL214.txt unknown Seq: 1 21-APR-20 12:15 RESEARCH PARTICIPANTS’ RIGHTS TO DATA PROTECTION IN THE ERA OF OPEN SCIENCE Tara Sklar and Mabel Crescioni* CONTENTS INTRODUCTION ................................................. 700 R I. REAL-WORLD EVIDENCE AND WEARABLES IN CLINICAL TRIALS ....................................... 703 R II. DATA PROTECTION RIGHTS ............................. 708 R A. General Data Protection Regulation ................. 709 R B. California Consumer Privacy Act ................... 710 R C. GDPR and CCPA Influence on State Data Privacy Laws ................................................ 712 R III. RESEARCH EXEMPTION AND RELATED SAFEGUARDS ... 714 R IV. RESEARCH PARTICIPANTS’ DATA AND OPEN SCIENCE . 716 R CONCLUSION ................................................... 718 R Clinical trials are increasingly using sensors embedded in wearable de- vices due to their capabilities to generate real-world data. These devices are able to continuously monitor, record, and store physiological met- rics in response to a given therapy, which is contributing to a redesign of clinical trials around the world.
    [Show full text]
  • Overview of Reliability Engineering
    Overview of reliability engineering Eric Marsden <[email protected]> Context ▷ I have a fleet of airline engines and want to anticipate when they mayfail ▷ I am purchasing pumps for my refinery and want to understand the MTBF, lambda etc. provided by the manufacturers ▷ I want to compare different system designs to determine the impact of architecture on availability 2 / 32 Reliability engineering ▷ Reliability engineering is the discipline of ensuring that a system will function as required over a specified time period when operated and maintained in a specified manner. ▷ Reliability engineers address 3 basic questions: • When does something fail? • Why does it fail? • How can the likelihood of failure be reduced? 3 / 32 The termination of the ability of an item to perform a required function. [IEV Failure Failure 191-04-01] ▷ A failure is always related to a required function. The function is often specified together with a performance requirement (eg. “must handleup to 3 tonnes per minute”, “must respond within 0.1 seconds”). ▷ A failure occurs when the function cannot be performed or has a performance that falls outside the performance requirement. 4 / 32 The state of an item characterized by inability to perform a required function Fault Fault [IEV 191-05-01] ▷ While a failure is an event that occurs at a specific point in time, a fault is a state that will last for a shorter or longer period. ▷ When a failure occurs, the item enters the failed state. A failure may occur: • while running • while in standby • due to demand 5 / 32 Discrepancy between a computed, observed, or measured value or condition and Error Error the true, specified, or theoretically correct value or condition.
    [Show full text]
  • Lochner</I> in Cyberspace: the New Economic Orthodoxy Of
    Georgetown University Law Center Scholarship @ GEORGETOWN LAW 1998 Lochner in Cyberspace: The New Economic Orthodoxy of "Rights Management" Julie E. Cohen Georgetown University Law Center, [email protected] This paper can be downloaded free of charge from: https://scholarship.law.georgetown.edu/facpub/811 97 Mich. L. Rev. 462-563 (1998) This open-access article is brought to you by the Georgetown Law Library. Posted with permission of the author. Follow this and additional works at: https://scholarship.law.georgetown.edu/facpub Part of the Intellectual Property Law Commons, Internet Law Commons, and the Law and Economics Commons LOCHNER IN CYBERSPACE: THE NEW ECONOMIC ORTHODOXY OF "RIGHTS MANAGEMENT" JULIE E. COHEN * Originally published 97 Mich. L. Rev. 462 (1998). TABLE OF CONTENTS I. THE CONVERGENCE OF ECONOMIC IMPERATIVES AND NATURAL RIGHTS..........6 II. THE NEW CONCEPTUALISM.....................................................18 A. Constructing Consent ......................................................18 B. Manufacturing Scarcity.....................................................32 1. Transaction Costs and Common Resources................................33 2. Incentives and Redistribution..........................................40 III. ON MODELING INFORMATION MARKETS........................................50 A. Bargaining Power and Choice in Information Markets.............................52 1. Contested Exchange and the Power to Switch.............................52 2. Collective Action, "Rent-Seeking," and Public Choice.......................67
    [Show full text]
  • Understanding Functional Safety FIT Base Failure Rate Estimates Per IEC 62380 and SN 29500
    www.ti.com Technical White Paper Understanding Functional Safety FIT Base Failure Rate Estimates per IEC 62380 and SN 29500 Bharat Rajaram, Senior Member, Technical Staff, and Director, Functional Safety, C2000™ Microcontrollers, Texas Instruments ABSTRACT Functional safety standards like International Electrotechnical Commission (IEC) 615081 and International Organization for Standardization (ISO) 262622 require that semiconductor device manufacturers address both systematic and random hardware failures. Systematic failures are managed and mitigated by following rigorous development processes. Random hardware failures must adhere to specified quantitative metrics to meet hardware safety integrity levels (SILs) or automotive SILs (ASILs). Consequently, systematic failures are excluded from the calculation of random hardware failure metrics. Table of Contents 1 Introduction.............................................................................................................................................................................2 2 Types of Faults and Quantitative Random Hardware Failure Metrics .............................................................................. 2 3 Random Failures Over a Product Lifetime and Estimation of BFR ...................................................................................3 4 BFR Estimation Techniques ................................................................................................................................................. 4 5 Siemens SN 29500 FIT model
    [Show full text]
  • The Poisson-Lomax Distribution
    Revista Colombiana de Estadística Junio 2014, volumen 37, no. 1, pp. 225 a 245 The Poisson-Lomax Distribution Distribución Poisson-Lomax Bander Al-Zahrania, Hanaa Sagorb Department of Statistics, King Abdulaziz University, Jeddah, Saudi Arabia Abstract In this paper we propose a new three-parameter lifetime distribution with upside-down bathtub shaped failure rate. The distribution is a com- pound distribution of the zero-truncated Poisson and the Lomax distribu- tions (PLD). The density function, shape of the hazard rate function, a general expansion for moments, the density of the rth order statistic, and the mean and median deviations of the PLD are derived and studied in de- tail. The maximum likelihood estimators of the unknown parameters are obtained. The asymptotic confidence intervals for the parameters are also obtained based on asymptotic variance-covariance matrix. Finally, a real data set is analyzed to show the potential of the new proposed distribution. Key words: Asymptotic variance-covariance matrix, Compounding, Life- time distributions, Lomax distribution, Poisson distribution, Maximum like- lihood estimation. Resumen En este artículo se propone una nueva distribución de sobrevida de tres parámetros con tasa fallo en forma de bañera. La distribución es una mezcla de la Poisson truncada y la distribución Lomax. La función de densidad, la función de riesgo, una expansión general de los momentos, la densidad del r-ésimo estadístico de orden, y la media así como su desviación estándar son derivadas y estudiadas en detalle. Los estimadores de máximo verosímiles de los parámetros desconocidos son obtenidos. Los intervalos de confianza asintóticas se obtienen según la matriz de varianzas y covarianzas asintótica.
    [Show full text]
  • Weibull-Lomax Distribution and Its Properties and Applications
    Al-Azhar University-Gaza Deanship of Postgraduate Studies Faculty of Economics and Administrative Sciences Department of Statistics Weibull-Lomax Distribution and its Properties and Applications توزيع ويبل - لومكس و خصائصه و تطبيقاته By: Ahmed Majed Hamad El-deeb Supervisor: Prof. Dr. Mahmoud Khalid Okasha A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master in Statistics Gaza, 2015 Abstract The Weibull distribution is a very popular probability mathematical distribution for its flexibility in modeling lifetime data particularly for phenomenon with monotone failure rates. When modeling monotone hazard rates, the Weibull distribution may be an initial choice because of its negatively and positively skewed density shapes. However, it does not provide a reasonable parametric fit for modeling phenomenon with non-monotone failure rates such as the bathtub and upside-down bathtub shapes and the unimodal failure rates which are common in reliability, biological studies and survival studies. In this thesis we introduce and discuss a new generalization of Weibull distribution called the Four-parameter Weibull-Lomax distribution in an attempt to overcome the problem of not being able to fit the phenomenon with non-monotone failure rates. The new distribution is quite flexible for analyzing various shapes of lifetime data and has an increasing, decreasing, constant, bathtub or upside down bathtub shaped hazard rate function. Some basic mathematical functions associated with the proposed distribution are obtained. The Weibull-Lomax density function could be wrought as a double mixture of Exponentiated Lomax densities. And includes as special cases the exponential, Weibull. Shapes of the density and the hazard rate function are discussed.
    [Show full text]
  • Probability Analysis in Determining the Behaviour of Variable Amplitude Strain Signal Based on Extraction Segments
    2141 Probability Analysis in Determining the Behaviour of Variable Amplitude Strain Signal Based on Extraction Segments Abstract M. F. M. Yunoh a This paper focuses on analysis in determining the behaviour of vari- S. Abdullah b, * able amplitude strain signals based on extraction of segments. The M. H. M. Saad c constant Amplitude loading (CAL), that was used in the laboratory d Z. M. Nopiah tests, was designed according to the variable amplitude loading e (VAL) from Society of Automotive Engineers (SAE). The SAE strain M. Z. Nuawi signal was then edited to obtain those segments that cause fatigue a damage to components. The segments were then sorted according to Department of Mechanical and Materials their amplitude and were used as a reference in the design of the Engineering, Faculty of Engineering & CAL loading for the laboratory tests. The strain signals that were Built Enviroment, Universiti Kebangsaan obtained from the laboratory tests were then analysed using fatigue Malaysia, 43600 UKM Bangi, Selangor, life prediction approach and statistics, i.e. Weibull distribution anal- Malaysia. [email protected] b ysis. Based on the plots of the Probability Density Function (PDF), [email protected] c Cumulative Distribution Function (CDF) and the probability of fail- [email protected]; d ure in the Weibull distribution analysis, it was shown that more than [email protected]; e 70% failure occurred when the number of cycles approached 1.0 x [email protected] 1011. Therefore, the Weibull distribution analysis can be used as an alternative to predict the failure probability. * Corresponding author: S.
    [Show full text]
  • Individual Failure Rate Modelling and Exploratory Failure Data Analysis for Power System Components
    INDIVIDUAL FAILURE RATE MODELLING AND EXPLORATORY FAILURE DATA ANALYSIS FOR POWER SYSTEM COMPONENTS REPORT 2018:549 RISK- OCH TILLFÖRLITLIGHETSANALYS Individual Failure Rate Modelling and Exploratory Failure Data Analysis for Power System Components JAN HENNING JÜRGENSEN ISBN 978-91-7673-549-7 | © Energiforsk December 2018 Energiforsk AB | Phone: 08-677 25 30 | E-mail: [email protected] | www.energiforsk.se INDIVIDUAL FAILURE RATE MODELLING AND EXPLORATORY FAILURE DATA ANALYSIS FOR POWER SYSTEM COMPONENTS Foreword Detta projekt är en fortsättning på ett doktorandprojekt från tidigare programperiod. Etappen Riskanalys III hanterade projektet från licentiat till doktorsavhandling genom att stötta en slutrapportering. Projektet studerade om felfrekvensnoggrannheten på en enskild komponentnivå kan öka trots att det tillgängliga historiska feldatat är begränsat. Resultatet var att effekterna av riskfaktorer på felfrekvens med regressionsmodeller kvantifierades, samt en ökad förståelse av riskfaktorer och högre noggrannhet av felfrekvensen. Statistisk data-underbyggda metoder används fortfarande sällan i kraftsystemen samtidigt som metoder behövs för att förbättra felfrekvensnoggrannheten trots begränsade tillgängliga data. Metoden beräknar individuella felfrekvenser. Jan Henning Jürgensen från Kungliga Tekniska Högskolan, har varit projektledare för projektet. Han har arbetat under handledning av docent Patrik Hilber och professor Lars Nordström, bägge på KTH. Stort tack till följande programstyrelse för all hjälp och vägledning: • Jenny
    [Show full text]
  • The Effects of Autocorrelation in the Estimation of Process Capability Indices." (1998)
    Louisiana State University LSU Digital Commons LSU Historical Dissertations and Theses Graduate School 1998 The ffecE ts of Autocorrelation in the Estimation of Process Capability Indices. Lawrence Lee Magee Louisiana State University and Agricultural & Mechanical College Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_disstheses Recommended Citation Magee, Lawrence Lee, "The Effects of Autocorrelation in the Estimation of Process Capability Indices." (1998). LSU Historical Dissertations and Theses. 6847. https://digitalcommons.lsu.edu/gradschool_disstheses/6847 This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Historical Dissertations and Theses by an authorized administrator of LSU Digital Commons. For more information, please contact [email protected]. INFORMATION TO USERS This manuscript has been reproduced from the microfilm master. U M I films the text directly from die original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type o f computer printer. The quality o f this reproduction is dependent upon the quality o f the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction. hi the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note w ill indicate the deletion. Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand corner and continuing from left to right in equal sections with small overlaps.
    [Show full text]
  • Newdistns: an R Package for New Families of Distributions
    JSS Journal of Statistical Software March 2016, Volume 69, Issue 10. doi: 10.18637/jss.v069.i10 Newdistns: An R Package for New Families of Distributions Saralees Nadarajah Ricardo Rocha University of Manchester Universidade Federal de São Carlos Abstract The contributed R package Newdistns written by the authors is introduced. This pack- age computes the probability density function, cumulative distribution function, quantile function, random numbers and some measures of inference for nineteen families of distri- butions. Each family is flexible enough to encompass a large number of structures. The use of the package is illustrated using a real data set. Also robustness of random number generation is checked by simulation. Keywords: cumulative distribution function, probability density function, quantile function, random numbers. 1. Introduction Let G be any valid cumulative distribution function defined on the real line. The last decade or so has seen many approaches proposed for generating new distributions based on G. All of these approaches can be put in the form F (x) = B (G(x)) , (1) where B : [0, 1] → [0, 1] and F is a valid cumulative distribution function. So, for every G one can use (1) to generate a new distribution. The first approach of the kind of (1) proposed in recent years was that due to Marshall and Olkin(1997). In Marshall and Olkin(1997), B was taken to be B(p) = βp/ {1 − (1 − β)p} for β > 0. The distributions generated in this way using (1) will be referred to as Marshall Olkin G distributions. Since Marshall and Olkin(1997), many other approaches have been proposed.
    [Show full text]