Study of Generalized Lomax Distribution and Change Point Problem

Total Page:16

File Type:pdf, Size:1020Kb

Study of Generalized Lomax Distribution and Change Point Problem STUDY OF GENERALIZED LOMAX DISTRIBUTION AND CHANGE POINT PROBLEM Amani Alghamdi A Dissertation Submitted to the Graduate College of Bowling Green State University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY August 2018 Committee: Arjun K. Gupta, Committee Co-Chair Wei Ning, Committee Co-Chair Jane Chang, Graduate Faculty Representative John Chen Copyright c 2018 Amani Alghamdi All rights reserved iii ABSTRACT Arjun K. Gupta and Wei Ning, Committee Co-Chair Generalizations of univariate distributions are often of interest to serve for real life phenomena. These generalized distributions are very useful in many fields such as medicine, physics, engineer- ing and biology. Lomax distribution (Pareto-II) is one of the well known univariate distributions that is considered as an alternative to the exponential, gamma, and Weibull distributions for heavy tailed data. However, this distribution does not grant great flexibility in modeling data. In this dissertation, we introduce a generalization of the Lomax distribution called Rayleigh Lo- max (RL) distribution using the form obtained by El-Bassiouny et al. (2015). This distribution provides great fit in modeling wide range of real data sets. It is a very flexible distribution that is related to some of the useful univariate distributions such as exponential, Weibull and Rayleigh dis- tributions. Moreover, this new distribution can also be transformed to a lifetime distribution which is applicable in many situations. For example, we obtain the inverse estimation and confidence intervals in the case of progressively Type-II right censored situation. We also apply Schwartz information approach (SIC) and modified information approach (MIC) to detect the changes in parameters of the RL distribution. The performance of these approaches is studied through simu- lations and applications to real data sets. According to Aryal and Tsokos (2009), most of the real world phenomenon that we need to study are asymmetrical, and the normal model is not a good model for studying this type of dataset. Thus, skewed models are necessary for modeling and fitting asymmetrical datasets. Azzalini (1985) in- troduced the univariate skew normal distribution and his approach can be applied in any symmet- rical model. However, if the underlying (base) probability is not symmetric, we can not apply the Azzalini’s approach. This motivated the study for more flexible alternative. Shaw and Buckley (2007) introduced a quadratic rank transmutation map (QRTM) which can be applied in any (symmetric or asymmetric) distribution. Recently, many distributions have been suggested using the QRTM to derive the transmuted class (TC) of distributions. This provides great flexibility in performing real datasets. We extend our work in RL distribution to derive the iv transmuted Rayleigh Lomax (TR-RL) distribution using the QRTM. Mathematical and statistical properties, such as moment generating function, L-moment, probability weight moments are de- rived and studied. We also establish the relationship between the TR-RL , the RL, and other useful distributions to show that our proposed distribution includes them as special cases. TR-RL is fitted to a well known dataset, the goodness of fit test and the likelihood ratio test are presented to show how well the TR-RL fits the data. v To the memory of my parents who paved the way for me during their life- time. To my husband Khalid Alghamdi and my children Lujain, Loai and Wael for their unconditional love and support. I dedicate this work. vi ACKNOWLEDGMENTS First of all, I would like to express my deepest thanks to my advisors Dr. Arjun Gupta and Dr. Wei Ning for their guidance, support, detailed comments, patience and invaluable encourage- ment they offered throughout this research. Under their guidance, I successfully overcame many difficulties and learned a lot. I would especially like to thank Dr. John Chen for his unforgettable support, and acceptance of being a member in my dissertation committee. I am also thankful to Dr. Jane Chang for the time she spent on reviewing this dissertation. Deepest sense of gratitude to Dr. Craig Zirbel for his careful and precious guidance throughout my study. My thanks and appreciation also to the staff of Department of Mathematics and Statistics at BGSU for their help and support. I must thank all of my friends in the US for helping and understanding me during this journey. Special thanks go to my brothers and my sisters for encouraging and inspiring me to follow my dreams. I am also grateful to my parents in law, who supported me emotionally and believed in me. I owe thanks to a very special person, my husband, Khalid Alghamdi for all his love, continuing support and encouragement. This entire journey would not have been possible without his support. Last but not least, I wish to express my love to my children Lujain, Loai and Wael who have unavoidably missed my presence during this period. vii TABLE OF CONTENTS Page CHAPTER 1 LITERATURE REVIEW . 1 1.1 Introduction . 1 1.2 Methodology . 3 1.3 Dissertation Structure . 7 CHAPTER 2 RAYLEIGH LOMAX DISTRIBUTION . 8 2.1 Introduction . 8 2.2 The Rayleigh Lomax Distribution . 8 2.3 Distributional Properties . 10 2.3.1 Shapes of pdf . 10 2.3.2 Moments . 11 2.3.3 L-moments . 14 2.3.4 Order statistics . 18 2.3.5 Quantile function . 20 2.3.6 Probability weighted moments . 20 2.3.7 Moment generating function . 22 2.4 Estimation . 22 2.4.1 MLEs of parameters . 23 2.4.2 Asymptotic distribution . 24 2.4.3 Simulation . 25 2.5 Application . 25 2.6 Hazard rate function . 31 viii 2.7 Inference under progressively type-II right-censored sampling for transformed Rayleigh Lomax distribution . 33 2.7.1 Interval estimation of parameter α ...................... 38 2.7.2 Interval estimation of parameter σ ...................... 39 2.7.3 Inverse estimation of parameters α and σ . 39 2.7.4 Simulation study . 40 2.7.5 An Illustrative Example . 46 2.8 Discussion . 48 CHAPTER 3 TRANSMUTED RAYLEIGH LOMAX DISTRIBUTION . 49 3.1 Introduction . 49 3.2 The Transmuted Rayleigh Lomax distribution . 50 3.2.1 Rank transmutation . 50 3.2.2 The Transmuted Rayleigh Lomax distribution . 52 3.3 Distributional Properties . 53 3.3.1 Shape of pdf . 53 3.3.2 Moments . 55 3.3.3 L-moments . 57 3.3.4 Order statistics . 60 3.3.5 Quantile function . 62 3.3.6 Probability weighted moments . 66 3.3.7 Moment generating function . 67 3.4 Estimation . 68 3.4.1 MLEs of parameters . 68 3.4.2 Asymptotic distribution . 70 3.4.3 Simulation . 73 3.5 Application . 73 3.6 Discussion and Conclusions . 76 ix CHAPTER 4 AN INFORMATION APPROACH FOR THE CHANGE POINT PROB- LEM OF THE RAYLEIGH LOMAX DISTRIBUTION . 78 4.1 Introduction . 78 4.2 Literature Review of the Change Point Problem . 79 4.3 Methodology . 80 4.4 Simulation Study . 85 4.5 Change Point Analysis for British Coal Mining Disaster . 88 4.6 Change Point Analysis for IBM Stock Price . 92 4.7 Change Point Analysis for the Radius of Circular Indentations . 94 4.8 Conclusions . 96 BIBLIOGRAPHY . 97 APPENDIX A SELECTED R PROGRAMS . 104 x LIST OF FIGURES Figure Page 1.1 Probability density function of Lomax distribution for different values of shape parameter α and λ = 1................................. 2 1.2 Cumulative density function of Lomax distribution for different values of shape parameter α and λ = 1................................. 3 1.3 Probability density function of Pareto (IV) distribution for different values of the shape parameter α and inequality parameter γ = 1; 2................. 4 2.1 Probability density function of Rayleigh Lomax as α increases and decreases. 11 2.2 Probability density function of Rayleigh Lomax as λ increases and decreases. 11 2.3 Probability density function of Rayleigh Lomax as σ increases and decreases. 12 2.4 Plot of the estimated densities for the Aircraft Windshield data. 28 2.5 Model of Probability density function of Rayleigh Lomax for the Aircraft Wind- shield data using the L-moments, the MLE and the method of moments. 29 2 1 2.6 Probability density function of the transformed Rayleigh Lomax for σ = 2 : . 31 2.7 Hazard rate function of the transformed Rayleigh Lomax for a random variable T when σ2 = 1=2..................................... 33 3.1 Probability density function of the TR-RL as α increases and decreases. 53 3.2 Probability density function of the TR-RL as λ increases and decreases. 54 3.3 Probability density function of the TR-RL as σ increases and decreases. 54 3.4 Probability density functions of TR-RL and RL (dot curve). 55 3.5 The relationship between α and the median of the TR-RL distribution. 64 3.6 The relationship between λ and the median of the TR-RL distribution. 65 xi 3.7 Fitted density curves to the remission time real data. 76 2 4.1 χ3 Q-Q plot of Sn as n=100, p-value=0.4376. 87 2 4.2 χ3 Q-Q plot of Sn as n=200, p-value=0.6342. 88 2 4.3 χ3 Q-Q plot of Sn as n=400, p-value=0.8649. 88 4.4 The auto-correlation plot of the British Coal Mining Disaster data. 91 4.5 Scatter plot for the British Coal Mining Disaster data. 91 4.6 SIC(k) values in the British Coal Mining Disaster data. 91 4.7 The auto-correlation plot of the transformed IBM data. 92 4.8 The IBM stock daily closing prices from May 17 of 1961 to November 2 of 1962. 93 4.9 The IBM stock daily closing prices rate from May 17 of 1961 to November 2 of 1962.
Recommended publications
  • The Poisson Burr X Inverse Rayleigh Distribution and Its Applications
    Journal of Data Science,18(1). P. 56 – 77,2020 DOI:10.6339/JDS.202001_18(1).0003 The Poisson Burr X Inverse Rayleigh Distribution And Its Applications Rania H. M. Abdelkhalek* Department of Statistics, Mathematics and Insurance, Benha University, Egypt. ABSTRACT A new flexible extension of the inverse Rayleigh model is proposed and studied. Some of its fundamental statistical properties are derived. We assessed the performance of the maximum likelihood method via a simulation study. The importance of the new model is shown via three applications to real data sets. The new model is much better than other important competitive models. Keywords: Inverse Rayleigh; Poisson; Simulation; Modeling. * [email protected] Rania H. M. Abdelkhalek 57 1. Introduction and physical motivation The well-known inverse Rayleigh (IR) model is considered as a distribution for a life time random variable (r.v.). The IR distribution has many applications in the area of reliability studies. Voda (1972) proved that the distribution of lifetimes of several types of experimental (Exp) units can be approximated by the IR distribution and studied some properties of the maximum likelihood estimation (MLE) of the its parameter. Mukerjee and Saran (1984) studied the failure rate of an IR distribution. Aslam and Jun (2009) introduced a group acceptance sampling plans for truncated life tests based on the IR. Soliman et al. (2010) studied the Bayesian and non- Bayesian estimation of the parameter of the IR model Dey (2012) mentioned that the IR model has also been used as a failure time distribution although the variance and higher order moments does not exist for it.
    [Show full text]
  • New Proposed Length-Biased Weighted Exponential and Rayleigh Distribution with Application
    CORE Metadata, citation and similar papers at core.ac.uk Provided by International Institute for Science, Technology and Education (IISTE): E-Journals Mathematical Theory and Modeling www.iiste.org ISSN 2224-5804 (Paper) ISSN 2225-0522 (Online) Vol.4, No.7, 2014 New Proposed Length-Biased Weighted Exponential and Rayleigh Distribution with Application Kareema Abed Al-kadim1 Nabeel Ali Hussein 2 1,2.College of Education of Pure Sciences, University of Babylon/Hilla 1.E-mail of the Corresponding author: [email protected] 2.E-mail: [email protected] Abstract The concept of length-biased distribution can be employed in development of proper models for lifetime data. Length-biased distribution is a special case of the more general form known as weighted distribution. In this paper we introduce a new class of length-biased of weighted exponential and Rayleigh distributions(LBW1E1D), (LBWRD).This paper surveys some of the possible uses of Length - biased distribution We study the some of its statistical properties with application of these new distribution. Keywords: length- biased weighted Rayleigh distribution, length- biased weighted exponential distribution, maximum likelihood estimation. 1. Introduction Fisher (1934) [1] introduced the concept of weighted distributions Rao (1965) [2]developed this concept in general terms by in connection with modeling statistical data where the usual practi ce of using standard distributions were not found to be appropriate, in which various situations that can be modeled by weighted distributions, where non-observe ability of some events or damage caused to the original observation resulting in a reduced value, or in a sampling procedure which gives unequal chances to the units in the original That means the recorded observations cannot be considered as a original random sample.
    [Show full text]
  • Summary Notes for Survival Analysis
    Summary Notes for Survival Analysis Instructor: Mei-Cheng Wang Department of Biostatistics Johns Hopkins University Spring, 2006 1 1 Introduction 1.1 Introduction De¯nition: A failure time (survival time, lifetime), T , is a nonnegative-valued random vari- able. For most of the applications, the value of T is the time from a certain event to a failure event. For example, a) in a clinical trial, time from start of treatment to a failure event b) time from birth to death = age at death c) to study an infectious disease, time from onset of infection to onset of disease d) to study a genetic disease, time from birth to onset of a disease = onset age 1.2 De¯nitions De¯nition. Cumulative distribution function F (t). F (t) = Pr(T · t) De¯nition. Survial function S(t). S(t) = Pr(T > t) = 1 ¡ Pr(T · t) Characteristics of S(t): a) S(t) = 1 if t < 0 b) S(1) = limt!1 S(t) = 0 c) S(t) is non-increasing in t In general, the survival function S(t) provides useful summary information, such as the me- dian survival time, t-year survival rate, etc. De¯nition. Density function f(t). 2 a) If T is a discrete random variable, f(t) = Pr(T = t) b) If T is (absolutely) continuous, the density function is Pr (Failure occurring in [t; t + ¢t)) f(t) = lim ¢t!0+ ¢t = Rate of occurrence of failure at t: Note that dF (t) dS(t) f(t) = = ¡ : dt dt De¯nition. Hazard function ¸(t).
    [Show full text]
  • Half Logistic Inverse Lomax Distribution with Applications
    S S symmetry Article Half Logistic Inverse Lomax Distribution with Applications Sanaa Al-Marzouki 1, Farrukh Jamal 2, Christophe Chesneau 3,* and Mohammed Elgarhy 4 1 Statistics Department, Faculty of Science, King AbdulAziz University, Jeddah 21551, Saudi Arabia; [email protected] 2 Department of Statistics, The Islamia University of Bahawalpur, Punjab 63100, Pakistan; [email protected] 3 Department of Mathematics, LMNO, Université de Caen-Normandie, Campus II, Science 3, 14032 Caen, France 4 The Higher Institute of Commercial Sciences, Al mahalla Al kubra, Algarbia 31951, Egypt; [email protected] * Correspondence: [email protected]; Tel.: +33-02-3156-7424 Abstract: The last years have revealed the importance of the inverse Lomax distribution in the un- derstanding of lifetime heavy-tailed phenomena. However, the inverse Lomax modeling capabilities have certain limits that researchers aim to overcome. These limits include a certain stiffness in the modulation of the peak and tail properties of the related probability density function. In this paper, a solution is given by using the functionalities of the half logistic family. We introduce a new three- parameter extended inverse Lomax distribution called the half logistic inverse Lomax distribution. We highlight its superiority over the inverse Lomax distribution through various theoretical and practical approaches. The derived properties include the stochastic orders, quantiles, moments, incomplete moments, entropy (Rényi and q) and order statistics. Then, an emphasis is put on the corresponding parametric model. The parameters estimation is performed by six well-established methods. Numerical results are presented to compare the performance of the obtained estimates. Also, a simulation study on the estimation of the Rényi entropy is proposed.
    [Show full text]
  • SOLUTION for HOMEWORK 1, STAT 3372 Welcome to Your First
    SOLUTION FOR HOMEWORK 1, STAT 3372 Welcome to your first homework. Remember that you are always allowed to use Tables allowed on SOA/CAS exam 4. You can find them on my webpage. Another remark: 6 minutes per problem is your “speed”. Now you probably will not be able to solve your problems so fast — but this is the goal. Try to find mistakes (and get extra points) in my solutions. Typically they are silly arithmetic mistakes (not methodological ones). They allow me to check that you did your HW on your own. Please do not e-mail me about your findings — just mention them on the first page of your solution and count extra points. You can use them to compensate for wrongly solved problems in this homework. They cannot be counted beyond 10 maximum points for each homework. Now let us look at your problems. General Remark: It is always prudent to begin with writing down what is given and what you need to establish. This step can help you to understand/guess a possible solution. Also, your solution should be written neatly so, if you have extra time, it is easier to check your solution. 1. Problem 2.4 Given: The hazard function is h(x)=(A + e2x)I(x ≥ 0) and S(0.4) = 0.5. Find: A Solution: I need to relate h(x) and S(x) to find A. There is a formula on page 17, also discussed in class, which is helpful here. Namely, x − h(u)du S(x)= e 0 . R It allows us to find A.
    [Show full text]
  • A New Generalization of the Generalized Inverse Rayleigh Distribution with Applications
    S S symmetry Article A New Generalization of the Generalized Inverse Rayleigh Distribution with Applications Rana Ali Bakoban * and Ashwaq Mohammad Al-Shehri Department of Statistics, College of Science, University of Jeddah, Jeddah 22254, Saudi Arabia; [email protected] * Correspondence: [email protected] Abstract: In this article, a new four-parameter lifetime model called the beta generalized inverse Rayleigh distribution (BGIRD) is defined and studied. Mixture representation of this model is derived. Curve’s behavior of probability density function, reliability function, and hazard function are studied. Next, we derived the quantile function, median, mode, moments, harmonic mean, skewness, and kurtosis. In addition, the order statistics and the mean deviations about the mean and median are found. Other important properties including entropy (Rényi and Shannon), which is a measure of the uncertainty for this distribution, are also investigated. Maximum likelihood estimation is adopted to the model. A simulation study is conducted to estimate the parameters. Four real-life data sets from difference fields were applied on this model. In addition, a comparison between the new model and some competitive models is done via information criteria. Our model shows the best fitting for the real data. Keywords: beta generalized inverse Rayleigh distribution; statistical properties; mean deviations; quantile; Rényi entropy; Shannon entropy; incomplete beta function; Montecarlo Simulation Citation: Bakoban, R.A.; Al-Shehri, MSC: Primary 62E10; Secondary 60E05 A.M. A New Generalization of the Generalized Inverse Rayleigh Distribution with Applications. Symmetry 2021, 13, 711. https:// 1. Introduction doi.org/10.3390/sym13040711 Modeling and analysis of lifetime phenomena are important aspects of statistical Academic Editor: Sergei D.
    [Show full text]
  • Review of Multivariate Survival Data
    Review of Multivariate Survival Data Guadalupe G´omez(1), M.Luz Calle(2), Anna Espinal(3) and Carles Serrat(1) (1) Universitat Polit`ecnica de Catalunya (2) Universitat de Vic (3) Universitat Aut`onoma de Barcelona DR2004/15 Review of Multivariate Survival Data ∗ Guadalupe G´omez [email protected] Departament d'Estad´ıstica i I.O. Universitat Polit`ecnica de Catalunya M.Luz Calle [email protected] Departament de Matem`atica i Inform`atica Universitat de Vic Carles Serrat [email protected] Departament de Matem`atica Aplicada I Universitat Polit`ecnica de Catalunya Anna Espinal [email protected] Departament de Matem`atiques Universitat Aut`onoma de Barcelona September 2004 ∗Partially supported by grant BFM2002-0027 PB98{0919 from the Ministerio de Cien- cia y Tecnologia Contents 1 Introduction 1 2 Review of bivariate nonparametric approaches 3 2.1 Introduction and notation . 3 2.2 Nonparametric estimation of the bivariate distribution func- tion under independent censoring . 5 2.3 Nonparametric estimation of the bivariate distribution func- tion under dependent right-censoring . 9 2.4 Average relative risk dependence measure . 18 3 Extensions of the bivariate survival estimator 20 3.1 Estimation of the bivariate survival function for two not con- secutive gap times. A discrete approach . 20 3.2 Burke's extension to two consecutive gap times . 25 4 Multivariate Survival Data 27 4.1 Notation . 27 4.2 Likelihood Function . 29 4.3 Modelling the time dependencies via Partial Likelihood . 31 5 Bayesian approach for modelling trends and time dependen- cies 35 5.1 Modelling time dependencies via indicators .
    [Show full text]
  • Survival and Reliability Analysis with an Epsilon-Positive Family of Distributions with Applications
    S S symmetry Article Survival and Reliability Analysis with an Epsilon-Positive Family of Distributions with Applications Perla Celis 1,*, Rolando de la Cruz 1 , Claudio Fuentes 2 and Héctor W. Gómez 3 1 Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez, Diagonal Las Torres 2640, Peñalolén, Santiago 7941169, Chile; [email protected] 2 Department of Statistics, Oregon State University, 217 Weniger Hall, Corvallis, OR 97331, USA; [email protected] 3 Departamento de Matemática, Facultad de Ciencias Básicas, Universidad de Antofagasta, Antofagasta 1240000, Chile; [email protected] * Correspondence: [email protected] Abstract: We introduce a new class of distributions called the epsilon–positive family, which can be viewed as generalization of the distributions with positive support. The construction of the epsilon– positive family is motivated by the ideas behind the generation of skew distributions using symmetric kernels. This new class of distributions has as special cases the exponential, Weibull, log–normal, log–logistic and gamma distributions, and it provides an alternative for analyzing reliability and survival data. An interesting feature of the epsilon–positive family is that it can viewed as a finite scale mixture of positive distributions, facilitating the derivation and implementation of EM–type algorithms to obtain maximum likelihood estimates (MLE) with (un)censored data. We illustrate the flexibility of this family to analyze censored and uncensored data using two real examples. One of them was previously discussed in the literature; the second one consists of a new application to model recidivism data of a group of inmates released from the Chilean prisons during 2007.
    [Show full text]
  • The Poisson-Lomax Distribution
    Revista Colombiana de Estadística Junio 2014, volumen 37, no. 1, pp. 225 a 245 The Poisson-Lomax Distribution Distribución Poisson-Lomax Bander Al-Zahrania, Hanaa Sagorb Department of Statistics, King Abdulaziz University, Jeddah, Saudi Arabia Abstract In this paper we propose a new three-parameter lifetime distribution with upside-down bathtub shaped failure rate. The distribution is a com- pound distribution of the zero-truncated Poisson and the Lomax distribu- tions (PLD). The density function, shape of the hazard rate function, a general expansion for moments, the density of the rth order statistic, and the mean and median deviations of the PLD are derived and studied in de- tail. The maximum likelihood estimators of the unknown parameters are obtained. The asymptotic confidence intervals for the parameters are also obtained based on asymptotic variance-covariance matrix. Finally, a real data set is analyzed to show the potential of the new proposed distribution. Key words: Asymptotic variance-covariance matrix, Compounding, Life- time distributions, Lomax distribution, Poisson distribution, Maximum like- lihood estimation. Resumen En este artículo se propone una nueva distribución de sobrevida de tres parámetros con tasa fallo en forma de bañera. La distribución es una mezcla de la Poisson truncada y la distribución Lomax. La función de densidad, la función de riesgo, una expansión general de los momentos, la densidad del r-ésimo estadístico de orden, y la media así como su desviación estándar son derivadas y estudiadas en detalle. Los estimadores de máximo verosímiles de los parámetros desconocidos son obtenidos. Los intervalos de confianza asintóticas se obtienen según la matriz de varianzas y covarianzas asintótica.
    [Show full text]
  • Weibull-Lomax Distribution and Its Properties and Applications
    Al-Azhar University-Gaza Deanship of Postgraduate Studies Faculty of Economics and Administrative Sciences Department of Statistics Weibull-Lomax Distribution and its Properties and Applications توزيع ويبل - لومكس و خصائصه و تطبيقاته By: Ahmed Majed Hamad El-deeb Supervisor: Prof. Dr. Mahmoud Khalid Okasha A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master in Statistics Gaza, 2015 Abstract The Weibull distribution is a very popular probability mathematical distribution for its flexibility in modeling lifetime data particularly for phenomenon with monotone failure rates. When modeling monotone hazard rates, the Weibull distribution may be an initial choice because of its negatively and positively skewed density shapes. However, it does not provide a reasonable parametric fit for modeling phenomenon with non-monotone failure rates such as the bathtub and upside-down bathtub shapes and the unimodal failure rates which are common in reliability, biological studies and survival studies. In this thesis we introduce and discuss a new generalization of Weibull distribution called the Four-parameter Weibull-Lomax distribution in an attempt to overcome the problem of not being able to fit the phenomenon with non-monotone failure rates. The new distribution is quite flexible for analyzing various shapes of lifetime data and has an increasing, decreasing, constant, bathtub or upside down bathtub shaped hazard rate function. Some basic mathematical functions associated with the proposed distribution are obtained. The Weibull-Lomax density function could be wrought as a double mixture of Exponentiated Lomax densities. And includes as special cases the exponential, Weibull. Shapes of the density and the hazard rate function are discussed.
    [Show full text]
  • Bp, REGRESSION on MEDIAN RESIDUAL LIFE FUNCTION FOR
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by D-Scholarship@Pitt REGRESSION ON MEDIAN RESIDUAL LIFE FUNCTION FOR CENSORED SURVIVAL DATA by Hanna Bandos M.S., V.N. Karazin Kharkiv National University, 2000 Submitted to the Graduate Faculty of The Department of Biostatistics Graduate School of Public Health in partial fulfillment of the requirements for the degree of Doctor of Philosophy University of Pittsburgh 2007 Bp, UNIVERSITY OF PITTSBURGH Graduate School of Public Health This dissertation was presented by Hanna Bandos It was defended on July 26, 2007 and approved by Dissertation Advisor: Jong-Hyeon Jeong, PhD Associate Professor Biostatistics Graduate School of Public Health University of Pittsburgh Dissertation Co-Advisor: Joseph P. Costantino, DrPH Professor Biostatistics Graduate School of Public Health University of Pittsburgh Janice S. Dorman, MS, PhD Professor Health Promotion & Development School of Nursing University of Pittsburgh Howard E. Rockette, PhD Professor Biostatistics Graduate School of Public Health University of Pittsburgh ii Copyright © by Hanna Bandos 2007 iii REGRESSION ON MEDIAN RESIDUAL LIFE FUNCTION FOR CENSORED SURVIVAL DATA Hanna Bandos, PhD University of Pittsburgh, 2007 In the analysis of time-to-event data, the median residual life (MERL) function has been promoted by many researchers as a practically relevant summary of the residual life distribution. Formally the MERL function at a time point is defined as the median of the remaining lifetimes among survivors beyond that particular time point. Despite its widely recognized usefulness, there is no commonly accepted approach to model the median residual life function. In this dissertation we introduce two novel regression techniques that model the relationship between the MERL function and covariates of interest at multiple time points simultaneously; proportional median residual life model and accelerated median residual life model.
    [Show full text]
  • Location-Scale Distributions
    Location–Scale Distributions Linear Estimation and Probability Plotting Using MATLAB Horst Rinne Copyright: Prof. em. Dr. Horst Rinne Department of Economics and Management Science Justus–Liebig–University, Giessen, Germany Contents Preface VII List of Figures IX List of Tables XII 1 The family of location–scale distributions 1 1.1 Properties of location–scale distributions . 1 1.2 Genuine location–scale distributions — A short listing . 5 1.3 Distributions transformable to location–scale type . 11 2 Order statistics 18 2.1 Distributional concepts . 18 2.2 Moments of order statistics . 21 2.2.1 Definitions and basic formulas . 21 2.2.2 Identities, recurrence relations and approximations . 26 2.3 Functions of order statistics . 32 3 Statistical graphics 36 3.1 Some historical remarks . 36 3.2 The role of graphical methods in statistics . 38 3.2.1 Graphical versus numerical techniques . 38 3.2.2 Manipulation with graphs and graphical perception . 39 3.2.3 Graphical displays in statistics . 41 3.3 Distribution assessment by graphs . 43 3.3.1 PP–plots and QQ–plots . 43 3.3.2 Probability paper and plotting positions . 47 3.3.3 Hazard plot . 54 3.3.4 TTT–plot . 56 4 Linear estimation — Theory and methods 59 4.1 Types of sampling data . 59 IV Contents 4.2 Estimators based on moments of order statistics . 63 4.2.1 GLS estimators . 64 4.2.1.1 GLS for a general location–scale distribution . 65 4.2.1.2 GLS for a symmetric location–scale distribution . 71 4.2.1.3 GLS and censored samples .
    [Show full text]